382
Views
19
CrossRef citations to date
0
Altmetric
Review

Decellularized material as scaffolds for tissue engineering studies in long gap esophageal atresia

, , , &
Pages 573-584 | Received 23 Dec 2016, Accepted 15 Mar 2017, Published online: 27 Mar 2017

References

  • Spitz L. Oesophageal atresia. Orphanet J Rare Dis. 2007;2:24.
  • Gross RE. The surgery of infancy and childhood; its principles and techniques. Philadelphia: Saunders; 1953.
  • Maghsoudlou P, Eaton S, De Coppi P. Tissue engineering of the esophagus. Semin Pediatr Surg. 2014;23(3):127–134.
  • Malakounides G, Lyon P, Cross K, et al. Esophageal Atresia: improved outcome in high-risk groups revisited. Eur J Pediatr Surg. 2016;26(3):227–231.
  • Chittmittrapap S, Spitz L, Kiely EM, et al. Anastomotic leakage following surgery for esophageal atresia. J Pediatr Surg. 1992;27(1):29–32.
  • Chittmittrapap S, Spitz L, Kiely EM, et al. Anastomotic stricture following repair of esophageal atresia. J Pediatr Surg. 1990;25(5):508–511.
  • Puri P, Blake N, O’Donnell B, et al. Delayed primary anastomosis following spontaneous growth of esophageal segments in esophageal atresia. J Pediatr Surg. 1981;16(2):180–183.
  • Holcomb GW, Rothenberg SS, Bax KM, et al. Thoracoscopic repair of esophageal atresia and tracheoesophageal fistula: a multi-institutional analysis. Ann Surg. 2005;242(3):422–428.
  • Pinheiro PFM, Simões E Silva AC, Pereira RM. Current knowledge on esophageal atresia. World J Gastroenterol. 2012;18(28):3662–3672.
  • Ron O, De Coppi P, Pierro A. The surgical approach to esophageal atresia repair and the management of long-gap atresia: results of a survey. Semin Pediatr Surg. 2009;18(1):44–49.
  • Kovesi T, Rubin S. Long-term complications of congenital esophageal atresia and/or tracheoesophageal fistula. Chest. 2004;126(3):915–925.
  • Spitz L. Esophageal replacement: overcoming the need. Journal of Pediatric Surgery. 2014;49(6):849–852.
  • Totonelli G, Maghsoudlou P, Fishman JM, et al. Esophageal tissue engineering: a new approach for esophageal replacement. World J Gastroenterol. 2012;18(47):6900–6907.
  • Mashimo H, Goyal RK. Physiology of normal esophageal motility. J Clin Gastroenterol. 2008;42(5):610–619.
  • Goyal RK, Biancani P, Phillips A, et al. Mechanical properties of the esophageal wall. J Clin Invest. 1971;50(7):1456–1465.
  • Berman EF. The experimental replacement of portions of the esophagus by a plastic tube. Ann Surg. 1952;135(3):337–343.
  • Fryfogle JD, Cyrowski GA, Rothwell D, et al. Replacement of the middle third of the esophagus with a silicone rubber prosthesis. An experiment and clinical study. Dis Chest. 1963;43:464–475.
  • Lister J, Altman RP, Allison WA. Prosthetic substitution of thoracic esophagus in puppies: use of marlex mesh with collagen or anterior rectus sheath. Ann Surg. 1965;162(5):812–824.
  • Fukushima M, Kako N, Chiba K, et al. Seven-year follow-up study after the replacement of the esophagus with an artificial esophagus in the dog. Surgery. 1983;93:70–77.
  • Takimoto Y, Okumura N, Nakamura T, et al. Long-term follow-up of the experimental replacement of the esophagus with a collagen-silicone composite tube. Asaio J. 1993;39(3):M736–9.
  • Takimoto Y, Nakamura T, Teramachi M, et al. Replacement of long segments of the esophagus with a collagen-silicone composite tube. Asaio J. 1995;41(3):M605–8.
  • Earlam R, Cunha-Melo JR. Malignant oesophageal strictures: A review of techniques for palliative intubation. British Journal of Surgery. 1982;69(2):61–68.
  • Liang JH, Zhou X, Zheng ZB, et al. Long-term form and function of neoesophagus after experimental replacement of thoracic esophagus with nitinol composite artificial esophagus. Asaio J. 2010;56(3):232–234.
  • Nakase Y, Nakamura T, Kin S, et al. Intrathoracic esophageal replacement by in situ tissue-engineered esophagus. J Thorac Cardiovasc Surg. 2008;136(4):850–859.
  • Beckstead BL, Pan S, Bhrany AD, et al. Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Biomaterials. 2005;26(31):6217–6228.
  • Lynen Jansen P, Klinge U, Anurov M, et al. Surgical mesh as a scaffold for tissue regeneration in the esophagus. Eur Surg Res. 2004;36(2):104–111.
  • Natsume T, Ike O, Okada T, et al. Porous collagen sponge for esophageal replacement. J Biomed Mater Res. 1993;27(7):867–875.
  • Diemer P, Markoew S, Le DQ, et al. Poly-epsilon-caprolactone mesh as a scaffold for in vivo tissue engineering in rabbit esophagus. Dis Esophagus. 2015;28(3):240–245.
  • Miki H, Ando N, Ozawa S, et al. An artificial esophagus constructed of cultured human esophageal epithelial cells, fibroblasts, polyglycolic acid mesh, and collagen. Asaio J. 1999;45(5):502–508.
  • Zhu Y, Chan-Park MB, Sin Chian K. The growth improvement of porcine esophageal smooth muscle cells on collagen-grafted poly(DL-lactide-co-glycolide) membrane. J Biomed Mater Res B Appl Biomater. 2005;75:193–199.
  • Zhu Y, Chian KS, Chan-Park MB, et al. Protein bonding on biodegradable poly(L-lactide-co- caprolactone) membrane for esophageal tissue engineering. Biomaterials. 2006;27:68–78.
  • Saxena AK, Ainoedhofer H, Hollwarth ME. Esophagus tissue engineering: in vitro generation of esophageal epithelial cell sheets and viability on scaffold. J Pediatr Surg. 2009;44(5):896–901.
  • Bitar KN, Zakhem E. Tissue engineering and regenerative medicine as applied to the gastrointestinal tract. Curr Opin Biotechnol. 2013;24(5):909–915.
  • Hou L, Gong C, Zhu Y. In vitro construction and in vivo regeneration of esophageal bilamellar muscle tissue. J Biomater Appl. 2016;30(9):1373–1384.
  • Elliott MJ, De Coppi P, Speggiorin S, et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. 2012;380(9846):994–1000.
  • Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014;1840(8):2506–2519.
  • Lv H, Li L, Sun M, et al. Mechanism of regulation of stem cell differentiation by matrix stiffness. Stem Cell Res Ther. 2015;6:103.
  • Lu P, Takai K, Weaver VM, et al. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3:12.
  • Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216–1219.
  • Daley WP, Peters SB, Larsen M. Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci. 2008;121:255–264.
  • Badylak S, Meurling S, Chen M, et al. Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg. 2000 Jul;35(7):1097–1103.
  • Badylak SF, Vorp DA, Spievack AR, et al. Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res. 2005;128(1):87–97.
  • Gilbert TW, Freund JM, Badylak SF. Quantification of DNA in biologic scaffold materials. J Surg Res. 2009;152(1):135–139.
  • Isch JA, Engum SA, Ruble CA, et al. Patch esophagoplasty using AlloDerm as a tissue scaffold. J Pediatr Surg. 2001;36(2):266–268.
  • Bozuk MI, Fearing NM, Leggett PL. Use of decellularized human skin to repair esophageal anastomotic leak in humans. Jsls. 2006;10(1):83–85.
  • Urita Y, Komuro H, Chen G, et al. Regeneration of the esophagus using gastric acellular matrix: an experimental study in a rat model. Pediatr Surg Int. 2007;23(1):21–26.
  • Lopes MF, Cabrita A, Ilharco J, et al. Esophageal replacement in rat using porcine intestinal submucosa as a patch or a tube-shaped graft. Dis Esophagus. 2006;19(4):254–259.
  • Wei RQ, Tan B, Tan MY, et al. Grafts of porcine small intestinal submucosa with cultured autologous oral mucosal epithelial cells for esophageal repair in a canine model. Exp Biol Med. 2009;234(4):453–461.
  • Poghosyan T, Sfeir R, Michaud L, et al. Circumferential esophageal replacement using a tube-shaped tissue-engineered substitute: an experimental study in minipigs. Surgery. 2015;158(1):266–277.
  • Clough A, Ball J, Smith GS, et al. Porcine small intestine submucosa matrix (Surgisis) for esophageal perforation. Ann Thorac Surg. 2011;91(2):e15–6.
  • Doede T, Bondartschuk M, Joerck C, et al. Unsuccessful alloplastic esophageal replacement with porcine small intestinal submucosa. Artif Organs. 2009;33:328–333.
  • Gaujoux S, Le Balleur Y, Bruneval P, et al. Esophageal replacement by allogenic aorta in a porcine model. Surgery. 2010;148(1):39–47.
  • Kajitani M, Wadia Y, Hinds MT, et al. Successful repair of esophageal injury using an elastin based biomaterial patch. Asaio J. 2001;47(4):342–345.
  • Marzaro M, Vigolo S, Oselladore B, et al. In vitro and in vivo proposal of an artificial esophagus. J Biomed Mater Res A. 2006;77(4):795–801.
  • Bhrany AD, Lien CJ, Beckstead BL, et al. Crosslinking of an oesophagus acellular matrix tissue scaffold. J Tissue Eng Regen Med. 2008;2(6):365–372.
  • Keane TJ, DeWard A, Londono R, et al. Tissue-specific effects of esophageal extracellular matrix. Tissue Eng Part A. 2015;21(17–18):2293–2300.
  • Roman C. Nervous control of esophageal peristalsis. J Physiol. 1966;58(1):79–108.
  • Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–3243.
  • Lai JY, Chang PY, Lin JN. Bladder autoaugmentation using various biodegradable scaffolds seeded with autologous smooth muscle cells in a rabbit model. J Pediatr Surg. 2005;40(12):1869–1873.
  • Chen XK, Walters TJ. Muscle-derived decellularised extracellular matrix improves functional recovery in a rat latissimus dorsi muscle defect model. J Plast Reconstr Aesthet Surg. 2013;66(12):1750–1758.
  • Maghsoudlou P, Totonelli G, Loukogeorgakis SP, et al. A decellularization methodology for the production of a natural acellular intestinal matrix. J Vis Exp. 2013;80:50658.
  • Sjöqvist S, Jungebluth P, Limm LING, et al. Experimental orthotopic transplantation of a tissue-engineered oesophagus in rats. Nat Commun. 2014;5:3562.
  • Ozeki M, Narita Y, Kagami H, et al. Evaluation of decellularized esophagus as a scaffold for cultured esophageal epithelial cells. J Biomed Mater Res A. 2006 Dec 15;79(4):771–778.
  • Meezan E, Hjelle JT, Brendel K, et al. A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci. 1975;17(11):1721–1732.
  • Conconi MT, De Coppi P, Di Liddo R, et al. Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int. 2005;18(6):727–734.
  • Totonelli G, Maghsoudlou P, Garriboli M, et al. A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials. 2012;33(12):3401–3410.
  • Hagen CK, Maghsoudlou P, Totonelli G. High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography. Sci Rep. 2015;5:18156.
  • Bennett RM, Gabor GT, Merritt MM. DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA. J Clin Invest. 1985;76(6):2182–2190.
  • McCoy SL, Kurtz SE, Hausman FA, et al. Activation of RAW264.7 macrophages by bacterial DNA and lipopolysaccharide increases cell surface DNA binding and internalization. J Biol Chem. 2004;279(17):17217–17223.
  • Record RD, Hillegonds D, Simmons C, et al. In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials. 2001;22(19):2653–2659.
  • Valentin JE, Badylak JS, McCabe GP, et al. Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. J Bone Joint Surg Am. 2006;88(12):2673–2686.
  • Gilbert TW, Stewart-Akers AM, Badylak SF. A quantitative method for evaluating the degradation of biologic scaffold materials. Biomaterials. 2007;28(2):147–150.
  • Zheng MH, Chen J, Kirilak Y, et al. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater. 2005;73(1):61–67.
  • Derwin KA, Baker AR, Spragg RK, et al. Commercial extracellular matrix scaffolds for rotator cuff tendon repair. Biomechanical, biochemical, and cellular properties. J Bone Joint Surg Am. 2006;88(12):2665–2672.
  • Nagata S, Hanayama R, Kawane K. Autoimmunity and the clearance of dead cells. Cell. 2010;140(5):619–630.
  • Galili U, Mandrell RE, Hamadeh RM, et al. Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun. 1988;56(7):1730–1737.
  • Cooper DK, Good AH, Koren E, et al. Identification of alpha-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man. Transpl Immunol. 1993;1(3):198–205.
  • Oriol R, Ye Y, Koren E, et al. Carbohydrate antigens of pig tissues reacting with human natural antibodies as potential targets for hyperacute vascular rejection in pig-to-man organ xenotransplantation. Transplantation. 1993;56(6):1433–1442.
  • Wong ML, Griffiths LG. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomater. 2014;10(5):1806–1816.
  • Park S, Kim WH, Choi SY. Kim YJ Removal of alpha-Gal epitopes from porcine aortic valve and pericardium using recombinant human alpha galactosidase A. J Korean Med Sci. 2009;24(6):1126–1131.
  • Phelps CJ, Koike C, Vaught TD, et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science. 2003;299(5605):411–414.
  • Gilbert TW, Stewart-Akers AM, Simmons-Byrd A, et al. Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J Bone Joint Surg Am. 2007;89(3):621–630.
  • Badylak SF, Hoppo T, Nieponice A, et al. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng Part A. 2011;17(11–12):1643–1650.
  • Raeder RH, Badylak SF, Sheehan C, et al. Natural anti-galactose alpha1,3 galactose antibodies delay, but do not prevent the acceptance of extracellular matrix xenografts. Transpl Immunol. 2002;10(1):15–24.
  • Fishman JM, Lowdell MW, Urbani L, et al. Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proc Natl Acad Sci U S A. 2013;110(35):14360–14365.
  • Tan B, Wei RQ, Tan MY, et al. Tissue engineered esophagus by mesenchymal stem cell seeding for esophageal repair in a canine model. Journal of Surgical Research. 2013;182(1):40–48.
  • Ohki T, Yamato M, Murakami D, et al. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut. 2006;55(12):1704–1710.
  • Maghsoudlou P, Ditchfield D, Klepacka DH, et al. Isolation of esophageal stem cells with potential for therapy. Pediatr Surg Int. 2014;30(12):1249–1256.
  • Jank BJ, Xiong L, Moser PT, et al. Engineered composite tissue as a bioartificial limb graft. Biomaterials. 2015;61:246–256.
  • Tannuri U, Tannuri ACA, Gonçalves MEP, et al. Total gastric transposition is better than partial gastric tube esophagoplasty for esophageal replacement in children. Diseases of the Esophagus. 2008;21(1):73–77.
  • Hunter CJ, Petrosyan M, Connelly ME, et al. Repair of long-gap esophageal atresia: gastric conduits may improve outcome-a 20-year single center experience. Pediatr Surg Int. 2009;25(12):1087–1091.
  • Ethical Framework for Donation after Brainstem Death Consultation. UK Donation Ethics Committee, 2014. Available at: https://www.rcpe.ac.uk/consultation-response/ethical-framework-donation-after-brainstem-death-consultation.
  • World Health Organization. Draft guiding principles on human organ transplantation. 2015. Available at: http://www.who.int/ethics/topics/transplantation_guiding_principles/en
  • Kelso R, Embry R, Jefferson P, et al. Confirming death in general practice. Br J Gen Pract. 2012;62(602):462–463.
  • The diagnosis of death by neurological criteria in infants less than two months old. Royal college of paediatrics and child health, 2015. Available at: http://www.rcpch.ac.uk/system/files/protected/page/DNC%20Guide%20FINAL.pdf.
  • Stone KR, Abdel-Motal UM, Walgenbach AW, et al. Replacement of human anterior cruciate ligaments with pig ligaments: a model for anti-non-gal antibody response in long-term xenotransplantation. Transplantation. 2007;83(2):211–219.
  • Galili U. The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunol Cell Biol. 2005;83(6):674–686.
  • Manji RA, Menkis AH, Ekser B. Cooper DK Porcine bioprosthetic heart valves: the next generation. Am Heart J. 2012;164(2):177–185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.