559
Views
22
CrossRef citations to date
0
Altmetric
Review

Radioimmunoconjugates for treating cancer: recent advances and current opportunities

, , , , , , & show all
Pages 813-819 | Received 01 Feb 2017, Accepted 20 Apr 2017, Published online: 04 May 2017

References

  • McGuire S. World cancer report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr: Int Rev J. 2016;7:418–419.
  • World Health Organization - Health topics - Cancer [Internet]. http://www.who.int/topics/cancer/en/2017
  • Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–497.
  • Lacassagne A. Advances in radiobiology between 1937 and 1950. Nucleonics. 1950;7:62–67.
  • Goldenberg DM, DeLand F, Kim E, et al. Rayburn P: use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N Engl J Med. 1978;298:1384–1386.
  • Herlyn M, Steplewski Z, Herlyn D, et al. Colorectal carcinoma-specific antigen: detection by means of monoclonal antibodies. Proc Natl Acad Sci U S A. 1979;76:1438–1442.
  • DeNardo SJ, DeNardo GL, O’Grady LF, et al. McGahan JP: treatment of a patient with B cell lymphoma by I-131 LYM-1 monoclonal antibodies. Int J Biol Markers. 1987;2:49–53.
  • Khaw BA, Cooney J, Edgington T. Strauss HW: differences in experimental tumor localization of dual-labeled monoclonal antibody. J Nucl Med. 1986;27:1293–1299.
  • Cole WC, DeNardo SJ, Meares CF, et al. Moi MK: comparative serum stability of radiochelates for antibody radiopharmaceuticals. J Nucl Med. 1987;28:83–90.
  • Goodwin DA, Meares CF, McCall MJ, et al. Chaovapong W: chelate conjugates of monoclonal antibodies for imaging lymphoid structures in the mouse. J Nucl Med. 1985;26:493–502.
  • Deshpande SV, DeNardo SJ, Kukis DL, et al. Meares CF: yttrium-90-labeled monoclonal antibody for therapy: labeling by a new macrocyclic bifunctional chelating agent. J Nucl Med. 1990;31:473–479.
  • Siberil S, Dutertre C-A, Boix C, et al. Therapeutic monoclonal antibodies: a little history, a lot of engineering, and… some clinical successes. Transfus Clin Biol. 2005;12:114–122.
  • Press OW, Leonard JP, Coiffier B, et al. Immunotherapy of non-Hodgkin’s lymphomas. Hematology Am Soc Hematol Educ Program. 2001;1:221–240.
  • Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–792.
  • Cheson BD. Radioimmunotherapy of non-Hodgkin lymphomas. Blood. 2003;101:391–398.
  • Brown JM. Giaccia AJ: the unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998;58:1408–1416.
  • Konerding MA, Fait E. Gaumann A: 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br J Cancer. 2001;84:1354–1362.
  • Netti PA, Hamberg LM, Babich JW, et al. Jain RK: enhancement of fluid filtration across tumor vessels: implication for delivery of macromolecules. Proc Natl Acad Sci U S A. 1999;96:3137–3142.
  • Tabrizi M, Bornstein GG, Suria H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. Aaps J. 2010;12:33–43.
  • Thurber GM, Schmidt MM. Wittrup KD: antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev. 2008;60:1421–1434.
  • Chen FM, Epstein AL, Li Z. Taylor CR: a comparative autoradiographic study demonstrating differential intratumor localization of monoclonal antibodies to cell surface (Lym-1) and intracellular (TNT-1) antigens. J Nucl Med. 1990;31:1059–1066.
  • Hu P, Hornick JL, Glasky MS, et al. A chimeric Lym-1/interleukin 2 fusion protein for increasing tumor vascular permeability and enhancing antibody uptake. Cancer Res. 1996;56:4998–5004.
  • LeBerthon B, Khawli LA, Alauddin M, et al. Enhanced tumor uptake of macromolecules induced by a novel vasoactive interleukin 2 immunoconjugate. Cancer Res. 1991;51:2694–2698.
  • Khawli LA, Glasky MS, Alauddin MM. Epstein AL: improved tumor localization and radioimaging with chemically modified monoclonal antibodies. Cancer Biother Radiopharm. 1996;11:203–215.
  • Khawli LA, Mizokami MM, Sharifi J, et al. Epstein AL: pharmacokinetic characteristics and biodistribution of radioiodinated chimeric TNT-1, −2, and −3 monoclonal antibodies after chemical modification with biotin. Cancer Biother Radiopharm. 2002;17:359–370.
  • Sharifi J, Khawli LA, Hornick JL, et al. Improving monoclonal antibody pharmacokinetics via chemical modification. Q J Nucl Med. 1998;42:242–249.
  • Murtha AD. Radiobiology of low-dose-rate radiation relevant to radioimmunotherapy. Cancer Biother Radiopharm. 2000;15:7–14.
  • Pouget J-P, Lozza C, Deshayes E, et al. Navarro-Teulon I: introduction to radiobiology of targeted radionuclide therapy. Front Med (Lausanne). 2015;2:12.
  • Bäck T, Haraldsson B, Hultborn R, et al. Glomerular filtration rate after alpha-radioimmunotherapy with 211At-MX35-F(ab’)2: a long-term study of renal function in nude mice. Cancer Biother Radiopharm. 2009;24:649–658.
  • Andersson H, Cederkrantz E, Bäck T, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab’)2–a phase I study. J Nucl Med. 2009;50:1153–1160.
  • Lam K, Chan C, Reilly RM. Development and preclinical studies of (64)Cu-NOTA-pertuzumab F(ab’)2 for imaging changes in tumor HER2 expression associated with response to trastuzumab by PET/CT. MAbs. 2017;9:154–164.
  • Ueda M, Hisada H, Temma T, et al. Gallium-68-labeled anti-HER2 single-chain Fv fragment: development and in vivo monitoring of HER2 expression. Mol Imaging Biol. 2015;17:102–110.
  • Knowles SM, Zettlitz KA, Tavaré R, et al. Wu AM: quantitative immunoPET of prostate cancer xenografts with 89Zr- and 124I-labeled anti-PSCA A11 minibody. J Nucl Med. 2014;55:452–459.
  • Barbet J, Kraeber-Bodéré F, Vuillez JP, et al. Pretargeting with the affinity enhancement system for radioimmunotherapy. Cancer Biother Radiopharm. 1999;14:153–166.
  • Kraeber-Bodéré F, Rousseau C, Bodet-Milin C, et al. Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial. J Nucl Med. 2006;47:247–255.
  • Salaun P-Y, Campion L, Bournaud C, et al. Phase II trial of anticarcinoembryonic antigen pretargeted radioimmunotherapy in progressive metastatic medullary thyroid carcinoma: biomarker response and survival improvement. J Nucl Med. 2012;53:1185–1192.
  • Salaun P-Y, Campion L, Ansquer C, et al. 1⁸F-FDG PET predicts survival after pretargeted radioimmunotherapy in patients with progressive metastatic medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2014;41:1501–1510.
  • Goldenberg DM, Rossi EA, Sharkey RM, et al. Multifunctional antibodies by the Dock-and-Lock method for improved cancer imaging and therapy by pretargeting. J Nucl Med. 2008;49:158–163.
  • Bodet-Milin C, Faivre-Chauvet A, Carlier T, et al. Immuno-PET Using anticarcinoembryonic antigen bispecific antibody and 68Ga-labeled peptide in metastatic medullary thyroid carcinoma: clinical optimization of the pretargeting parameters in a first-in-human trial. J Nucl Med. 2016;57:1505–1511.
  • Bodet-Milin C, Ferrer L, Rauscher A, et al. Pharmacokinetics and dosimetry studies for optimization of pretargeted radioimmunotherapy in CEA-expressing advanced lung cancer patients. Front Med (Lausanne). 2015;2:84.
  • Ng B, Kramer E, Liebes L, et al. Radiosensitization of tumor-targeted radioimmunotherapy with prolonged topotecan infusion in human breast cancer xenografts. Cancer Res. 2001;61:2996–3001.
  • Cardillo TM, Blumenthal R, Ying Z. Gold DV: combined gemcitabine and radioimmunotherapy for the treatment of pancreatic cancer. Int J Cancer. 2002;97:386–392.
  • Supiot S, Gouard S, Charrier J, et al. Mechanisms of cell sensitization to alpha radioimmunotherapy by doxorubicin or paclitaxel in multiple myeloma cell lines. Clin Cancer Res. 2005;11:7047s–7052s.
  • Jang B-S, Lee S-M, Kim HS, et al. Paik CH: combined-modality radioimmunotherapy: synergistic effect of paclitaxel and additive effect of bevacizumab. Nucl Med Biol. 2012;39:472–483.
  • Elstrom RL, Ruan J, Christos PJ, et al. Phase 1 study of radiosensitization using bortezomib in patients with relapsed non-Hodgkin lymphoma receiving radioimmunotherapy with 131I-tositumomab. Leuk. Lymphoma. 2015;56:342–346.
  • Mortimer JE, Bading JR, Colcher DM, et al. Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using (64)Cu-DOTA-trastuzumab PET. J Nucl Med. 2014;55:23–29.
  • Menke-van der Houven van Oordt CW, Gootjes EC, Huisman MC, et al. 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer. Oncotarget. 2015;6:30384–30393.
  • Tagawa ST, Milowsky MI, Morris M, et al. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182–5191.
  • Bhusari P, Vatsa R, Singh G, et al. Development of Lu-177-trastuzumab for radioimmunotherapy of HER2 expressing breast cancer and its feasibility assessment in breast cancer patients. Int J Cancer. 2017;140:938–947.
  • Kameswaran M, Pandey U, Dhakan C, et al. Synthesis and preclinical evaluation of (177)Lu-CHX-A”-DTPA-rituximab as a radioimmunotherapeutic agent for non-Hodgkin’s lymphoma. Cancer Biother Radiopharm. 2015;30:240–246.
  • Featherstone C. Alpha-particle-emitting radioisotopes coupled to antibody for acute myeloid leukaemia treatment. Mol Med Today. 1997;3:232–233.
  • Zalutsky MR, Reardon DA, Akabani G, et al. Bigner DD: clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med. 2008;49:30–38.
  • DeNardo GL, Schlom J, Buchsbaum DJ, et al. DeNardo SJ: rationales, evidence, and design considerations for fractionated radioimmunotherapy. Cancer. 2002;94:1332–1348.
  • Illidge TM, Mayes S, Pettengell R, et al. Fractionated ⁹⁰Y-ibritumomab tiuxetan radioimmunotherapy as an initial therapy of follicular lymphoma: an international phase II study in patients requiring treatment according to GELF/BNLI criteria. J Clin Oncol. 2014;32:212–218.
  • Scholz CW, Pinto A, Linkesch W, et al. (90)Yttrium-ibritumomab-tiuxetan as first-line treatment for follicular lymphoma: 30 months of follow-up data from an international multicenter phase II clinical trial. J Clin Oncol. 2013;31:308–313.
  • Batra JS, Karir B, Pinto-Chengot K, et al. MP50-19 DOSE-FRACTIONATED ANTI-PSMA RADIOIMMUNOTHERAPY (177LU-J591) FOR MCRPC. J Urol. 2016;195:e680.
  • Kraeber-Bodéré F, Pallardy A, Maisonneuve H, et al. Consolidation anti-CD22 fractionated radioimmunotherapy with (90)Y-epratuzumab tetraxetan following R-CHOP in elderly patients with diffuse large B-cell lymphoma: a prospective, single group, phase 2 trial. Lancet Haematol. 2017;4:e35–e45.
  • Hettich M, Braun F, Bartholomä MD, et al. High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics. 2016;6:1629–1640.
  • Ménager J, Gorin J-B, Maurel C, et al. Combining α-radioimmunotherapy and adoptive T cell therapy to potentiate tumor destruction. PLOS One. 2015;10:e0130249.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.