634
Views
16
CrossRef citations to date
0
Altmetric
Review

Immune and viral therapies for malignant primary brain tumors

, &
Pages 457-474 | Received 19 Aug 2016, Accepted 13 Feb 2017, Published online: 05 Mar 2017

References

  • Central Nervous System Cancers. NCCN Clinical Practice Guidlines in Oncology. Available from: https://www.nccn.org/professionals/physician_gls/f_guidelines.asp [Last accessed 2017 Feb 10]
  • Wen PY, Malignant KS Gliomas in adults. N Engl J Med. 2008;359(5):492–507.
  • Yan X, Ma L, Yi D, et al. A CD133-related gene expression signature identifies an aggressive glioblastoma subtype with excessive mutations. Proc Natl Acad Sci U S A. 2011 Jan 25;108 (4):1591–1596.
  • Sgubin D, Wakimoto H, Kanai R, et al. Oncolytic herpes simplex virus counteracts the hypoxia-induced modulation of glioblastoma stem-like cells. Stem Cells Transl Med. 2012 Apr;1(4):322–332.
  • Wu A, Oh S, Wiesner SM, et al. Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties. Stem Cells Dev. 2008 Feb;17(1):173–184.
  • Verhaak RGW, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010 Jan 19;17(1):98–110.
  • Le Mercier M, Hastir D, Moles Lopez X, et al. A simplified approach for the molecular classification of glioblastomas. PLoS One. 2012;7(9):e45475.
  • Zinn PO, Sathyan P, Mahajan B, et al. A novel volume-age-KPS (VAK) glioblastoma classification identifies a prognostic cognate microRNA-gene signature. PLoS One. 2012;7(8):e41522.
  • Etcheverry A, Aubry M, de Tayrac M, et al. DNA methylation in glioblastoma: impact on gene expression and clinical outcome. BMC Genomics. 2010 2010 Dec 14;11(1):701.
  • Noushmehr H, Weisenberger DJ, Diefes K, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010 May 18;17(5):510–522.
  • Sottoriva A, Spiteri I, Piccirillo SG, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4009–4014.
  • Ostrand-Rosenberg S Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev. 2008 Feb;18(1):11–18.
  • Choi BD, Archer GE, Mitchell DA, et al. EGFRvIII‐targeted vaccination therapy of malignant glioma. Brain Pathol. 2009:19(4):713–723.
  • Lotan MSM Cross talk between the immune system and the nervous system in resonse to injury: implications for regeneration. Faseb J. 1994 Oct;8(13):1026–1033.
  • Ni HT, Merica RR, Spellman SR, et al. Visualization of antigen-specific T cell activation in vivo in response to intracerebral administration of a xenopeptide. Exp Neurol. United States: 2000 Academic Press. 2000:362–370. 164
  • Prins RM, Liau LM Immunology and immunotherapy in neurosurgical disease. Neurosurgery. 2003;53(1):144–153.
  • Wieder E. Dendritic cells: a basic review. International society of cell therapy 2003. Available from: http://www.celltherapysociety.org/files/PDF/Resources/OnLine_Dendritic_Education_Brochure.pdf [Last accessed 2017 Feb 10]
  • Kim W, Liau LM Dendritic cell vaccines for brain tumors. Neurosurg Clin N Am. 2010 Jan;21(1):139–157.
  • Ni HT, Spellman SR, Jean WC, et al. Immunization with dendritic cells pulsed with tumor extract increases survival of mice bearing intracranial gliomas. J Neurooncol. 2001 Jan;51(1):1–9.
  • Liau LM, Black KL, Prins RM, et al. Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J Neurosurg. 1999 Jun;90(6):1115–1124.
  • Heimberger AB, Crotty LE, Archer GE, et al. Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J Neuroimmunol. 2000 Feb 01 2000;103(1):16–25.
  • Liau LM, Black KL, Martin NA, et al. Treatment of a glioblastoma patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I–matched tumor peptides. Neurosurg Focus. 2000 Dec 15;9(6):e8.
  • Broder H, Kremen TJ, Odesa SK, et al. MART-1 adenovirus-transduced dendritic cell immunization in a murine model of metastatic central nervous system tumor. J Neurooncol. 2003 Aug-Sep; 64 (1–2): 21–30.
  • Liau LM, Black KL, Prins RM, et al. Treatment of intracranial gliomas with bone marrow—derived dendritic cells pulsed with tumor antigens. J Neurosurg. 1999 Jun;90(6):1115–1124.
  • Liau LM, Prins RM, Kiertscher SM, et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res. 2005 Aug 1;11(15):5515–5525.
  • Prins RM, Wang X, Soto H, et al. Comparison of glioma-associated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients. J Immunother 2013 Feb;36(2):152–157.
  • Phuphanich S, Wheeler CJ, Rudnick JD, et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother. 2013 Jan;62(1):125–135.
  • ImmunoCellular Therapeutics Presents Updated ICT-107 Phase 2 Survival and Immune Response Data at the Society for Neuro-Oncology Annual Meeting 2015. ImmunoCellular. [Cited 2017 Feb 10]. Available from: http://investors.imuc.com/releasedetail.cfm?releaseid=943786.
  • Babu R, Adamson DC Rindopepimut: an evidence-based review of its therapeutic potential in the treatment of EGFRvIII-positive glioblastoma. Core Evid. 2012;7:93–103.
  • Sampson JH, Archer GE, Mitchell DA, et al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther. United States 2009;8:2773–2779.
  • Sampson JH, Heimberger AB, Archer GE, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant iii peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010 Nov 1;28(31):4722–4729.
  • Sampson JH, Aldape KD, Archer GE, et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol. 2011 Mar;13(3):324–333.
  • Data Safety and Monitoring Board Recommends Celldex's Phase 3 Study of RINTEGA® (rindopepimut) in Newly Diagnosed Glioblastoma be Discontinued as it is Unlikely to Meet Primary Overall Survival Endpoint in Patients with Minimal Residual Disease. Celldex Therapeutics. [Cited 2017 Feb 10]. Available from: http://ir.celldex.com/releasedetail.cfm?ReleaseID=959021.
  • Sampson JH, Akabani G, Archer GE, et al. Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro Oncol. United States 2008;10(3):320–329.
  • Zhang W, Fulci G, Wakimoto H, et al. Combination of oncolytic herpes simplex viruses armed with angiostatin and il-12 enhances antitumor efficacy in human glioblastoma models1. Neoplasia. 2013 Jun;15(6):591–599.
  • Li L, Quang TS, Gracely EJ, et al. A phase II study of anti–epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme. J Neurosurg. 2010 Aug;113(2):192–198.
  • Prins RM, Soto H, Konkankit V, et al. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. . Clin Cancer Res. 2011 Mar 15;17:1603–1615.
  • Fong B, Jin R, Wang X, et al. Monitoring of regulatory T cell frequencies and expression of CTLA-4 on T cells, before and after DC vaccination, can predict survival in GBM patients. Plos One 2012Apr 2;7(4).
  • Caruso DA, Orme LM, Neale AM, et al. Results of a phase 1 study utilizing monocyte-derived dendritic cellspulsed with tumor RNA in children and young adults with brain cancer. Neuro Oncol 2017;6(3):236–246.
  • Yu JS, Wheeler CJ, Zeltzer PM, et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 2001 Feb 1;61(3):842–847.
  • Yu JS, Liu G, Ying H, et al. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res. 2004 Jul 15;64(14):4973–4979.
  • Yamanaka R, Abe T, Yajima N, et al. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 2003 Oct 06;89(7):1172–1179.
  • Sampson JH, Archer GE, Mitchell DA, et al. Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma. Semin Immunol. 2008 October 2008;20(5):267–275.
  • Wu AH, Xiao J, Anker L, et al. Identification of EGFRvIII-derived CTL epitopes restricted by HLA A0201 for dendritic cell based immunotherapy of gliomas. J Neurooncol. 2006 Jan;76(1):23–30.
  • Heimberger AB, Crotty LE, Archer GE, et al. Epidermal growth factor receptor viii peptide vaccination is efficacious against established intracerebral tumors. Clin Cancer Res. 2003 Sep 15;9(11):4247–4254.
  • Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011 Mar 23;3(75):75ra26.
  • Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007 May 18;316(5827):1039–1043.
  • Bielamowicz KJ, Khawja S, Ahmed N Adoptive Cell Therapies for Glioblastoma. Front Oncol. 2013;3:275.
  • Rosenberg SA, Restifo NP, Yang JC, et al. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008 2008 Apr 01;8(4):299–308.
  • Katakura R, Suzuki Y, Sekine T, et al. Therapeutic efficacy of adoptive cell transfer on survival of patients with glioblastoma multiforme: case reports. Case Rep Oncol. 2010;3(2):110–124.
  • Hinrichs CS, Restifo NP Reassessing target antigens for adoptive T-cell therapy. Nat Biotechnol. 2013 2013 Oct 20;31:999–1008.
  • Chmielewski M, Hombach AA, Abken H Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells. Front Immunol. 2013 Nov 11;4:371.
  • Singh H, Huls H, Cooper LJ A new approach to gene therapy using sleeping beauty to genetically modify clinical-grade T cells to target CD19. Immunol Rev. 2014 Jan;257(1):181–190.
  • Ivics Z, Hackett PB, Plasterk RH, et al. Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 1997 Nov 14;91(4):501–510.
  • Maiti S, Huls H, Singh H, et al. Sleeping beauty system to redirect T-cell specificity for human applications. J Immunother. 2013 Feb;36(2):112–123.
  • Kebriaei P, Huls H, Singh H, et al. First clinical trials employing sleeping beauty gene transfer system and artificial antigen presenting cells to generate and infuse T cells expressing CD19-specific chimeric antigen receptor. Blood. 2013;122(21):166.
  • Choi BD, Suryadevara CM, Gedeon PC, et al. Intracerebral delivery of a third generation EGFRvIII-specific chimeric antigen receptor is efficacious against human glioma. J Clin Neurosci. 2014 Jan;21(1):189–190.
  • Han J, Chu J, Keung Chan W, et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci Rep. 2015;5:11483.
  • Johnson LA, Sanchez-Perez L, Suryadevara CM, et al. Chimeric antigen receptor engineered T cells can eliminate brain tumors and initiate long-term protection against recurrence. Oncoimmunology. 2014 Jul 3;3(7):e944059.
  • La J, Scholler J, Ohkuri T, et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med 2015 Feb 18;7(275):275ra22.
  • Kong S, Sengupta S, Tyler B, et al. Suppression of human glioma xenografts with second-generation IL13R-specific chimeric antigen receptor–modified T cells. Clin Cancer Res. 2012 Nov 1;18(21):5949–5960.
  • Miao H, Choi BD, Suryadevara CM, et al. EGFRvIII-specific chimeric antigen receptor t cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. Plos One. 2014 Apr 10;9(4):e94281.
  • Morgan RA, Johnson LA, Davis JL, et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther. 2012 Oct;23(10):1043–1053.
  • Sampson JH, Choi BD, Sanchez-Perez L, et al. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res. 2014 Feb 15;20(4):972–984.
  • Shiina S, Ohno M, Ohka F, et al. CAR T cells targeting podoplanin reduce orthotopic glioblastomas in mouse brains. Cancer Immunol Res 2016 Mar;4(3):259–268.
  • Zhang C, Burger MC, Jennewein L, et al. ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. Clin Cancer Res. 2014 Feb 15;20(4):972–984.
  • Shen C-J, Yang Y-X, Han EQ, et al. Chimeric antigen receptor containing ICOS signaling domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing glioma. J Hematol Oncol. 2013 May 9;6:33.
  • Thaci B, Brown CE, Binello E, et al. Significance of interleukin-13 receptor alpha 2–targeted glioblastoma therapy. Neuro Oncol. 2014 Oct;16(10):1304–1312.
  • Kahlon KS, Brown C, Cooper LJN, et al. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res. 2004 Dec 15;64(24):9160–9166.
  • Yaghoubi SS, Jensen MC, Satyamurthy N, et al. Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 2009 Jan;6(1):53–58.
  • Landi D, Hegde M, Ahmed N Human cytomegalovirus antigens in malignant gliomas as targets for adoptive cellular therapy. Front Oncol 2014;4:338.
  • Schuessler A, Smith C, Beagley L, et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014 Jul 1;74(13):3466–3476.
  • Cheever MA, Allison JP, Ferris AS, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009 Sep 1;15(17):5323–5337.
  • Driessche AV, Berneman ZN, Tendeloo VFIV Active specific immunotherapy targeting the wilms’ tumor protein 1 (WT1) for patients with hematological malignancies and solid tumors: lessons from early clinical trials. Oncologist. 2012;17(2):250–259.
  • Lindstedt I, Lindgren MA, Andersson E, et al. The WT1 gene–its role in tumourigenesis and prospects for immunotherapeutic advances. In Vivo 2014 Sep-Oct;28(5):675–681.
  • Morgan RA, Chinnasamy N, Abate-Daga D, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 2013 Feb;36(2):133–151.
  • Liu G, Ying H, Zeng G, et al. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res. 2004 Jul 15;64(14):4980–4986.
  • Ahmed N, Ratnayake M, Savoldo B, et al. Regression of experimental medulloblastoma following transfer of HER2-specific T cells. Cancer Res. 2007 Jun 15;67(12):5957–5964.
  • Ahmed N, Salsman VS, Kew Y, et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res. 2010 Jan 15;16(2):474–485.
  • Hegde M, Corder A, Chow KK, et al. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther 2013 2013 Aug 13;21(11):2087–2101.
  • Preusser M, Lim M, Hafler DA, et al. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol 2015 Sep;11(9):504–514.
  • Pardoll DM The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012 Mar 22;12(4):252–264.
  • Sampson J, Omuro A, Vlahovic G, et al. IMCT-03 safety and activity of nivolumab monotherapy and nivolumab in combination with ipilmumab in recurrent glioblastoma: updated results from CHECKMATE-143. Neuro Oncol (2015) 17 (suppl_5): v107.
  • Safety of pembrolizumab in combination with bevacizumab in recurrent glioblastoma (rGBM). |2016 ASCO annual meeting |abstracts |meeting library. 2016 [ cited; Available from: http://meetinglibrary.asco.org/content/163977-176
  • Fried I, Weintraub M, Ben Ami T, et al. IT-11A phase I/II clinical trial of CT-011 (Pidilzumab) in diffuse intrinsic pontine glioma and relapse high grade glioma: a preliminary report. Neuro Oncol. 2014Nov;16(Suppl 5):v111–v112.
  • Cross D, Burmester JK Gene therapy for cancer treatment: past, present and future. Clin Med Res. 2006 Sep;4(3):218–227.
  • Rainov NG, Kramm CM, Banning U, et al. Immune response induced by retrovirus-mediated HSV-tk/GCV pharmacogene therapy in patients with glioblastoma multiforme. Gene Ther. 2000 Nov;7(21):1853–1858.
  • Barba D, Hardin J, Sadelain M, et al. Development of anti-tumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4348–4352.
  • Immonen A, Vapalahti M, Tyynel K, et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther. 2004 2004 Nov 01;10(5):967–972.
  • Chiocca EA, Aguilar LK, Bell SD, et al. Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J Clin Oncol. 2011 Sep 20;29(27):3611–3619.
  • Germano IM, Fable J, Humayun Gultekin S, et al. Adenovirus/herpes simplex-thymidine kinase/ganciclovir complex: preliminary results of a phase i trial in patients with recurrent malignant gliomas. J Neurooncol. 2003;65(3).
  • Shand N, Weber F, Mariani L, et al. A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. Hum Gene Ther. 1999 Sep 20;10(14):2325–2335.
  • Ng R A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000 Nov 20;11(17):2389–2401.
  • PVSRIPO for Recurrent Glioblastoma (GBM) (PVSRIPO). ClinicalTrials.gov. Available at https://clinicaltrials.gov/ct2/show/NCT01491893?term=NCT01491893&rank=1 [Last accessed 10 February 2017]
  • Lillehei KO, Mitchell DH, Johnson SD, et al. Long-term follow-up of patients with recurrent malignant gliomas treated with adjuvant adoptive immunotherapy. Neurosurgery. 1991 Jan;28(1):16–23.
  • Sankhla SK, Nadkarni JS, Bhagwati SN Adoptive immunotherapy using lymphokine-activated killer (LAK) cells and interleukin-2 for recurrent malignant primary brain tumors. J Neurooncol. 2013;27(2):133–140.
  • Hayes RL, Koslow M, Hiesiger EM, et al. Improved long term survival after intracavitary interleukin‐2 and lymphokine‐activated killer cells for adults with recurrent malignant glioma. Cancer;76(5):840–852. 1995
  • Dillman RO, Duma CM, Schiltz PM, et al. Intracavitary placement of autologous Lymphokine-Activated Killer (LAK) cells after resection of recurrent glioblastoma. J Immunotherapy. 2004;27(5):398.
  • Plautz GE, Miller DW, Barnett GH, et al. T cell adoptive immunotherapy of newly diagnosed gliomas. Clin Cancer Res. 2000 Jun;6(6):2209–2218.
  • Jacobs SK, Wilson DJ, Kornblith PL, et al. Interleukin-2 or autologous lymphokine-activated killer cell treatment of malignant glioma: phase I trial. Cancer Res. 1986;46 (4 Pt 2): 2101–2104.
  • Barba D, Saris SC, Holder C, et al. Intratumoral LAK cell and interleukin-2 therapy of human gliomas. J Neurosurg. 1989 Feb;70(2):175–182.
  • Boiardi A, Silvani A, Ruffini PA, et al. Loco-regional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients. Cancer Immunol Immunother. 1994 Sep;39(3):193–197.
  • F-J M, Snyder EY, Loring JF Gene therapy: can neural stem cells deliver? Nat Rev Neurosci. 2006 2006 Jan 01;7(1):75–84.
  • Metz MZ, Gutova M, Lacey SF, et al. Neural stem cell-mediated delivery of irinotecan-activating carboxylesterases to glioma: implications for clinical use. Stem Cells Transl Med. 2013 Dec;2(12):983–992.
  • Ryu CH, Park KY, Kim SM, et al. Valproic acid enhances anti-tumor effect of mesenchymal stem cell mediated HSV-TK gene therapy in intracranial glioma. Biochem Biophys Res Commun. 2012 May 11;421(3):585–590.
  • Li S, Gu C, Gao Y, et al. Bystander effect in glioma suicide gene therapy using bone marrow stromal cells. Stem Cell Res. 2012 Nov;9(3):270–276.
  • Amano S, Gu C, Koizumi S, et al. Tumoricidal bystander effect in the suicide gene therapy using mesenchymal stem cells does not injure normal brain tissues. Cancer Lett. 2011 Jul 1;306(1):99–105.
  • Pu K, Li SY, Gao Y, et al. Bystander effect in suicide gene therapy using immortalized neural stem cells transduced with herpes simplex virus thymidine kinase gene on medulloblastoma regression. Brain Res. 2011 Jan 19;1369:245–252.
  • Namba H, Kawaji H, Yamasaki T Use of genetically engineered stem cells for glioma therapy. Oncol Lett. 2016;11(1):9–15.
  • Barresi V, Belluardo N, Sipione S, et al. Transplantation of prodrug-converting neural progenitor cells for brain tumor therapy. Cancer Gene Ther. 2003 2003 May 01;10(5):396–402.
  • DiMeco F, Rhines LD, Hanes J, et al. Paracrine delivery of IL-12 against intracranial 9L gliosarcoma in rats. J Neurosurg. 2000 Mar;92(3):419–427.
  • Kikuchi T, Joki T, Saitoh S, et al. Anti-tumor activity of interleukin-2-producing tumor cells and recombinant interleukin 12 against mouse glioma cells located in the central nervous system. Int J Cancer. 1999 Jan 29;80(3):425–430.
  • Ehtesham M, Kabos P, Kabosova A, et al. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res. 2002 Oct 15;62(20):5657–5663.
  • Jean WC, Spellman SR, Wallenfriedman MA, et al. Interleukin-12-based immunotherapy against rat 9L glioma. Neurosurgery. 1998 Apr;42(4):850–856; discussion 56-7.
  • Wallenfriedman MA, Conrad JA, DelaBarre L, et al. Effects of continuous localized infusion of granulocyte-macrophage colony-stimulating factor and inoculations of irradiated glioma cells on tumor regression. J Neurosurg. 1999 Jun;90(6):1064–1071.
  • Liu Y, Ng K, Lillehei KO Time course analysis and modulating effects of established brain tumor on active-specific immunotherapy. Neurosurg Focus. 2000;9(6):e3.
  • Prins RM, Odesa SK, Liau LM Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res. 2003 Dec 1;63(23):8487–8491.
  • Jean WC, Spellman SR, Wallenfriedman MA, et al. Effects of combined granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-2, and interleukin-12 based immunotherapy against intracranial glioma in the rat. J Neurooncol. 2004 Jan; 66 (1–2): 39–49.
  • Wollmann G, Ozduman K, van den Pol AN. Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates. Cancer J. 2012 Jan-Feb;18(1):69–81.
  • Kanai R, Rabkin SD Combinatorial strategies for oncolytic herpes simplex virus therapy of brain tumors. CNS Oncol. 2013 Mar;2(2):129–142.
  • Kanai R, Rabkin SD, Yip S, et al. Oncolytic virus-mediated manipulation of DNA damage responses: synergy with chemotherapy in killing glioblastoma stem cells. J Natl Cancer Inst. 2012 Jan 4;104(1):42–55.
  • Kanai R, Wakimoto H, Martuza RL, et al. A novel oncolytic herpes simplex virus that synergizes with phosphoinositide 3-kinase/Akt pathway inhibitors to target glioblastoma stem cells. Clin Cancer Res 2011 Jun 1;17(11):3686–3696.
  • Chaffey N, Alberts B, Johnson A, et al. Molecular biology of the cell. 4th edn. Ann Bot. 2003 Feb;91(3):401.
  • Nakai R, Maniwa Y, Tanaka Y, et al. Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 2010 May;101(5):1326–1330.
  • Castriconi R, Daga A, Dondero A, et al. NK cells recognize and kill human glioblastoma cells with stem cell-like properties. 2009 2009 Mar 15. J Immunol. 182 3530–3539
  • Goetz C, Dobrikova E, Shveygert M, et al. Oncolytic poliovirus against malignant glioma. Future Virol. 2011 Sep;6(9):1045–1058.
  • Campbell SA, Lin J, Dobrikova EY, et al. Genetic determinants of cell type-specific poliovirus propagation in HEK 293 cells. J Virol. 2005:6281–6290. 79
  • Gromeier M, Alexander L, Wimmer E Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2370–2375.
  • Gromeier M, Solecki D, Patel DD, et al. Expression of the human poliovirus receptor/CD155 gene during development of the central nervous system: implications for the pathogenesis of poliomyelitis. Virology. 2000 Aug 1;273(2):248–257.
  • Gromeier M, Lachmann S, Rosenfeld MR, et al. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6803–6808.
  • Merrill MK, Bernhardt G, Sampson JH, et al. Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro Oncol. 2004 Jul;6(3):208–217.
  • Dobrikova EY, Broadt T, Poiley-Nelson J, et al. Recombinant oncolytic poliovirus eliminates glioma in vivo without genetic adaptation to a pathogenic phenotype. Mol Ther. 2008 Nov;16(11):1865–1872.
  • Desjardins A, Sampson JH, Peters KB, et al. Oncolytic polio/rhinovirus recombinant (PVSRIPO) in recurrent glioblastoma (GBM): first phase I clinical trial evaluating the intratumoral administration. Neuro Oncol. 2014;16(suppl_3):iii43.
  • Polio-rhinovirus conjugate shows promise in early recurrent glioblastoma trial.cancernetwork, 2014. Available at: http://www.cancernetwork.com/sno-2014/polio-rhinovirus-conjugate-shows-promise-early-recurrent-glioblastoma-trial [Last accessed 10 February 2017].
  • Poliovirus therapy against cancer given ‘breakthrough’ status by FDA. UPI 2016. Available at: http://www.upi.com/Health_News/2016/05/17/Poliovirus-therapy-against-cancer-given-breakthrough-status-by-FDA/6541463499960/[Last Accessed 2017 Feb 10]
  • Alemany R, Balague C, Curiel DT Replicative adenoviruses for cancer therapy. Nat Biotechnol. 2000 Jul;18(7):723–727.
  • Wohlfahrt ME, Beard BC, Lieber A, et al. A capsid-modified, conditionally replicating oncolytic adenovirus vector expressing TRAIL leads to enhanced cancer cell killing in human glioblastoma models. Cancer Res. 2007 Sep 15;67(18):8783–8790.
  • Lang FF, Conrad C, Gomez-Manzano C, et al. First-in-human phase I clinical trial of oncolytic delta-24- RGD (DNX-2401) with biological endpoints: implications for viro-immunotherapy. 2014 2014 July 01. Neuro Oncol. 16 iii39-iii39
  • Kyritsis AP, Sioka C, Rao JS Viruses, gene therapy and stem cells for the treatment of human glioma. Cancer Gene Ther. 2009 Oct;16(10):741–752.
  • Toth K, Dhar D, Wold WS Oncolytic (replication-competent) adenoviruses as anticancer agents. Expert Opin Biol Ther. 2010 Mar;10(3):353–368.
  • Chiocca EA, Abbed KM, Tatter S, et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther. 2004 2004 Nov 01;10(5):958–966.
  • Dorig RE, Marcil A, Chopra A, et al. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell. 1993 Oct 22;75(2):295–305.
  • Jurianz K, Ziegler S, Garcia-Schuler H, et al. Complement resistance of tumor cells: basal and induced mechanisms. Mol Immunol. 1999 Sep-Oct; 36 (13–14): 929–939.
  • Galanis E, Bateman A, Johnson K, et al. Use of viral fusogenic membrane glycoproteins as novel therapeutic transgenes in gliomas. Hum Gene Ther. 2001 May 1;12(7):811–821.
  • Phuong LK, Allen C, Peng KW, et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res. 2003 May 15;63(10):2462–2469.
  • Myers R, Harvey M, Kaufmann TJ, et al. Toxicology study of repeat intracerebral administration of a measles virus derivative producing carcinoembryonic antigen in rhesus macaques in support of a phase I/II clinical trial for patients with recurrent gliomas. Hum Gene Ther. 2008:690–698. 19
  • Russell SJ, Peng K-W, Bell JC Oncolytic virotherapy. Nat Biotechnol. 2012 2012 July 10;30:658–670.
  • Liu BL, Robinson M, Han Z-Q, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003 Feb 02;10(4):292–303.
  • Tamura K, Wakimoto H, Agarwal AS, et al. Multimechanistic tumor targeted oncolytic virus overcomes resistance in brain tumors. Mol Ther. 2013 Jan;21(1):68–77.
  • Barnard Z, Wakimoto H, Zaupa C, et al. Expression of FMS-like tyrosine kinase 3 ligand by oncolytic herpes simplex virus type I prolongs survival in mice bearing established syngeneic intracranial malignant glioma. Neurosurgery. 2012 Sep;71(3):741–748; discussion 48.
  • Gambini E, Reisoli E, Appolloni I, et al. Replication-competent herpes simplex virus retargeted to HER2 as therapy for high-grade glioma. Mol Ther. 2012 May;20(5):994–1001.
  • Markert JM, Medlock MD, Rabkin SD, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther. 2000 May;7(10):867–874.
  • Markert JM, Liechty PG, Wang W, et al. Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol Ther 2008;17(1):199–207.
  • Papanastassiou V, Rampling R, Fraser M, et al. The potential for efficacy of the modified (ICP 34.5(-)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther. 2002 Mar;9(6):398–406.
  • Harrow S, Papanastassiou V, Harland J, et al. HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther. 2004 2004 Aug 26;11(22):1648–1658.
  • Solly SK, Trajcevski S, Frisén C, et al. Replicative retroviral vectors for cancer gene therapy. Cancer Gene Ther. 2003 2003 Jan 01;10(1):30–39.
  • Miller DG, Adam MA, Miller AD Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol. 1990 Aug;10(8):4239–4242.
  • Forsyth P, Roldán G, George D, et al. A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Mol Ther. 2008 2008 Feb 05;16(3):627–632.
  • Jebar A, West E, Scott K Oncolytic wild-type reovirus infection in brain tumors following intravenous administration in patients. J Clin Oncol. 32:5s. 2014;(suppl; abstr 3104).
  • Gong J, Sachdev E, Mita AC, et al. Clinical development of reovirus for cancer therapy: an oncolytic virus with immune-mediated antitumor activity. World J Methodol. 2016 Mar 26;6(1):25–42.
  • Cloughesy TF, Landolfi J, Hogan DJ, et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. 2016 2016 June 01. Sci Transl Med. 8 341ra75-341ra75
  • Lun X, Yang W, Alain T, et al. Myxoma virus is a novel oncolytic virus with significant antitumor activity against experimental human gliomas. Cancer Res. 2005 Nov 1;65(21):9982–9990.
  • Zemp FJ, Lun X, McKenzie BA, et al. Treating brain tumor–initiating cells using a combination of myxoma virus and rapamycin. Neuro Oncol. 2013;15:904–920.
  • Lun X, Alain T, Zemp FJ, et al. Myxoma virus virotherapy for glioma in immunocompetent animal models: optimizing administration routes and synergy with rapamycin. Cancer Res. 2010 Jan 15;70(2):598–608.
  • Duggal R, Geissinger U, Zhang Q, et al. Vaccinia virus expressing bone morphogenetic protein-4 in novel glioblastoma orthotopic models facilitates enhanced tumor regression and long-term survival. J Transl Med. 2013;11:155.
  • Castle JC, Kreiter S, Diekmann J, et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 2012 Mar 1;72(5):1081–1091.
  • Iyer G, Hanrahan AJ, Milowsky MI, et al. Genome sequencing identifies a basis for everolimus sensitivity. Science. 2012 Oct 12;338(6104):221.
  • Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012 Mar 8;366(10):883–892.
  • Stieber D, Golebiewska A, Evers L, et al. Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathol. 2014 Feb;127(2):203–219.
  • Wheler J, Lee JJ, Kurzrock R Unique molecular landscapes in cancer: implications for individualized, curated drug combinations. Cancer Res 2014 Dec 15;74(24):7181–7184.
  • Kurzrock R, Giles FJ Precision oncology for patients with advanced cancer: the challenges of malignant snowflakes. Cell Cycle. 2015;14(14):2219–2221.
  • Krogan NJ, Lippman S, Agard DA, et al. The cancer cell map initiative: defining the hallmark networks of cancer. Mol Cell. 2015 May 21;58(4):690–698.
  • Alexander BM, Galanis E, Yung WA, et al. Brain malignancy steering committee clinical trials planning workshop: report from the targeted therapies working group. Neuro Oncol. 2015;65:180–188.
  • Hygino da Cruz LC Jr., Rodriguez I, Rc D, et al. Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol. 2011 Dec;32(11):1978–1985.
  • Huang RY, Neagu MR, Reardon DA, et al. Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted therapy - detecting illusive disease, defining response. Front Neurol 2015;6:33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.