759
Views
19
CrossRef citations to date
0
Altmetric
Review

Current views on the potential for development of a HIV vaccine

&
Pages 295-303 | Received 15 Jul 2016, Accepted 11 Jan 2017, Published online: 23 Jan 2017

References

  • Cohen MS, Chen YQ, McCauley M, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011 Aug 11;365(6):493–505.
  • Auvert B, Taljaard D, Lagarde E, et al. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 trial. Plos Med. 2005 Nov;2(11):e298.
  • Bailey RC, Moses S, Parker CB, et al. Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet. 2007 Feb 24;369(9562):643–656.
  • Gray RH, Kigozi G, Serwadda D, et al. Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet. 2007 Feb 24;369(9562):657–666.
  • Abdool Karim Q, Abdool Karim SS, Frohlich JA, et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science. 2010 Sep 3;329(5996):1168–1174.
  • Marrazzo JM, Ramjee G, Richardson BA, et al. Tenofovir-based preexposure prophylaxis for HIV infection among African women. N Engl J Med. 2015 Feb 5;372(6):509–518.
  • Grant RM, Lama JR, Anderson PL, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med. 2010 Dec 30;363(27):2587–2599.
  • Baeten JM, Donnell D, Ndase P, et al. Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Engl J Med.  2012 Aug 2;367(5):399–410. doi: 10.1056/NEJMoa1108524.
  • Van Damme L, Corneli A, Ahmed K, et al. Preexposure prophylaxis for HIV infection among African women. N Engl J Med. 2012 Aug 2;367(5):411–422.
  • Pitisuttithum P, Gilbert P, Gurwith M, et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J Infect Dis. 2006 Dec 15;194(12):1661–1671.
  • Flynn NM, Forthal DN, Harro CD, et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J Infect Dis. 2005 Mar 1;191(5):654–665.
  • Priddy FH, Brown D, Kublin J, et al. Safety and immunogenicity of a replication-incompetent adenovirus type 5 HIV-1 clade B gag/pol/nef vaccine in healthy adults. Clin Infect Dis. 2008 Jun 1;46(11):1769–1781.
  • Buchbinder SP, Mehrotra DV, Duerr A, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet. 2008 29;372(9653):1881-1893. doi: 10.1016/S0140-6736(08)61591-3.
  • Gray GE, Allen M, Moodie Z, et al. Safety and efficacy of the HVTN 503/Phambili study of a clade-B-based HIV-1 vaccine in South Africa: a double-blind, randomised, placebo-controlled test-of-concept phase 2b study. Lancet Infect Dis. 2011 Jul;11(7):507–515.
  • Duerr A, Huang Y, Buchbinder S, et al. Extended follow-up confirms early vaccine-enhanced risk of HIV acquisition and demonstrates waning effect over time among participants in a randomized trial of recombinant adenovirus HIV vaccine (Step study). J Infect Dis. 2012 Jul 15;206(2):258–266.
  • Moodie Z, Metch B, Bekker LG, et al. Continued follow-up of Phambili phase 2b randomized HIV-1 vaccine trial participants supports increased HIV-1 acquisition among vaccinated men. Plos One. 2015;10(9):e0137666.
  • Frahm N, DeCamp AC, Friedrich DP, et al. Human adenovirus-specific T cells modulate HIV-specific T cell responses to an Ad5-vectored HIV-1 vaccine. J Clin Invest. 2012 Jan 3;122(1):359–367.
  • Janes H, Friedrich DP, Krambrink A, et al. Vaccine-induced gag-specific T cells are associated with reduced viremia after HIV-1 infection. J Infect Dis. 2013 Oct 15;208(8):1231–1239.
  • Leitman EM, Hurst J, Mori M, et al. Lower viral loads and slower CD4+ T-cell count decline in MRKAd5 HIV-1 vaccinees expressing disease-susceptible HLA-B*58:02. J Infect Dis. 2016 Aug 1;214(3):379–389.
  • Hammer SM, Sobieszczyk ME, Janes H, et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N Engl J Med. 2013 Nov 28;369(22):2083–2092.
  • Huang Y, Follmann D, Nason M, et al. Effect of rAd5-vector HIV-1 preventive vaccines on HIV-1 acquisition: a participant-level meta-analysis of randomized trials. Plos One. 2015;10(9):e0136626.
  • Belshe RB, Gorse GJ, Mulligan MJ, et al. Induction of immune responses to HIV-1 by canarypox virus (ALVAC) HIV-1 and gp120 SF-2 recombinant vaccines in uninfected volunteers. NIAID AIDS vaccine evaluation group. AIDS. 1998 Dec 24;12(18):2407–2415.
  • Burton DR, Desrosiers RC, Doms RW, et al. Public health.A sound rationale needed for phase III HIV-1 vaccine trials. Science. 2004 Jan 16;303(5656):316.
  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med. 2009 Dec 3;361(23):2209–2220.
  • Goepfert PA, Elizaga ML, Seaton K, et al. Specificity and 6-month durability of immune responses induced by DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J Infect Dis. 2014 Jul 1;210(1):99–110.
  • Robb ML, Rerks-Ngarm S, Nitayaphan S, et al. Risk behaviour and time as covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: a post-hoc analysis of the Thai phase 3 efficacy trial RV 144. Lancet Infect Dis. 2012 Jul;12(7):531–537.
  • Haynes BF, Gilbert PB, McElrath MJ, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med. 2012 Apr 5;366(14):1275–1286.
  • Lin L, Finak G, Ushey K, et al. COMPASS identifies T-cell subsets correlated with clinical outcomes. Nat Biotechnol. 2015 Jun;33(6):610–616.
  • Gray GE, Andersen-Nissen E, Grunenberg N, et al. HVTN 097: evaluation of the RV144 Vaccine Regimen in HIV Uninfected South African Adults. HIVR4P. Cape Town, South Africa: AIDS Research and Human Retroviruses; 2014. p. A33–4.
  • Barouch DH, Alter G, Broge T, et al. Protective efficacy of adenovirus/protein vaccines against SIV challenges in rhesus monkeys. Science. 2015 Jul 17;349(6245):320–324.
  • AVAC, HVTN, Janssen. AIDS Vaccine Research: An overview. 2015 [ cited; Available from: http://www.avac.org/sites/default/files/event_files/HVAD2015_slides.pdf
  • Gautam R, Nishimura Y, Pegu A, et al. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature. 2016 May 5;533(7601):105–109.
  • Klein K, Veazey RS, Warrier R, et al. Neutralizing IgG at the portal of infection mediates protection against vaginal simian/human immunodeficiency virus challenge. J Virol. 2013 Nov;87(21):11604–11616.
  • Moldt B, Le KM, Carnathan DG, et al. Neutralizing antibody affords comparable protection against vaginal and rectal simian/human immunodeficiency virus challenge in macaques. AIDS. 2016 Jun 19;30(10):1543–1551.
  • Balazs AB, Ouyang Y, Hong CM, et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat Med. 2014 Mar;20(3):296–300.
  • Binley J, Lybarger E, Crooks E, et al. Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J Virol. 2008 Dec;82(23):11651–11668.
  • Doria-Rose N, Klein R, Daniels M, et al. Breadth of human immunodeficiency virus-specific neutralizing activity in sera: clustering analysis and association with clinical variables. J Virol. 2010 Feb;84(3):1631–1636.
  • Nandi A, Lavine C, Wang P, et al. Epitopes for broad and potent neutralizing antibody responses during chronic infection with human immunodeficiency virus type 1. Virology. 2010 Jan;396(2):339–348.
  • Sather D, Armann J, Ching L, et al. Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J Virol. 2009 Jan;83(2):757–769.
  • Simek M, Rida W, Priddy F, et al. Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J Virol. 2009 Jul;83(14):7337–7348.
  • Van Gils M, Euler Z, Schweighardt B, et al. Prevalence of cross-reactive HIV-1-neutralizing activity in HIV-1-infected patients with rapid or slow disease progression. AIDS. 2009 Nov;23(18):2405–2414.
  • Mikell I, Sather DN, Kalams SA, et al. Characteristics of the earliest cross-neutralizing antibody response to HIV-1. Plos Pathog. 2011;7(1):e1001251.
  • Hraber P, Seaman MS, Bailer RT, et al. Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection. AIDS. 2014 Jan 14;28(2):163–169.
  • Mascola JR, Haynes BF. HIV-1 neutralizing antibodies: understanding nature’s pathways. Immunol Rev. 2013 Jul;254(1):225–244.
  • Sun M, Li Y, Yuan Z, et al. VRC01 antibody protects against vaginal and rectal transmission of human immunodeficiency virus 1 in hu-BLT mice. Arch Virol. 2016 Sep;161(9):2449–2455. doi: 10.1007/s00705-016-2942-4.
  • Baba TW, Liska V, Hofmann-Lehmann R, et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med. 2000 Feb;6(2):200–206.
  • Burton DR, Hessell AJ, Keele BF, et al. Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody. Proc Natl Acad Sci U S A. 2011 Jul;108(27):11181–11186.
  • Hessell AJ, Rakasz EG, Poignard P, et al. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. Plos Pathog. 2009 May;5(5):e1000433.
  • Hessell AJ, Rakasz EG, Tehrani DM, et al. Broadly neutralizing monoclonal antibodies 2F5 and 4E10 directed against the human immunodeficiency virus type 1 gp41 membrane-proximal external region protect against mucosal challenge by simian-human immunodeficiency virus SHIVBa-L. J Virol. 2010 Feb;84(3):1302–1313.
  • Marx PA, Compans RW, Gettie A, et al. Protection against vaginal SIV transmission with microencapsulated vaccine. Science. 1993;260:1323–1327.
  • Mascola JR, Lewis MG, Stiegler G, et al. Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J Virol. 1999 May;73(5):4009–4018.
  • Moldt B, Rakasz EG, Schultz N, et al. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18921–18925.
  • Parren PW, Marx PA, Hessell AJ, et al. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J Virol. 2001 Sep;75(17):8340–8347.
  • Barouch DH, Whitney JB, Moldt B, et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature. 2013 Nov 14;503(7475):224–228.
  • Sadjadpour R, Donau OK, Shingai M, et al. Emergence of gp120 V3 variants confers neutralization resistance in an R5 simian-human immunodeficiency virus-infected macaque elite neutralizer that targets the N332 glycan of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol. 2013 Aug;87(15):8798–8804.
  • Scheid JF, Horwitz JA, Bar-On Y, et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature. 2016 Jul 28;535(7613):556–560.
  • Trkola A, Kuster H, Rusert P, et al. Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat Med. 2005 Jun;11(6):615–622.
  • Manrique A, Rusert P, Joos B, et al. In vivo and in vitro escape from neutralizing antibodies 2G12, 2F5, and 4E10. J Virol. 2007 Aug;81(16):8793–8808.
  • Xiao X, Chen W, Feng Y, et al. Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: implications for evasion of immune responses and design of vaccine immunogens. Biochem Biophys Res Commun. 2009 Dec 18;390(3):404–409.
  • Hoot S, McGuire AT, Cohen KW, et al. Recombinant HIV envelope proteins fail to engage germline versions of anti-CD4bs bNAbs. Plos Pathog. 2013 Jan;9(1):e1003106.
  • McGuire AT, Hoot S, Dreyer AM, et al. Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies. J Exp Med. 2013 Apr 8;210(4):655–663.
  • Zhou T, Lynch RM, Chen L, et al. Structural repertoire of HIV-1-neutralizing antibodies targeting the CD4 supersite in 14 donors. Cell. 2015 Jun 04;161(6):1280–1292.
  • Joyce MG, Zhang B, Ou L, et al. Iterative structure-based improvement of a fusion-glycoprotein vaccine against RSV. Nat Struct Mol Biol. 2016 Sep;23(9):811–820.
  • McLellan JS, Chen M, Joyce MG, et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science. 2013 Nov 01;342(6158):592–598.
  • Van Regenmortel MH. Structure-based reverse vaccinology failed in the case of HIV because it disregarded accepted immunological theory. Int J Mol Sci. 2016 Sep 21;17(9). pii: E1591.
  • McGuire AT, Dreyer AM, Carbonetti S, et al. HIV antibodies. Antigen modification regulates competition of broad and narrow neutralizing HIV antibodies. Science. 2014 Dec 12;346(6215):1380–1383.
  • Jardine J, Julien JP, Menis S, et al. Rational HIV immunogen design to target specific germline B cell receptors. Science. 2013 May 10;340(6133):711–716.
  • Georgiev IS, Gordon Joyce M, Zhou T, et al. Elicitation of HIV-1-neutralizing antibodies against the CD4-binding site. Curr Opin HIV AIDS. 2013 Sep;8(5):382–392.
  • McGuire AT, Gray MD, Dosenovic P, et al. Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice. Nat Commun. 2016;7:10618.
  • Jardine JG, Ota T, Sok D, et al. HIV-1 VACCINES. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science. 2015 Jul 10;349(6244):156–161.
  • Dosenovic P, Von Boehmer L, Escolano A, et al. Immunization for HIV-1 broadly neutralizing antibodies in human Ig Knockin mice. Cell. 2015 Jun 18;161(7):1505–1515.
  • Briney B, Sok D, Jardine JG, et al. Tailored immunogens direct affinitymaturation toward HIV neutralizing antibodies. Cell. 2016 Sep 8;166(6):1459–70 e11.
  • Tian M, Cheng C, Chen X, et al. Induction of HIV neutralizing antibody lineages in mice with diverse precursor repertoires. Cell. 2016 Sep 8;166(6):1471–84e18.
  • Escolano A, Steichen JM, Dosenovic P, et al. Sequential immunization elicits broadly neutralizing anti-HIV-1 antibodies in Ig Knockin mice. Cell. 2016 Sep 8;166(6):1445–58e12.
  • Sok D, Briney B, Jardine JG, et al. Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci transgenic mice. Science. 2016 Sep 30;353(6307):1557–1560.
  • Liao HX, Lynch R, Zhou T, et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature. 2013 Apr 25;496(7446):469–476.
  • Gao F, Bonsignori M, Liao HX, et al. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell. 2014 Jul 31;158(3):481–491.
  • Haynes BF, Moody MA, Alam M, et al. Progress in HIV-1 vaccine development. J Allergy Clin Immunol. 2014 Jul;134(1):3–10. quiz 1.
  • Sanders RW, Vesanen M, Schuelke N, et al. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J Virol. 2002 Sep;76(17):8875–8889.
  • Sanders RW, Derking R, Cupo A, et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. Plos Pathog. 2013 Sep;9(9):e1003618.
  • Julien JP, Sok D, Khayat R, et al. Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. Plos Pathog. 2013;9(5):e1003342.
  • Yasmeen A, Ringe R, Derking R, et al. Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. Retrovirology. 2014;11:41.
  • Sanders RW, Van Gils MJ, Derking R, et al. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science. 2015 Jul 10;349(6244):aac4223.
  • Hessell AJ, McBurney S, Pandey S, et al. Induction of neutralizing antibodies in rhesus macaques using V3 mimotope peptides. Vaccine. 2016 May 23;34(24):2713–2721.
  • Sharma SK, De Val N, Bale S, et al. Cleavage-independent HIV-1 Env trimers engineered as soluble native spike mimetics for vaccine design. Cell Reports. 2015 Apr 28;11(4):539–550.
  • Georgiev IS, Joyce MG, Yang Y, et al. Single-chain soluble BG505.SOSIP gp140 trimers as structural and antigenic mimics of mature closed HIV-1 Env. J Virol. 2015 May;89(10):5318–5329.
  • De Taeye SW, Ozorowski G, De La Pena A, et al. Immunogenicity of stabilized HIV-1 envelope trimers with reduced exposure of non-neutralizing epitopes. Cell. 2015 Dec 17;163(7):1702–1715.
  • Andrabi R, Voss JE, Liang CH, et al. Identification of common features in prototype broadly neutralizing antibodies to HIV envelope V2 apex to facilitate vaccine design. Immunity. 2015 Nov 17;43(5):959–973.
  • Hansen SG, Ford JC, Lewis MS, et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature. 2011 May 26;473(7348):523–527.
  • Hansen SG, Piatak M Jr., Ventura AB, et al. Immune clearance of highly pathogenic SIV infection. Nature. 2013 Oct 3;502(7469):100–104.
  • Hansen SG, Sacha JB, Hughes CM, et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science. 2013 May 24;340(6135):1237874.
  • Hansen SG, Wu HL, Burwitz BJ, et al. Broadly targeted CD8(+) T cell responses restricted by major histocompatibility complex E. Science. 2016 Feb 12;351(6274):714–720.
  • Rolland M, Nickle DC, Mullins JI. HIV-1 group M conserved elements vaccine. Plos Pathog. 2007 Nov;3(11):e157.
  • Fischer W, Perkins S, Theiler J, et al. Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nat Med. 2007 Jan;13(1):100–106.
  • Barouch DH, O’Brien KL, Simmons NL, et al. Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nat Med. 2010 Mar;16(3):319–323.
  • Santra S, Liao HX, Zhang R, et al. Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys. Nat Med. 2010 Mar;16(3):324–328.
  • Mothe B, Llano A, Ibarrondo J, et al. CTL responses of high functional avidity and broad variant cross-reactivity are associated with HIV control. Plos One. 2012;7(1):e29717.
  • Kulkarni V, Valentin A, Rosati M, et al. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques. Plos One. 2014 Jan 23;9(1):e86254.
  • Kulkarni V, Valentin A, Rosati M, et al. HIV-1 conserved elements p24CE DNA vaccine induces humoral immune responses with broad epitope recognition in macaques. Plos One. 2014;9(10):e111085.
  • Chung AW, Kumar MP, Arnold KB, et al. Dissecting polyclonal vaccine-induced humoral immunity against HIV using systems serology. Cell. 2015 Nov 5;163(4):988–998.
  • Yates NL, Liao HX, Fong Y, et al. Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination. Sci Transl Med. 2014 Mar 19;6(228):228ra39.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.