350
Views
36
CrossRef citations to date
0
Altmetric
Review

Potential and clinical translation of oncolytic measles viruses

&
Pages 353-363 | Received 28 Nov 2016, Accepted 26 Jan 2017, Published online: 15 Feb 2017

References

  • Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007;15:651–659. Epub 2007 02 15.
  • Lichty BD, Breitbach CJ, Stojdl DF, et al. Going viral with cancer immunotherapy. Nat Rev Cancer. 2014;14:559–567. Epub 2014 07 06.
  • Chiocca EA Oncolytic viruses. Nat Rev Cancer. 2002;2:938–950. Epub 2002 12 03.
  • Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res. 2014;2:295–300. Epub 2014 04 26.
  • Xia ZJ, Chang JH, Zhang L, et al. [Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus]. Ai Zheng. 2004;23:1666–1670. Epub 2004 12 17.
  • Garber K. China approves world’s first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst. 2006;98:298–300. Epub 2006 03 02.
  • Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J Clin Oncol. 2015;33:2780–2788. Epub 2015 05 28.
  • Pasquinucci G. Possible effect of measles on leukaemia. Lancet. 1971;1:136. Epub 1971 01 16.
  • Gross S. Measles and leukaemia. Lancet. 1971;1:397–398. Epub 1971 02 20.
  • Zygiert Z. Hodgkin’s disease: remissions after measles. Lancet. 1971;1:593. Epub 1971 03 20.
  • Taqi AM, Abdurrahman MB, Yakubu AM, et al. Regression of Hodgkin’s disease after measles. Lancet. 1981;1:1112. Epub 1981 05 16.
  • Bluming AZ, Ziegler JL. Regression of Burkitt’s lymphoma in association with measles infection. Lancet. 1971;2:105–106. Epub 1971 07 10.
  • Vyriad, Inc. Trial of Measles Virotherapy in Combination with Nivolumab in Patients With Metastatic Non-Small Cell Lung Cancer. ClinicalTrials.gov. Cited 2016 Dec 16. Available from: https://clinicaltrials.gov/ct2/show/NCT02919449?term=measles+lungrank=2 NLM Identifier: NCT02919449.
  • Galanis E. Mayo Clinic. Recombinant Measles Virus Vaccine Therapy and Oncolytic Virus Therapy in Treating Patients With Progressive, Recurrent, or Refractory Ovarian Epithelial Cancer or Primary Peritoneal Cancer. ClinicalTrials.gov. Cited 2016 Dec 16. Available from: https://clinicaltrials.gov/ct2/show/NCT00408590?term=measles+AND+cancer&rank=2 NLM Identifier: NCT00408590.
  • Galanis E. Mayo Clinic. MV-NIS Infected Mesenchymal Stem Cells in Treating Patients With Recurrent Ovarian Cancer. ClinicalTrials.gov. Cited 2016 Dec 16. Available from: https://clinicaltrials.gov/ct2/show/NCT02068794?term=measles+cancer&rank=3 NLM Identifier: NCT02068794.
  • Okuno S. Mayo Clinic. Viral Therapy In Treating Patients With Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck Cancer. ClinicalTrials.gov. Cited 2016 Dec 16. Available from: https://clinicaltrials.gov/ct2/show/NCT01846091?term=measles+cancer&rank=4 NLM Identifier: NCT01846091.
  • Galanis E. Mayo Clinic. MV-NIS or Investigator’s Choice Chemotherapy in Treating Patients With Ovarian, Fallopian, or Peritoneal Cancer. ClinicalTrials.gov. Cited 2016 Dec 16. Available from: https://clinicaltrials.gov/ct2/show/NCT02364713?term=measles+cancer&rank=5 NLM Identifier: NCT02364713.
  • Babovic-Vuksanovic D. Mayo Clinic. Vaccine Therapy in Treating Patients With Malignant Peripheral Nerve Sheath Tumor That is Recurrent or Cannot Be Removed by Surgery. ClinicalTrials.gov. Cited 2016 Dec 16. Available from: https://clinicaltrials.gov/ct2/show/NCT02700230?term=measles+cancer&rank=7 NLM Identifier: NCT02700230.
  • Galanis E. Mayo Clinic. Viral Therapy in Treating Patients With Recurrent Glioblastoma Multiforme. ClinicalTrials.gov. Cited 2016 Dec 16. Available from: https://clinicaltrials.gov/ct2/show/NCT00390299?term=measles+cancer&rank=8 NLM Identifier: NCT00390299.
  • Dispenzieri A. Mayo Clinic. Vaccine Therapy With or Without Cyclophosphamide in Treating Patients With Recurrent or Refractory Multiple Myeloma. ClinicalTrials.gov. Cited 2016 Dec 16. Available from: https://clinicaltrials.gov/ct2/show/NCT00450814?term=measles+cancer&rank=9 NLM Identifier: NCT00450814
  • Peikert T. Mayo Clinic. Intrapleural Measles Virus Therapy in Patients With Malignant Pleural Mesothelioma. ClinicalTrials.gov. Cited 2016 Dec 16. Available from: NLM Identifier: NCT01503177. https://clinicaltrials.gov/ct2/show/NCT01503177?term=measles+cancer&rank=10
  • Van Rhee F. University of Arkansas. UARK 2014-21 A Phase II Trial of Oncolytic Virotherapy by Systemic Administration of Edmonston Strain of Measles Virus. ClinicalTrials.gov. Cited 2016 Dec 16. Available from: https://clinicaltrials.gov/ct2/show/NCT02192775?term=measles+cancer&rank=13 NLM Identifier: NCT02192775.
  • Mueller S. Univ California San Francisco. Modified Measles Virus (MV-NIS) for Children and Young Adults With Recurrent Medulloblastoma or Recurrent ATRT. ClinicalTrials.gov. Cited 2016 Dec 16. Available from: https://clinicaltrials.gov/ct2/show/NCT02962167?term=NCT02962167&rank=1 NLM Identifier: NCT02962167.
  • Naim HY. Measles virus. Hum Vaccin Immunother. 2015;11:21–26. Epub 2014 12 09.
  • Enders JF, Peebles TC. Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc Soc Exp Biol Med. 1954;86:277–286. Epub 1954 06 01.
  • Griffin DE, Oldstone MB. Measles. History and basic biology. Introduction. Curr Top Microbiol Immunol. 2009;329:1. Epub 2009 02 10.
  • Rima BK, Earle JA, Baczko K, et al. Measles virus strain variations. Curr Top Microbiol Immunol. 1995;191:65–83. Epub 1995 01 01.
  • Condack C, Grivel JC, Devaux P, et al. Measles virus vaccine attenuation: suboptimal infection of lymphatic tissue and tropism alteration. J Infect Dis. 2007;196:541–549. Epub 2007 07 13.
  • Moss WJ, Griffin DE. Measles. Lancet. 2012;379:153–164. Epub 2011 08 23.
  • Rima BK, Duprex WP. New concepts in measles virus replication: getting in and out in vivo and modulating the host cell environment. Virus Res. 2011;162:47–62. Epub 2011 18 10.
  • Wild TF, Malvoisin E, Buckland R. Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. J Gen Virol. 1991;72 (Pt 2): 439–442. Epub 1991 01 02.
  • Tatsuo H, Ono N, Tanaka K, et al. SLAM (CDw150) is a cellular receptor for measles virus. Nature. 2000;406:893–897. Epub 2000 06 09.
  • Ono N, Tatsuo H, Hidaka Y, et al. Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol. 2001;75:4399–4401. Epub 2001 05 04.
  • Naniche D, Varior-Krishnan G, Cervoni F, et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol. 1993;67:6025–6032. Epub 1993 01 10.
  • Dorig RE, Marcil A, Chopra A, et al. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell. 1993;75:295–305. Epub 1993 10 22.
  • Noyce RS, Bondre DG, Ha MN, et al. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. Plos Pathog. 2011;7:e1002240. Epub 2011 09 09.
  • Noyce RS, Richardson CD. Nectin 4 is the epithelial cell receptor for measles virus. Trends Microbiol. 2012;20:429–439. Epub 2012 06 23.
  • Muhlebach MD, Mateo M, Sinn PL, et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature. 2011;480:530–533. Epub 2011 04 11.
  • Fujiyuki T, Yoneda M, Amagai Y, et al. A measles virus selectively blind to signaling lymphocytic activation molecule shows anti-tumor activity against lung cancer cells. Oncotarget. 2015;6:24895–24903. Epub 2015 09 01.
  • Amagai Y, Fujiyuki T, Yoneda M, et al. Oncolytic Activity of a Recombinant Measles Virus, Blind to Signaling Lymphocyte Activation Molecule, Against Colorectal Cancer Cells. Sci Rep. 2016;6:24572. Epub 2016 04 20.
  • Matveeva OV, Guo ZS, Shabalina SA, et al. Oncolysis by paramyxoviruses: multiple mechanisms contribute to therapeutic efficiency. Mol Ther Oncolytics. 2015;2:15011. Epub 2015 12 08.
  • Anderson BD, Nakamura T, Russell SJ, et al. High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res. 2004;64:4919–4926. Epub 2004 07 17.
  • Peng KW, Facteau S, Wegman T, et al. Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med. 2002;8:527–531. Epub 2002 05 02.
  • McDonald CJ, Erlichman C, Ingle JN, et al. A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer. Breast Cancer Res Treat. 2006;99:177–184. Epub 2006 04 28.
  • Msaouel P, Iankov ID, Allen C, et al. Engineered measles virus as a novel oncolytic therapy against prostate cancer. Prostate. 2009;69:82–91. Epub 2008 11 01.
  • Phuong LK, Allen C, Peng KW, et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res. 2003;63:2462–2469. Epub 2003 05 17.
  • Dingli D, Peng KW, Harvey ME, et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood. 2004;103:1641–1646. Epub 2003 11 08.
  • Msaouel P, Iankov ID, Allen C, et al. Noninvasive imaging and radiovirotherapy of prostate cancer using an oncolytic measles virus expressing the sodium iodide symporter. Mol Ther. 2009;17:2041–2048. Epub 2009 09 24.
  • Penheiter AR, Wegman TR, Classic KL, et al. Sodium iodide symporter (NIS)-mediated radiovirotherapy for pancreatic cancer. AJR Am J Roentgenol. 2010;195:341–349. Epub 2010 07 24.
  • Carlson SK, Classic KL, Hadac EM, et al. Quantitative molecular imaging of viral therapy for pancreatic cancer using an engineered measles virus expressing the sodium-iodide symporter reporter gene. AJR Am J Roentgenol. 2009;192:279–287. Epub 2008 12 23.
  • Blechacz B, Splinter PL, Greiner S, et al. Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma. Hepatology. 2006;44:1465–1477. Epub 2006 11 30.
  • Hasegawa K, Pham L, O’Connor MK, et al. Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter. Clin Cancer Res. 2006;12:1868–1875. Epub 2006 03 23.
  • Hutzen B, Pierson CR, Russell SJ, et al. Treatment of medulloblastoma using an oncolytic measles virus encoding the thyroidal sodium iodide symporter shows enhanced efficacy with radioiodine. BMC Cancer. 2012;12:508. Epub 2012 11 09.
  • Reddi HV, Madde P, McDonough SJ, et al. Preclinical efficacy of the oncolytic measles virus expressing the sodium iodide symporter in iodine non-avid anaplastic thyroid cancer: a novel therapeutic agent allowing noninvasive imaging and radioiodine therapy. Cancer Gene Ther. 2012;19:659–665. Epub 2012 07 14.
  • Opyrchal M, Allen C, Iankov I, et al. Effective radiovirotherapy for malignant gliomas by using oncolytic measles virus strains encoding the sodium iodide symporter (MV-NIS). Hum Gene Ther. 2012;23:419–427. Epub 2011 12 22.
  • Li H, Peng KW, Russell SJ. Oncolytic measles virus encoding thyroidal sodium iodide symporter for squamous cell cancer of the head and neck radiovirotherapy. Hum Gene Ther. 2012;23:295–301. Epub 2012 01 13.
  • Miest TS, Frenzke M, Cattaneo R. Measles virus entry through the signaling lymphocyte activation molecule governs efficacy of mantle cell lymphoma radiovirotherapy. Mol Ther. 2013;21:2019–2031. Epub 2013 08 06.
  • Patel B, Dey A, Ghorani E, et al. Differential cytopathology and kinetics of measles oncolysis in two primary B-cell malignancies provides mechanistic insights. Mol Ther. 2011;19:1034–1040. Epub 2011 03 24.
  • Luhl NC, Zirngibl F, Dorneburg C, et al. Attenuated measles virus controls pediatric acute B-lineage lymphoblastic leukemia in NOD/SCID mice. Haematologica. 2014;99:1050–1061. Epub 2014 04 05.
  • Parrula C, Fernandez SA, Zimmerman B, et al. Measles virotherapy in a mouse model of adult T-cell leukaemia/lymphoma. J Gen Virol. 2011;92:1458–1466. Epub 2011 02 18.
  • Studebaker AW, Hutzen B, Pierson CR, et al. Oncolytic measles virus efficacy in murine xenograft models of atypical teratoid rhabdoid tumors. Neuro Oncol. 2015;17:1568–1577. Epub 2015 04 04.
  • Iankov ID, Msaouel P, Allen C, et al. Demonstration of anti-tumor activity of oncolytic measles virus strains in a malignant pleural effusion breast cancer model. Breast Cancer Res Treat. 2010;122:745–754. Epub 2009 11 07.
  • Lange S, Lampe J, Bossow S, et al. A novel armed oncolytic measles vaccine virus for the treatment of cholangiocarcinoma. Hum Gene Ther. 2013;24:554–564. Epub 2013 04 05.
  • Boisgerault N, Guillerme JB, Pouliquen D, et al. Natural oncolytic activity of live-attenuated measles virus against human lung and colorectal adenocarcinomas. Biomed Res Int. 2013;2013:387362. Epub 2013 04 16.
  • Kunzi V, Oberholzer PA, Heinzerling L, et al. Recombinant measles virus induces cytolysis of cutaneous T-cell lymphoma in vitro and in vivo. J Invest Dermatol. 2006;126:2525–2532. Epub 2006 09 09.
  • Allen C, Vongpunsawad S, Nakamura T, et al. Retargeted oncolytic measles strains entering via the EGFRvIII receptor maintain significant antitumor activity against gliomas with increased tumor specificity. Cancer Res. 2006;66:11840–11850. Epub 2006 12 21.
  • Zaoui K, Bossow S, Grossardt C, et al. Chemovirotherapy for head and neck squamous cell carcinoma with EGFR-targeted and CD/UPRT-armed oncolytic measles virus. Cancer Gene Ther. 2012;19:181–191. Epub 2011 11 15.
  • Zhang SC, Wang WL, Cai WS, et al. Engineered measles virus Edmonston strain used as a novel oncolytic viral system against human hepatoblastoma. BMC Cancer. 2012;12:427. Epub 2012 09 27.
  • Zhao D, Chen P, Yang H, et al. Live attenuated measles virus vaccine induces apoptosis and promotes tumor regression in lung cancer. Oncol Rep. 2013;29:199–204. Epub 2012 11 07.
  • Patel MR, Jacobson BA, Belgum H, et al. Measles vaccine strains for virotherapy of non-small-cell lung carcinoma. J Thorac Oncol. 2014;9:1101–1110. Epub 2014 08 27.
  • Deyle DR, Escobar DZ, Peng KW, et al. Oncolytic measles virus as a novel therapy for malignant peripheral nerve sheath tumors. Gene. 2015;565:140–145. Epub 2015 04 07.
  • Ungerechts G, Frenzke ME, Yaiw KC, et al. Mantle cell lymphoma salvage regimen: synergy between a reprogrammed oncolytic virus and two chemotherapeutics. Gene Ther. 2010;17:1506–1516. Epub 2010 08 06.
  • Studebaker AW, Kreofsky CR, Pierson CR, et al. Treatment of medulloblastoma with a modified measles virus. Neuro Oncol. 2010;12:1034–1042. Epub 2010 05 25.
  • Studebaker AW, Hutzen B, Pierson CR, et al. Oncolytic measles virus prolongs survival in a murine model of cerebral spinal fluid-disseminated medulloblastoma. Neuro Oncol. 2012;14:459–470. Epub 2012 02 07.
  • Donnelly OG, Errington-Mais F, Steele L, et al. Measles virus causes immunogenic cell death in human melanoma. Gene Ther. 2013;20:7–15. Epub 2011 12 16.
  • Kaufmann JK, Bossow S, Grossardt C, et al. Chemovirotherapy of malignant melanoma with a targeted and armed oncolytic measles virus. J Invest Dermatol. 2013;133:1034–1042. Epub 2012 12 12.
  • Gauvrit A, Brandler S, Sapede-Peroz C, et al. Measles virus induces oncolysis of mesothelioma cells and allows dendritic cells to cross-prime tumor-specific CD8 response. Cancer Res. 2008;68:4882–4892. Epub 2008 06 19.
  • Li H, Peng KW, Dingli D, et al. Oncolytic measles viruses encoding interferon beta and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy. Cancer Gene Ther. 2010;17:550–558. Epub 2010 04 10.
  • Ong HT, Timm MM, Greipp PR, et al. Oncolytic measles virus targets high CD46 expression on multiple myeloma cells. Exp Hematol. 2006;34:713–720. Epub 2006 05 27.
  • Ungerechts G, Springfeld C, Frenzke ME, et al. Lymphoma chemovirotherapy: CD20-targeted and convertase-armed measles virus can synergize with fludarabine. Cancer Res. 2007;67:10939–10947. Epub 2007 11 17.
  • Domingo-Musibay E, Allen C, Kurokawa C, et al. Measles Edmonston vaccine strain derivatives have potent oncolytic activity against osteosarcoma. Cancer Gene Ther. 2014;21:483–490. Epub 2014 11 15.
  • Peng KW, Hadac EM, Anderson BD, et al. Pharmacokinetics of oncolytic measles virotherapy: eventual equilibrium between virus and tumor in an ovarian cancer xenograft model. Cancer Gene Ther. 2006;13:732–738. Epub 2006 03 18.
  • Hartkopf AD, Bossow S, Lampe J, et al. Enhanced killing of ovarian carcinoma using oncolytic measles vaccine virus armed with a yeast cytosine deaminase and uracil phosphoribosyltransferase. Gynecol Oncol. 2013;130:362–368. Epub 2013 05 17.
  • Bossow S, Grossardt C, Temme A, et al. Armed and targeted measles virus for chemovirotherapy of pancreatic cancer. Cancer Gene Ther. 2011;18:598–608. Epub 2011 06 28.
  • Liu C, Hasegawa K, Russell SJ, et al. Prostate-specific membrane antigen retargeted measles virotherapy for the treatment of prostate cancer. Prostate. 2009;69:1128–1141. Epub 2009 04 16.
  • Meng X, Nakamura T, Okazaki T, et al. Enhanced antitumor effects of an engineered measles virus Edmonston strain expressing the wild-type N, P, L genes on human renal cell carcinoma. Mol Ther. 2010;18:544–551. Epub 2010 01 07.
  • Liu C, Erlichman C, McDonald CJ, et al. Heat shock protein inhibitors increase the efficacy of measles virotherapy. Gene Ther. 2008;15:1024–1034. Epub 2008 03 22.
  • Yaiw KC, Miest TS, Frenzke M, et al. CD20-targeted measles virus shows high oncolytic specificity in clinical samples from lymphoma patients independent of prior rituximab therapy. Gene Ther. 2011;18:313–317. Epub 2010 11 12.
  • Cattaneo R, Miest T, Shashkova EV, et al. Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat Rev Microbiol. 2008;6:529–540. Epub 2008 06 17.
  • Nakamura T, Peng KW, Vongpunsawad S, et al. Antibody-targeted cell fusion. Nat Biotechnol. 2004;22:331–336. Epub 2004 03 03.
  • Nakamura T, Peng KW, Harvey M, et al. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat Biotechnol. 2005;23:209–214. Epub 2005 02 03.
  • Hasegawa K, Nakamura T, Harvey M, et al. The use of a tropism-modified measles virus in folate receptor-targeted virotherapy of ovarian cancer. Clin Cancer Res. 2006;12:6170–6178. Epub 2006 10 26.
  • Schneider U, Bullough F, Vongpunsawad S, et al. Recombinant measles viruses efficiently entering cells through targeted receptors. J Virol. 2000;74:9928–9936. Epub 2000 10 12.
  • Bach P, Abel T, Hoffmann C, et al. Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus. Cancer Res. 2013;73:865–874. Epub 2013 01 08.
  • Hammond AL, Plemper RK, Zhang J, et al. Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen. J Virol. 2001;75:2087–2096. Epub 2001 02 13.
  • Jing Y, Zaias J, Duncan R, et al. In vivo safety, biodistribution and antitumor effects of uPAR retargeted oncolytic measles virus in syngeneic cancer models. Gene Ther. 2014;21:289–297. Epub 2014 01 17.
  • Jing Y, Bejarano MT, Zaias J, et al. In vivo anti-metastatic effects of uPAR retargeted measles virus in syngeneic and xenograft models of mammary cancer. Breast Cancer Res Treat. 2015;149:99–108. Epub 2014 12 19.
  • Allen C, Paraskevakou G, Iankov I, et al. Interleukin-13 displaying retargeted oncolytic measles virus strains have significant activity against gliomas with improved specificity. Mol Ther. 2008;16:1556–1564. Epub 2008 07 31.
  • Friedrich K, Hanauer JR, Prufer S, et al. DARPin-targeting of measles virus: unique bispecificity, effective oncolysis, and enhanced safety. Mol Ther. 2013;21:849–859. Epub 2013 02 06.
  • Ong HT, Trejo TR, Pham LD, et al. Intravascularly administered RGD-displaying measles viruses bind to and infect neovessel endothelial cells in vivo. Mol Ther. 2009;17:1012–1021. Epub 2009 03 12.
  • Leber MF, Bossow S, Leonard VH, et al. MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism. Mol Ther. 2011;19:1097–1106. Epub 2011 04 07.
  • Springfeld C, Von Messling V, Frenzke M, et al. Oncolytic efficacy and enhanced safety of measles virus activated by tumor-secreted matrix metalloproteinases. Cancer Res. 2006;66:7694–7700. Epub 2006 08 04.
  • Muhlebach MD, Schaser T, Zimmermann M, et al. Liver cancer protease activity profiles support therapeutic options with matrix metalloproteinase-activatable oncolytic measles virus. Cancer Res. 2010;70:7620–7629. Epub 2010 09 23.
  • Lampe J, Bossow S, Weiland T, et al. An armed oncolytic measles vaccine virus eliminates human hepatoma cells independently of apoptosis. Gene Ther. 2013;20:1033–1041. Epub 2013 05 31.
  • Hutzen B, Bid HK, Houghton PJ, et al. Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin. BMC Cancer. 2014;14:206. Epub 2014 03 22.
  • Iankov ID, Allen C, Federspiel MJ, et al. Expression of immunomodulatory neutrophil-activating protein of Helicobacter pylori enhances the antitumor activity of oncolytic measles virus. Mol Ther. 2012;20:1139–1147. Epub 2012 02 16.
  • Grossardt C, Engeland CE, Bossow S, et al. Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine. Hum Gene Ther. 2013;24:644–654. Epub 2013 05 07.
  • Galanis E, Atherton PJ, Maurer MJ, et al. Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer. Cancer Res. 2015;75:22–30. Epub 2014 11 16. **
  • Galanis E, Hartmann LC, Cliby WA, et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 2010;70:875–882. Epub 2010 01 28.
  • Peng KW, Myers R, Greenslade A, et al. Using clinically approved cyclophosphamide regimens to control the humoral immune response to oncolytic viruses. Gene Ther. 2013;20:255–261. Epub 2012 04 06.
  • Ong HT, Hasegawa K, Dietz AB, et al. Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies. Gene Ther. 2007;14:324–333. Epub 2006 10 20.
  • Iankov ID, Blechacz B, Liu C, et al. Infected cell carriers: a new strategy for systemic delivery of oncolytic measles viruses in cancer virotherapy. Mol Ther. 2007;15:114–122. Epub 2006 12 14.
  • Munguia A, Ota T, Miest T, et al. Cell carriers to deliver oncolytic viruses to sites of myeloma tumor growth. Gene Ther. 2008;15:797–806. Epub 2008 03 22.
  • Peng KW, Dogan A, Vrana J, et al. Tumor-associated macrophages infiltrate plasmacytomas and can serve as cell carriers for oncolytic measles virotherapy of disseminated myeloma. Am J Hematol. 2009;84:401–407. Epub 2009 06 10.
  • Mader EK, Maeyama Y, Lin Y, et al. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res. 2009;15:7246–7255. Epub 2009 11 26.
  • Liu C, Russell SJ, Peng KW. Systemic therapy of disseminated myeloma in passively immunized mice using measles virus-infected cell carriers. Mol Ther. 2010;18:1155–1164. Epub 2010 03 18.
  • Ong HT, Federspiel MJ, Guo CM, et al. Systemically delivered measles virus-infected mesenchymal stem cells can evade host immunity to inhibit liver cancer growth. J Hepatol. 2013;59:999–1006. Epub 2013 07 23.
  • Castleton A, Dey A, Beaton B, et al. Human mesenchymal stromal cells deliver systemic oncolytic measles virus to treat acute lymphoblastic leukemia in the presence of humoral immunity. Blood. 2014;123:1327–1335. Epub 2013 12 19.
  • Miest TS, Yaiw KC, Frenzke M, et al. Envelope-chimeric entry-targeted measles virus escapes neutralization and achieves oncolysis. Mol Ther. 2011;19:1813–1820. Epub 2011 05 26.
  • Hudacek AW, Navaratnarajah CK, Cattaneo R. Development of measles virus-based shielded oncolytic vectors: suitability of other paramyxovirus glycoproteins. Cancer Gene Ther. 2013;20:109–116. Epub 2013 01 12.
  • Lech PJ, Pappoe R, Nakamura T, et al. Antibody neutralization of retargeted measles viruses. Virology. 2014;454-455:237–246. Epub 2014 04 15.
  • Weiland T, Lampe J, Essmann F, et al. Enhanced killing of therapy-induced senescent tumor cells by oncolytic measles vaccine viruses. Int J Cancer. 2014;134:235–243. Epub 2013 06 26.
  • Opyrchal M, Allen C, Msaouel P, et al. Inhibition of Rho-associated coiled-coil-forming kinase increases efficacy of measles virotherapy. Cancer Gene Ther. 2013;20:630–637. Epub 2013 10 26.
  • Ruf B, Berchtold S, Venturelli S, et al. Combination of the oral histone deacetylase inhibitor resminostat with oncolytic measles vaccine virus as a new option for epi-virotherapeutic treatment of hepatocellular carcinoma. Mol Ther Oncolytics. 2015;2:15019. Epub 2015 01 01.
  • Li C, Meng G, Su L, et al. Dichloroacetate blocks aerobic glycolytic adaptation to attenuated measles virus and promotes viral replication leading to enhanced oncolysis in glioblastoma. Oncotarget. 2015;6:1544–1555. Epub 2015 01 13.
  • Iankov ID, Kurokawa CB, D’Assoro AB, et al. Inhibition of the Aurora A kinase augments the anti-tumor efficacy of oncolytic measles virotherapy. Cancer Gene Ther. 2015;22:438–444. Epub 2015 08 15.
  • Liu C, Sarkaria JN, Petell CA, et al. Combination of measles virus virotherapy and radiation therapy has synergistic activity in the treatment of glioblastoma multiforme. Clin Cancer Res. 2007;13:7155–7165. Epub 2007 12 07.
  • Touchefeu Y, Khan AA, Borst G, et al. Optimising measles virus-guided radiovirotherapy with external beam radiotherapy and specific checkpoint kinase 1 inhibition. Radiother Oncol. 2013;108:24–31. Epub 2013 07 16.
  • Grote D, Cattaneo R, Ak F. Neutrophils contribute to the measles virus-induced antitumor effect: enhancement by granulocyte macrophage colony-stimulating factor expression. Cancer Res. 2003;63:6463–6468. Epub 2003 10 16.
  • Zhang Y, Patel B, Dey A, et al. Attenuated, oncolytic, but not wild-type measles virus infection has pleiotropic effects on human neutrophil function. J Immunol. 2012;188:1002–1010. Epub 2011 12 20.
  • Iankov ID, Haralambieva IH, Galanis E Immunogenicity of attenuated measles virus engineered to express Helicobacter pylori neutrophil-activating protein. Vaccine. 2011;29:1710–1720. Epub 2010 12 25.
  • Guillerme JB, Boisgerault N, Roulois D, et al. Measles virus vaccine-infected tumor cells induce tumor antigen cross-presentation by human plasmacytoid dendritic cells. Clin Cancer Res. 2013;19:1147–1158. Epub 2013 01 23.
  • Engeland CE, Grossardt C, Veinalde R, et al. CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Mol Ther. 2014;22:1949–1959. Epub 2014 08 27.
  • Hardcastle J, Mills L, Malo CS, et al. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment. Neuro Oncol. 2016 Sep 23. pii: now179. [Epub ahead of print].
  • Manchester M, Rall GF. Model Systems: transgenic mouse models for measles pathogenesis. Trends Microbiol. 2001;9:19–23. Epub 2001 02 13.
  • Kemper C, Leung M, Stephensen CB, et al. Membrane cofactor protein (MCP; CD46) expression in transgenic mice. Clin Exp Immunol. 2001;124:180–189. Epub 2001 06 26.
  • Mrkic B, Odermatt B, Klein MA, et al. Lymphatic dissemination and comparative pathology of recombinant measles viruses in genetically modified mice. J Virol. 2000;74:1364–1372. Epub 2000 01 11.
  • Roscic-Mrkic B, Schwendener RA, Odermatt B, et al. Roles of macrophages in measles virus infection of genetically modified mice. J Virol. 2001;75:3343–3351. Epub 2001 03 10.
  • Peng KW, Frenzke M, Myers R, et al. Biodistribution of oncolytic measles virus after intraperitoneal administration into Ifnar-CD46Ge transgenic mice. Hum Gene Ther. 2003;14:1565–1577. Epub 2003 10 28.
  • Allen C, Paraskevakou G, Liu C, et al. Oncolytic measles virus strains in the treatment of gliomas. Expert Opin Biol Ther. 2008;8:213–220. Epub 2008 01 16.
  • Myers RM, Greiner SM, Harvey ME, et al. Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide. Clin Pharmacol Ther. 2007;82:700–710. Epub 2007 11 01.
  • Myers R, Harvey M, Kaufmann TJ, et al. Toxicology study of repeat intracerebral administration of a measles virus derivative producing carcinoembryonic antigen in rhesus macaques in support of a phase I/II clinical trial for patients with recurrent gliomas. Hum Gene Ther. 2008;19:690–698. Epub 2008 06 26.
  • Hsu EC, Dorig RE, Sarangi F, et al. Artificial mutations and natural variations in the CD46 molecules from human and monkey cells define regions important for measles virus binding. J Virol. 1997;71:6144–6154. Epub 1997 08 01.
  • Kobune F, Takahashi H, Terao K, et al. Nonhuman primate models of measles. Lab Anim Sci. 1996;46:315–320. Epub 1996 06 01.
  • Heinzerling L, Kunzi V, Pa O, et al. Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells. Blood. 2005;106:2287–2294. Epub 2005 06 18.
  • Russell SJ, Federspiel MJ, Peng KW, et al. Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clin Proc. 2014;89:926–933. Epub 2014 05 20.
  • Ayala-Breton C, Russell LO, Russell SJ, et al. Faster replication and higher expression levels of viral glycoproteins give the vesicular stomatitis virus/measles virus hybrid VSV-FH a growth advantage over measles virus. J Virol. 2014;88:8332–8339. Epub 2014 05 16.
  • Liu YP, Russell SP, Ayala-Breton C, et al. Ablation of nectin4 binding compromises CD46 usage by a hybrid vesicular stomatitis virus/measles virus. J Virol. 2014;88:2195–2204. Epub 2013 12 18.
  • Zhang LF, Tan DQ, Jeyasekharan AD, et al. Combination of vaccine-strain measles and mumps virus synergistically kills a wide range of human hematological cancer cells: special focus on acute myeloid leukemia. Cancer Lett. 2014;354:272–280. Epub 2014 09 07.
  • Noll M, Berchtold S, Lampe J, et al. Primary resistance phenomena to oncolytic measles vaccine viruses. Int J Oncol. 2013;43:103–112. Epub 2013 04 25.
  • Parrula MCM, Fernandez SA, Landes K, et al. Success of measles virotherapy in ATL depends on type I interferon secretion and responsiveness. Virus Res. 2014;189:206–213. Epub 2014 06 10.
  • Achard C, Boisgerault N, Delaunay T, et al. Sensitivity of human pleural mesothelioma to oncolytic measles virus depends on defects of the type I interferon response. Oncotarget. 2015;6:44892–44904. Epub 2015 11 06.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.