516
Views
13
CrossRef citations to date
0
Altmetric
Review

Emerging monoclonal antibodies against Clostridium difficile infection

, &
Pages 415-427 | Received 26 Oct 2016, Accepted 24 Feb 2017, Published online: 05 Mar 2017

References

  • Lessa FC, Winston LG, McDonald LC. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372:2369–2370. Epub 2015/06/11.
  • Le Monnier A, Duburcq A, Jr Z, et al. Hospital cost of Clostridium difficile infection including the contribution of recurrences in French acute-care hospitals. J Hosp Infect. 2015;91:117–122. Epub 2015/08/09.
  • Deneve C, Janoir C, Poilane I, et al. New trends in Clostridium difficile virulence and pathogenesis. Int J Antimicrob Agents. 2009;33(Suppl 1):S24–8. Epub 2009/07/18.
  • Janoir C. Virulence factors of Clostridium difficile and their role during infection. Anaerobe. 2016;37:13–24. Epub 2015/11/26.
  • Jank T, Aktories K. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol. 2008;16:222–229. Epub 2008/04/09.
  • Von Eichel-Streiber C, Laufenberg-Feldmann R, Sartingen S, et al. Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet. 1992;233:260–268. Epub 1992/05/01.
  • Rupnik M, Avesani V, Janc M, et al. A novel toxinotyping scheme and correlation of toxinotypes with serogroups of Clostridium difficile isolates. J Clin Microbiol. 1998;36:2240–2247. Epub 1998/07/17.
  • Mizrahi A, Collignon A, Pechine S. Passive and active immunization strategies against Clostridium difficile infections: state of the art. Anaerobe. 2014;30:210–219. Epub 2014/08/01.
  • Papatheodorou P, Carette JE, Bell GW, et al. Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci U S A. 2011;108:16422–16427. Epub 2011/09/21.
  • Lyras D, O’Connor JR, Howarth PM, et al. Toxin B is essential for virulence of Clostridium difficile. Nature. 2009;458:1176–1179. Epub 2009/03/03.
  • Kuehne SA, Cartman ST, Heap JT, et al. The role of toxin A and toxin B in Clostridium difficile infection. Nature. 2010;467:711–713. Epub 2010/09/17.
  • Kuehne SA, Collery MM, Kelly ML, et al. Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J Infect Dis. 2014;209:83–86. Epub 2013/08/13.
  • Cowardin CA, Buonomo EL, Saleh MM, et al. The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia. Nat Microbiol. 2016;1:16108. Epub 2016/08/31.
  • Janoir C, Pechine S, Grosdidier C, et al. Cwp84, a surface-associated protein of Clostridium difficile, is a cysteine protease with degrading activity on extracellular matrix proteins. J Bacteriol. 2007;189:7174–7180. Epub 2007/08/19.
  • Cafardi V, Biagini M, Martinelli M, et al. Identification of a novel zinc metalloprotease through a global analysis of Clostridium difficile extracellular proteins. Plos One. 2013;8:e81306. Epub 2013/12/05.
  • Hensbergen PJ, Klychnikov OI, Bakker D, et al. A novel secreted metalloprotease (CD2830) from Clostridium difficile cleaves specific proline sequences in LPXTG cell surface proteins. Mol Cell Proteomics. 2014;13:1231–1244. Epub 2014/03/14.
  • Kirk JA, Banerji O, Fagan RP. Characteristics of the Clostridium difficile cell envelope and its importance in therapeutics. Microb Biotechnol. 2017; 10(1):76–90.
  • Tasteyre A, Barc MC, Collignon A, et al. Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect Immun. 2001;69:7937–7940. Epub 2001/11/14.
  • Baban ST, Kuehne SA, Barketi-Klai A, et al. The role of flagella in Clostridium difficile pathogenesis: comparison between a non-epidemic and an epidemic strain. Plos One. 2013;8:e73026. Epub 2013/10/03.
  • Batah J, Deneve-Larrazet C, Jolivot PA, et al. Clostridium difficile flagella predominantly activate TLR5-linked NF-kappaB pathway in epithelial cells. Anaerobe. 2016;38:116–124. Epub 2016/01/23.
  • Shields K, Araujo-Castillo RV, Theethira TG, et al. Recurrent Clostridium difficile infection: from colonization to cure. Anaerobe. 2015;34:59–73. Epub 2015/05/02.
  • Viscidi R, Laughon BE, Yolken R, et al. Serum antibody response to toxins A and B of Clostridium difficile. J Infect Dis. 1983;148:93–100. Epub 1983/07/01.
  • Aronsson B, Granstrom M, Mollby R, et al. Serum antibody response to Clostridium difficile toxins in patients with Clostridium difficile diarrhoea. Infection. 1985;13:97–101. Epub 1985/05/01.
  • Johnson S, Gerding DN, Janoff EN. Systemic and mucosal antibody responses to toxin A in patients infected with Clostridium difficile. J Infect Dis. 1992;166:1287–1294. Epub 1992/12/01.
  • Leav BA, Blair B, Leney M, et al. Serum anti-toxin B antibody correlates with protection from recurrent Clostridium difficile infection (CDI). Vaccine. 2010;28:965–969. Epub 2009/11/28.
  • Kyne L, Warny M, Qamar A, et al. Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med. 2000;342:390–397. Epub 2000/02/10.
  • Kyne L, Warny M, Qamar A, et al. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet. 2001;357:189–193. Epub 2001/02/24.
  • Kelly CP, Pothoulakis C, Orellana J, et al. Human colonic aspirates containing immunoglobulin A antibody to Clostridium difficile toxin A inhibit toxin A-receptor binding. Gastroenterology. 1992;102:35–40. Epub 1992/01/01.
  • Warny M, Vaerman JP, Avesani V, et al. Human antibody response to Clostridium difficile toxin A in relation to clinical course of infection. Infect Immun. 1994;62:384–389. Epub 1994/02/01.
  • Johal SS, Lambert CP, Hammond J, et al. Colonic IgA producing cells and macrophages are reduced in recurrent and non-recurrent Clostridium difficile associated diarrhoea. J Clin Pathol. 2004;57:973–979. Epub 2004/08/31.
  • Islam J, Taylor AL, Rao K, et al. The role of the humoral immune response to Clostridium difficile toxins A and B in susceptibility to C. difficile infection: a case-control study. Anaerobe. 2014;27:82–86. Epub 2014/04/09.
  • Pantosti A, Cerquetti M, Viti F, et al. Immunoblot analysis of serum immunoglobulin G response to surface proteins of Clostridium difficile in patients with antibiotic-associated diarrhea. J Clin Microbiol. 1989;27:2594–2597. Epub 1989/11/01.
  • Mulligan ME, Miller SD, McFarland LV, et al. Elevated levels of serum immunoglobulins in asymptomatic carriers of Clostridium difficile. Clin Infect Dis. 1993;16(Suppl 4):S239–44. Epub 1993/06/01.
  • Wright A, Drudy D, Kyne L, et al. Immunoreactive cell wall proteins of Clostridium difficile identified by human sera. J Med Microbiol. 2008;57:750–756. Epub 2008/05/16.
  • Cerquetti M, Pantosti A, Stefanelli P, et al. Purification and characterization of an immunodominant 36 kDa antigen present on the cell surface of Clostridium difficile. Microb Pathog. 1992:13:271–9. Epub 1992/10/01.
  • Drudy D, Calabi E, Kyne L, et al. Human antibody response to surface layer proteins in Clostridium difficile infection. FEMS Immunol Med Microbiol. 2004;41:237–242. Epub 2004/06/16.
  • Pechine S, Gleizes A, Janoir C, et al. Immunological properties of surface proteins of Clostridium difficile. J Med Microbiol. 2005;54:193–196. Epub 2005/01/28.
  • Pechine S, Janoir C, Collignon A. Variability of Clostridium difficile surface proteins and specific serum antibody response in patients with Clostridium difficile-associated disease. J Clin Microbiol. 2005;43:5018–5025. Epub 2005/10/07.
  • Bruxelle JF, Mizrahi A, Hoys S, et al. Immunogenic properties of the surface layer precursor of Clostridium difficile and vaccination assays in animal models. Anaerobe. 2016;37:78–84. Epub 2015/10/28.
  • Leung DY, Kelly CP, Boguniewicz M, et al. Treatment with intravenously administered gamma globulin of chronic relapsing colitis induced by Clostridium difficile toxin. J Pediatr. 1991;118:633–637. Epub 1991/04/01.
  • Lyerly DM, Phelps CJ, Wilkins TD. Monoclonal and specific polyclonal antibodies for immunoassay of Clostridium difficile toxin A. J Clin Microbiol. 1985;21:12–14. Epub 1985/01/01.
  • Libby JM, Wilkins TD. Production of antitoxins to two toxins of Clostridium difficile and immunological comparison of the toxins by cross-neutralization studies. Infect Immun. 1982;35:374–376. Epub 1982/01/01.
  • Kink JA, Williams JA. Antibodies to recombinant Clostridium difficile toxins A and B are an effective treatment and prevent relapse of C. difficile-associated disease in a hamster model of infection. Infect Immun. 1998;66:2018–2025. Epub 1998/05/09.
  • Warny M, Fatimi A, Bostwick EF, et al. Bovine immunoglobulin concentrate-clostridium difficile retains C difficile toxin neutralising activity after passage through the human stomach and small intestine. Gut. 1999;44:212–217. Epub 1999/01/23.
  • Numan SC, Veldkamp P, Kuijper EJ, et al. Clostridium difficile-associated diarrhoea: bovine anti-Clostridium difficile whey protein to help aid the prevention of relapses. Gut. 2007;56:888–889. Epub 2007/05/24.
  • Roberts A, McGlashan J, Al-Abdulla I, et al. Development and evaluation of an ovine antibody-based platform for treatment of Clostridium difficile infection. Infect Immun. 2012;80:875–882. Epub 2011/12/07.
  • Mulvey GL, Dingle TC, Fang L, et al. Therapeutic potential of egg yolk antibodies for treating Clostridium difficile infection. J Med Microbiol. 2011;60:1181–1187. Epub 2011/04/09.
  • Ghose C, Eugenis I, Sun X, et al. Immunogenicity and protective efficacy of recombinant Clostridium difficile flagellar protein FliC. Emerg Microbes Infect. 2016;5:e8. Epub 2016/02/04.
  • O’Brien JB, McCabe MS, Athie-Morales V, et al. Passive immunisation of hamsters against Clostridium difficile infection using antibodies to surface layer proteins. FEMS Microbiol Lett. 2005;246:199–205. Epub 2005/05/19.
  • Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–497. Epub 1975/08/07.
  • Corthier G, Muller MC, Wilkins TD, et al. Protection against experimental pseudomembranous colitis in gnotobiotic mice by use of monoclonal antibodies against Clostridium difficile toxin A. Infect Immun. 1991;59:1192–1195. Epub 1991/03/01.
  • Zhang C, Jin K, Xiao Y, et al. Potent monoclonal antibodies against Clostridium difficile toxin A elicited by DNA immunization. Hum Vaccin Immunother. 2013;9:2157–2164. Epub 2013/07/16.
  • Babcock GJ, Broering TJ, Hernandez HJ, et al. Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters. Infect Immun. 2006;74:6339–6347. Epub 2006/09/13.
  • Taylor CP, Tummala S, Molrine D, et al. Open-label, dose escalation phase I study in healthy volunteers to evaluate the safety and pharmacokinetics of a human monoclonal antibody to Clostridium difficile toxin A. Vaccine. 2008;26:3404–3409. Epub 2008/05/27.
  • Lowy I, Molrine DC, Leav BA, et al. Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med. 2010;362:197–205. Epub 2010/01/22.
  • Wilcox MH, Gerding DN, Poxton IR, et al. Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N Engl J Med. 2017;376:305–317. Epub 2017/01/26.
  • Hernandez LD, Racine F, Xiao L, et al. Broad coverage of genetically diverse strains of Clostridium difficile by actoxumab and bezlotoxumab predicted by in vitro neutralization and epitope modeling. Antimicrob Agents Chemother. 2015;59:1052–1060. Epub 2014/12/03.
  • Yang Z, Ramsey J, Hamza T, et al. Mechanisms of protection against Clostridium difficile infection by the monoclonal antitoxin antibodies actoxumab and bezlotoxumab. Infect Immun. 2015;83:822–831. Epub 2014/12/10.
  • Orth P, Xiao L, Hernandez LD, et al. Mechanism of action and epitopes of Clostridium difficile toxin B-neutralizing antibody bezlotoxumab revealed by X-ray crystallography. J Biol Chem. 2014;289:18008–18021. Epub 2014/05/14.
  • Greco A, Ho JG, Lin SJ, et al. Carbohydrate recognition by Clostridium difficile toxin A. Nat Struct Mol Biol. 2006;13:460–461. Epub 2006/04/20.
  • Warn P, Thommes P, Sattar A, et al. Disease progression and resolution in rodent models of Clostridium difficile infection and impact of antitoxin antibodies and vancomycin. Antimicrob Agents Chemother. 2016;60:6471–6482. Epub 2016/08/17.
  • Anosova NG, Cole LE, Li L, et al. A combination of three fully human toxin A- and toxin B-specific monoclonal antibodies protects against challenge with highly virulent epidemic strains of Clostridium difficile in the hamster model. Clin Vaccine Immunol. 2015;22:711–725. Epub 2015/05/01.
  • Marozsan AJ, Ma D, Nagashima KA, et al. Protection against Clostridium difficile infection with broadly neutralizing antitoxin monoclonal antibodies. J Infect Dis. 2012;206:706–713. Epub 2012/06/27.
  • Davies NL, Compson JE, Mackenzie B, et al. A mixture of functionally oligoclonal humanized monoclonal antibodies that neutralize Clostridium difficile TcdA and TcdB with high levels of in vitro potency shows in vivo protection in a hamster infection model. Clin Vaccine Immunol. 2013;20:377–390. Epub 2013/01/18.
  • Ward ES, Gussow D, Griffiths AD, et al. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature. 1989;341:544–546. Epub 1989/10/12.
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363:446–448. Epub 1993/06/03.
  • Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 2007;77:13–22. Epub 2007/08/21.
  • Harmsen MM, Van Solt CB, Fijten HP. Enhancement of toxin- and virus-neutralizing capacity of single-domain antibody fragments by N-glycosylation. Appl Microbiol Biotechnol. 2009;84:1087–1094. Epub 2009/05/21.
  • Mukherjee J, Tremblay JM, Leysath CE, et al. A novel strategy for development of recombinant antitoxin therapeutics tested in a mouse botulism model. Plos One. 2012;7:e29941. Epub 2012/01/13.
  • Hussack G, Arbabi-Ghahroudi M, Van Faassen H, et al. Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain. J Biol Chem. 2011;286:8961–8976. Epub 2011/01/11.
  • Murase T, Eugenio L, Schorr M, et al. Structural basis for antibody recognition in the receptor-binding domains of toxins A and B from Clostridium difficile. J Biol Chem. 2014;289:2331–2343. Epub 2013/12/07.
  • Yang Z, Schmidt D, Liu W, et al. A novel multivalent, single-domain antibody targeting TcdA and TcdB prevents fulminant Clostridium difficile infection in mice. J Infect Dis. 2014;210:964–972. Epub 2014/04/01.
  • Sambol SP, Merrigan MM, Lyerly D, et al. Toxin gene analysis of a variant strain of Clostridium difficile that causes human clinical disease. Infect Immun. 2000;68:5480–5487. Epub 2000/09/19.
  • Leuzzi R, Spencer J, Buckley A, et al. Protective efficacy induced by recombinant Clostridium difficile toxin fragments. Infect Immun. 2013;81:2851–2860. Epub 2013/05/30.
  • Wang H, Sun X, Zhang Y, et al. A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection. Infect Immun. 2012;80:2678–2688. Epub 2012/05/23.
  • Schmidt DJ, Beamer G, Tremblay JM, et al. A tetraspecific VHH-based neutralizing antibody modifies disease outcome in three animal models of Clostridium difficile infection. Clin Vaccine Immunol. 2016;23:774–784. Epub 2016/07/15.
  • Unger M, Eichhoff AM, Schumacher L, et al. Selection of nanobodies that block the enzymatic and cytotoxic activities of the binary Clostridium difficile toxin CDT. Sci Rep. 2015;5:7850. Epub 2015/01/20.
  • Kandalaft H, Hussack G, Aubry A, et al. Targeting surface-layer proteins with single-domain antibodies: a potential therapeutic approach against Clostridium difficile-associated disease. Appl Microbiol Biotechnol. 2015;99:8549–8562. Epub 2015/05/06.
  • Yang Z, Shi L, Yu H, et al. Intravenous adenovirus expressing a multi-specific, single-domain antibody neutralizing TcdA and TcdB protects mice from Clostridium difficile infection. Pathog Dis. 2016 Oct;74(7). pii: ftw078. [Epub 2016 Aug 7]. doi: 10.1093/femspd/ftw078.
  • Andersen KK, Strokappe NM, Hultberg A, et al. Neutralization of Clostridium difficile Toxin B mediated by engineered lactobacilli that produce single-domain antibodies. Infect Immun. 2016;84:395–406. Epub 2015/11/18.
  • Gupta SB, Mehta V, Dubberke ER, et al. Antibodies to Toxin B are protective against Clostridium difficile infection recurrence. Clin Infect Dis. 2016;63:730–734. Epub 2016/07/02.
  • Pechine S, Deneve C, Le Monnier A, et al. Immunization of hamsters against Clostridium difficile infection using the Cwp84 protease as an antigen. FEMS Immunol Med Microbiol. 2011;63:73–81. Epub 2011/06/29.
  • Sandolo C, Pechine S, Le Monnier A, et al. Encapsulation of Cwp84 into pectin beads for oral vaccination against Clostridium difficile. Eur J Pharm Biopharm. 2011;79:566–573. Epub 2011/10/01.
  • Zhang Z, Chen X, Hernandez LD, et al. Toxin-mediated paracellular transport of antitoxin antibodies facilitates protection against Clostridium difficile infection. Infect Immun. 2015;83:405–416. Epub 2014/11/12.
  • Kim DY, Hussack G, Kandalaft H, et al. Mutational approaches to improve the biophysical properties of human single-domain antibodies. Biochim Biophys Acta. 2014;1844:1983–2001. Epub 2014/07/30.
  • Hussack G, Hirama T, Ding W, et al. Engineered single-domain antibodies with high protease resistance and thermal stability. Plos One. 2011;6:e28218. Epub 2011/12/06.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.