583
Views
21
CrossRef citations to date
0
Altmetric
Review

Challenges and opportunities in targeting the CD28/CTLA-4 pathway in transplantation and autoimmunity

&
Pages 1001-1012 | Received 14 Mar 2017, Accepted 18 May 2017, Published online: 30 May 2017

References

  • Mueller DL, Jenkins MK, Schwartz RH. An accessory cell-derived costimulatory signal acts independently of protein kinase C activation to allow T cell proliferation and prevent the induction of unresponsiveness. J Immunol. 1989;142(8):2617–2628. Epub 1989/04/15. PubMed PMID: 2522963.
  • Linsley PS, Greene JL, Tan P, et al. Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J Exp Med. 1992;176(6):1595–1604. Epub 1992/12/01. PubMed PMID: 1334116; PubMed Central PMCID: PMCPMC2119471.
  • Linsley PS, Bradshaw J, Urnes M, et al. CD28 engagement by B7/BB-1 induces transient down-regulation of CD28 synthesis and prolonged unresponsiveness to CD28 signaling. J Immunol. 1993;150(8 Pt 1):3161–3169. Epub 1993/04/15. PubMed PMID: 7682233.
  • Metzler B, Burkhart C, Wraith DC. Phenotypic analysis of CTLA-4 and CD28 expression during transient peptide-induced T cell activation in vivo. Int Immunol. 1999;11(5):667–675. Epub 1999/05/18. PubMed PMID: 10330272.
  • Freeman GJ, Lombard DB, Gimmi CD, et al. CTLA-4 and CD28 mRNA are coexpressed in most T cells after activation. Expression of CTLA-4 and CD28 mRNA does not correlate with the pattern of lymphokine production. J Immunol. 1992;149(12):3795–3801. Epub 1992/12/15. PubMed PMID: 1281186.
  • Guinan EC, Gribben JG, Boussiotis VA, et al. Pivotal role of the B7: CD28pathway in transplantation tolerance and tumor immunity. Blood. 1994;84(10):3261–3282. Epub 1994/11/15. PubMed PMID: 7524733.
  • Metz DP, Farber DL, Taylor T, et al. Differential role of CTLA-4 in regulation of resting memory versus naive CD4 T cell activation. J Immunol. 1998;161(11):5855–5861. Epub 1998/12/02. PubMed PMID: 9834064.
  • Lindsten T, Lee KP, Harris ES, et al. Characterization of CTLA-4 structure and expression on human T cells. J Immunol. 1993;151(7):3489–3499. Epub 1993/10/01. PubMed PMID: 8397258.
  • Linsley PS, Brady W, Urnes M, et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991;174(3):561–569. Epub 1991/09/01. PubMed PMID: 1714933; PubMed Central PMCID: PMCPMC2118936.
  • Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3(5):541–547. Epub 1995/11/01. PubMed PMID: 7584144.
  • Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1(5):405–413. Epub 1994/08/01. PubMed PMID: 7882171.
  • Walunas TL, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med. 1996;183(6):2541–2550. Epub 1996/06/01. PubMed PMID: 8676075; PubMed Central PMCID: PMCPMC2192609.
  • Bachmann MF, Kohler G, Ecabert B, et al. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol. 1999;163(3):1128–1131. Epub 1999/07/22. PubMed PMID: 10415006.
  • Chen W, Jin W, Wahl SM. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor beta (TGF-beta) production by murine CD4(+) T cells. J Exp Med. 1998;188(10):1849–1857. Epub 1998/11/17. PubMed PMID: 9815262; PubMed Central PMCID: PMCPMC2212416.
  • Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192(2):295–302. Epub 2000/07/19. PubMed PMID: 10899916; PubMed Central PMCID: PMCPMC2193261.
  • Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192(2):303–310. Epub 2000/07/19. PubMed PMID: 10899917; PubMed Central PMCID: PMCPMC2193248.
  • Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12(4):431–440. Epub 2000/05/05. PubMed PMID: 10795741.
  • Friedline RH, Brown DS, Nguyen H, et al. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med. 2009;206(2):421–434. Epub 2009/02/04. PubMed PMID: 19188497; PubMed Central PMCID: PMCPMC2646578.
  • Rudd CE. The reverse stop-signal model for CTLA4 function. Nat Rev Immunol. 2008;8:153–160. England.
  • Dustin ML, Bromley SK, Kan Z, et al. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc Natl Acad Sci USA. 1997;94(8):3909–3913. Epub 1997/04/15. PubMed PMID: 9108078; PubMed Central PMCID: PMCPMC20541.
  • Bousso P, Robey E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat Immunol. 2003;4(6):579–585. Epub 2003/05/06. PubMed PMID: 12730692.
  • Hugues S, Fetler L, Bonifaz L, et al. Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nat Immunol. 2004;5(12):1235–1242. Epub 2004/11/02. PubMed PMID: 15516925.
  • Schneider H, Valk E, da Rocha Dias S, et al. CTLA-4 up-regulation of lymphocyte function-associated antigen 1 adhesion and clustering as an alternate basis for coreceptor function. Proc Natl Acad Sci USA. 2005;102(36):12861–12866. Epub 2005/08/30. PubMed PMID: 16126897; PubMed Central PMCID: PMCPMC1192824.
  • Finck BK, Linsley PS, Wofsy D. Treatment of murine lupus with CTLA4Ig. Science (New York, NY). 1994;265(5176):1225–1227. Epub 1994/08/26. PubMed PMID: 7520604.
  • Reynolds J, Tam FW, Chandraker A, et al. CD28-B7 blockade prevents the development of experimental autoimmune glomerulonephritis. J Clin Invest. 2000;105(5):643–651. Epub 2000/03/11. PubMed PMID: 10712436; PubMed Central PMCID: PMCPMC289170.
  • Abrams JR, Lebwohl MG, Guzzo CA, et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest. 1999;103(9):1243–1252. Epub 1999/05/04. PubMed PMID: 10225967; PubMed Central PMCID: PMCPMC408469.
  • Webb LM, Walmsley MJ, Feldmann M. Prevention and amelioration of collagen-induced arthritis by blockade of the CD28 co-stimulatory pathway: requirement for both B7-1 and B7-2. Eur J Immunol. 1996;26(10):2320–2328. Epub 1996/10/01. PubMed PMID: 8898940.
  • Moreland LW, Alten R, Van den Bosch F, et al. Costimulatory blockade in patients with rheumatoid arthritis: a pilot, dose-finding, double-blind, placebo-controlled clinical trial evaluating CTLA-4Ig and LEA29Y eighty-five days after the first infusion. Arthritis Rheum. 2002;46(6):1470–1479. Epub 2002/07/13. PubMed PMID: 12115176.
  • Kremer JM, Westhovens R, Leon M, et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med. 2003;349(20):1907–1915. Epub 2003/11/14. PubMed PMID: 14614165.
  • Schiff M, Keiserman M, Codding C, et al. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: a phase III, multi-centre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis. 2008;67(8):1096–1103. Epub 2007/12/07. PubMed PMID: 18055472; PubMed Central PMCID: PMCPMC2564802.
  • Weinblatt M, Combe B, Covucci A, et al. Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease-modifying antirheumatic drugs: a one-year randomized, placebo-controlled study. Arthritis Rheum. 2006;54(9):2807–2816. Epub 2006/09/02. PubMed PMID: 16947384
  • Kremer JM, Genant HK, Moreland LW, et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial. Ann Intern Med. 2006;144(12):865–876. Epub 2006/06/21. PubMed PMID: 16785475.
  • Schiff M, Pritchard C, Huffstutter JE, et al. The 6-month safety and efficacy of abatacept in patients with rheumatoid arthritis who underwent a washout after anti-tumour necrosis factor therapy or were directly switched to abatacept: the ARRIVE trial. Ann Rheum Dis. 2009;68(11):1708–1714. Epub 2008/12/17. PubMed PMID: 19074911; PubMed Central PMCID: PMCPMC2756956.
  • Genovese MC, Becker JC, Schiff M, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med. 2005;353(11):1114–1123. Epub 2005/09/16. PubMed PMID: 16162882.
  • Westhovens R, Kremer JM, Moreland LW, et al. Safety and efficacy of the selective costimulation modulator abatacept in patients with rheumatoid arthritis receiving background methotrexate: a 5-year extended phase IIB study. J Rheumatol. 2009;36(4):736–742. Epub 2009/03/11. PubMed PMID: 19273451.
  • Genant HK, Peterfy CG, Westhovens R, et al. Abatacept inhibits progression of structural damage in rheumatoid arthritis: results from the long-term extension of the AIM trial. Ann Rheum Dis. 2008;67(8):1084–1089. Epub 2007/12/19. PubMed PMID: 18086727; PubMed Central PMCID: PMCPMC2569144.
  • Aringer M, Burkhardt H, Burmester GR, et al. Current state of evidence on ‘off-label’ therapeutic options for systemic lupus erythematosus, including biological immunosuppressive agents, in Germany, Austria and Switzerland–a consensus report. Lupus. 2012;21(4):386–401. Epub 2011/11/11. PubMed PMID: 22072024.
  • Daikh DI, Finck BK, Linsley PS, et al. Long-term inhibition of murine lupus by brief simultaneous blockade of the B7/CD28 and CD40/gp39 costimulation pathways. J Immunol. 1997;159(7):3104–3108. Epub 1997/10/08. PubMed PMID: 9317105.
  • Daikh DI, Wofsy D. Cutting edge: reversal of murine lupus nephritis with CTLA4Ig and cyclophosphamide. J Immunol. 2001;166(5):2913–2916. Epub 2001/02/24. PubMed PMID: 11207238.
  • Furie R, Nicholls K, Cheng TT, et al. Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study. Arthritis Rheum. 2014;66(2):379–389. Epub 2014/02/08. PubMed PMID: 24504810.
  • Merrill JT, Burgos-Vargas R, Westhovens R, et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2010;62(10):3077–3087. Epub 2010/06/10. PubMed PMID: 20533545.
  • Askanase A, Byron M, Keyes-Elstein L, et al. Treatment of lupus nephritis with abatacept: the abatacept and cyclophosphamide combination efficacy and safety study. Arthritis Rheum. 2014;66(11):3096–3104. Epub 2014/11/19. PubMed PMID: 25403681; PubMed Central PMCID: PMCPMC4528976.
  • Danion F, Rosine N, Belkhir R, et al. Efficacy of abatacept in systemic lupus erythematosus: a retrospective analysis of 11 patients with refractory disease. Lupus. 2016;25(13):1440–1447. Epub 2016/03/26. PubMed PMID: 27013663.
  • Blazar BR, Taylor PA, Linsley PS, et al. In vivo blockade of CD28/CTLA4: B7/BB1 interaction with CTLA4-Ig reduces lethal murine graft-versus-host disease across the major histocompatibility complex barrier in mice. Blood. 1994;83(12):3815–3825. Epub 1994/06/15. PubMed PMID: 7515723.
  • Kirk AD, Harlan DM, Armstrong NN, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci USA. 1997;94(16):8789–8794. Epub 1997/08/05. PubMed PMID: 9238056; PubMed Central PMCID: PMCPMC23132.
  • Larsen CP, Pearson TC, Adams AB, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant. 2005;5(3):443–453. Epub 2005/02/15. PubMed PMID: 15707398.
  • Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–258. Epub 1996/01/01. PubMed PMID: 8717514.
  • Linsley PS, Greene JL, Brady W, et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994;1(9):793–801. Epub 1994/12/01. PubMed PMID: 7534620.
  • Kode R, Fa K, Chowdhury S, et al. Basiliximab plus low-dose cyclosporin vs. OKT3 for induction immunosuppression following renal transplantation. Clin Transplant. 2003;17(4):369–376. Epub 2003/07/19. PubMed PMID: 12868995.
  • Lawen JG, Davies EA, Mourad G, et al. Randomized double-blind study of immunoprophylaxis with basiliximab, a chimeric anti-interleukin-2 receptor monoclonal antibody, in combination with mycophenolate mofetil-containing triple therapy in renal transplantation. Transplantation. 2003;75(1):37–43. Epub 2003/01/25. PubMed PMID: 12544868.
  • Lebranchu Y, Bridoux F, Buchler M, et al. Immunoprophylaxis with basiliximab compared with antithymocyte globulin in renal transplant patients receiving MMF-containing triple therapy. Am J Transplant. 2002;2(1):48–56. Epub 2002/07/04. PubMed PMID: 12095056.
  • Vincenti F, Ramos E, Brattstrom C, et al. Multicenter trial exploring calcineurin inhibitors avoidance in renal transplantation. Transplantation. 2001;71(9):1282–1287. Epub 2001/06/09. PubMed PMID: 11397963.
  • Vincenti F, Larsen C, Durrbach A, et al. Costimulation blockade with belatacept in renal transplantation. N Engl J Med. 2005;353(8):770–781. Epub 2005/08/27. PubMed PMID: 16120857.
  • Archdeacon P, Dixon C, Belen O, et al. Summary of the US FDA approval of belatacept. Am J Transplant. 2012;12(3):554–562. Epub 2012/02/18. PubMed PMID: 22335273.
  • Durrbach A, Pestana JM, Pearson T, et al. A phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT study). Am J Transplant. 2010;10(3):547–557. Epub 2010/04/27. PubMed PMID: 20415898.
  • Rostaing L, Vincenti F, Grinyo J, et al. Long-term belatacept exposure maintains efficacy and safety at 5 years: results from the long-term extension of the BENEFIT study. Am J Transplant. 2013;13(11):2875–2883. Epub 2013/09/21. PubMed PMID: 24047110.
  • Pestana JO, Grinyo JM, Vanrenterghem Y, et al. Three-year outcomes from BENEFIT-EXT: a phase III study of belatacept versus cyclosporine in recipients of extended criteria donor kidneys. Am J Transplant. 2012;12(3):630–639. Epub 2012/02/04. PubMed PMID: 22300431.
  • Vincenti F, Rostaing L, Grinyo J, et al. Belatacept and long-term outcomes in kidney transplant. N Engl J Med. 2016 Jan 28;374(4):333–343.
  • Vincenti F, Blancho G, Durrbach A, et al. Five-year safety and efficacy of belatacept in renal transplantation. J Am Soc Nephrology JASN. 2010;21(9):1587–1596. Epub 2010/07/17. PubMed PMID: 20634298; PubMed Central PMCID: PMCPMC3013525.
  • Ford ML, Koehn BH, Wagener ME, et al. Antigen-specific precursor frequency impacts T cell proliferation, differentiation, and requirement for costimulation. J Exp Med. 2007;204:299–309.
  • Ford ML, Larsen CP. Overcoming the memory barrier in tolerance induction: molecular mimicry and functional heterogeneity among pathogen-specific T-cell populations. Curr Opin Organ Transplant. 2010;15(4):405–410. Epub 2010/07/10. PubMed PMID: 20616729; PubMed Central PMCID: PMCPMC4642449.
  • Ford ML, Wagener ME, Hanna SS, et al. A critical precursor frequency of donor-reactive CD4+ T cell help is required for CD8+ T cell-mediated CD28/CD154-independent rejection. J Immunol. 2008;180(11):7203–7211. Epub 2008/05/21. PubMed PMID: 18490719; PubMed Central PMCID: PMCPMC2570960.
  • Pantenburg B, Heinzel F, Das L, et al. T cells primed by Leishmania major infection cross-react with alloantigens and alter the course of allograft rejection. J Immunol. 2002;169(7):3686–3693. Epub 2002/09/24. PubMed PMID: 12244161.
  • Adams AB, Williams MA, Jones TR, et al. Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest. 2003;111(12):1887–1895. Epub 2003/06/19. PubMed PMID: 12813024; PubMed Central PMCID: PMCPMC161424.
  • Deacock SJ, Lechler RI. Positive correlation of T cell sensitization with frequencies of alloreactive T helper cells in chronic renal failure patients. Transplantation. 1992;54(2):338–343. Epub 1992/08/01. PubMed PMID: 1386695.
  • Sprent J, Surh CD, Tough D. Fate of T and B cells transferred to SCID mice. Res Immunol. 1994;145(5):328–331. Epub 1994/06/01. PubMed PMID: 7701109.
  • Tchao NK, Turka LA. Lymphodepletion and homeostatic proliferation: implications for transplantation. Am J Transplant. 2012;12(5):1079–1090. Epub 2012/03/17. PubMed PMID: 22420320.
  • Goldrath AW, Bogatzki LY, Bevan MJ. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med. 2000;192(4):557–564. Epub 2000/08/22. PubMed PMID: 10952725; PubMed Central PMCID: PMCPMC2193243.
  • Moxham VF, Karegli J, Phillips RE, et al. Homeostatic proliferation of lymphocytes results in augmented memory-like function and accelerated allograft rejection. J Immunol. 2008;180(6):3910–3918. Epub 2008/03/07. PubMed PMID: 18322199.
  • Wu Z, Bensinger SJ, Zhang J, et al. Homeostatic proliferation is a barrier to transplantation tolerance. Nat Med. 2004;10(1):87–92. Epub 2003/12/03. PubMed PMID: 14647496; PubMed Central PMCID: PMCPMC2839903.
  • Iida S, Suzuki T, Tanabe K, et al. Transient lymphopenia breaks costimulatory blockade-based peripheral tolerance and initiates cardiac allograft rejection. Am J Transplant. 2013;13(9):2268–2279. Epub 2013/07/10. PubMed PMID: 23834725; PubMed Central PMCID: PMCPMC4216721.
  • Blattman JN, Antia R, Sourdive DJ, et al. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med. 2002;195(5):657–664. Epub 2002/03/06. PubMed PMID: 11877489; PubMed Central PMCID: PMCPMC2193761.
  • Suchin EJ, Langmuir PB, Palmer E, et al. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J Immunol. 2001;166(2):973–981. Epub 2001/01/06. PubMed PMID: 11145675.
  • Floyd TL, Koehn BH, Kitchens WH, et al. Limiting the amount and duration of antigen exposure during priming increases memory T cell requirement for costimulation during recall. J Immunol. 2011;186(4):2033–2041. Epub 2011/01/25. PubMed PMID: 21257960; PubMed Central PMCID: PMCPMC3057172.
  • Badell IR, Kitchens WH, Wagener ME, et al. Pathogen stimulation history impacts donor-specific CD8(+) T cell susceptibility to costimulation/integrin blockade-based therapy. Am J Transplant. 2015;15(12):3081–3094. Epub 2015/08/01. PubMed PMID: 26228897.
  • Espinosa J, Herr F, Tharp G, et al. CD57(+) CD4 T cells underlie belatacept-resistant allograft rejection. Am J Transplant. 2016;16(4):1102–1112. Epub 2015/11/26. PubMed PMID: 26603381; PubMed Central PMCID: PMCPMC4867077.
  • Fagnoni FF, Vescovini R, Mazzola M, et al. Expansion of cytotoxic CD8+ CD28- T cells in healthy ageing people, including centenarians. Immunology. 1996;88(4):501–507. Epub 1996/08/01. PubMed PMID: 8881749; PubMed Central PMCID: PMCPMC1456634.
  • Demmers MW, Baan CC, Janssen M, et al. Substantial proliferation of human renal tubular epithelial cell-reactive CD4+CD28null memory T cells, which is resistant to tacrolimus and everolimus. Transplantation. 2014;97(1):47–55. Epub 2013/10/26. PubMed PMID: 24157471.
  • Jago CB, Yates J, Camara NO, et al. Differential expression of CTLA-4 among T cell subsets. Clin Exp Immunol. 2004;136(3):463–471. Epub 2004/05/19. PubMed PMID: 15147348; PubMed Central PMCID: PMCPMC1809051.
  • da Rocha Dias S, Rudd CE. CTLA-4 blockade of antigen-induced cell death. Blood. 2001;97(4):1134–1137. Epub 2001/02/13. PubMed PMID: 11159548.
  • Hoff H, Knieke K, Cabail Z, et al. Surface CD152 (CTLA-4) expression and signaling dictates longevity of CD28null T cells. J Immunol. 2009;182(9):5342–5351. Epub 2009/04/22. PubMed PMID: 19380781.
  • Linsley PS, Nadler SG. The clinical utility of inhibiting CD28-mediated costimulation. Immunol Rev. 2009;229(1):307–321. Epub 2009/05/12. PubMed PMID: 19426230.
  • Krummey SM, Cheeseman JA, Conger JA, et al. High CTLA-4 expression on Th17 cells results in increased sensitivity to CTLA-4 coinhibition and resistance to belatacept. Am J Transplant. 2014;14(3):607–614. Epub 2014/04/15. PubMed PMID: 24730049; PubMed Central PMCID: PMCPMC4124942.
  • Krummey SM, Floyd TL, Liu D, et al. Candida-elicited murine Th17 cells express high Ctla-4 compared with Th1 cells and are resistant to costimulation blockade. J Immunol. 2014;192(5):2495–2504. Epub 2014/02/05. PubMed PMID: 24493820; PubMed Central PMCID: PMCPMC4071624.
  • Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322:271–275.
  • Tang Q, Henriksen KJ, Boden EK, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol. 2003;171(7):3348–3352. Epub 2003/09/23. PubMed PMID: 14500627.
  • Zwar TD, Read S, van Driel IR, et al. CD4+CD25+ regulatory T cells inhibit the antigen-dependent expansion of self-reactive T cells in vivo. J Immunol. 2006;176(3):1609–1617. Epub 2006/01/21. PubMed PMID: 16424190.
  • Zhao D-M, Thornton AM, DiPaolo RJ, et al. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood. 2006;107:3925–3932.
  • Imberti L, Scarsi M, Zanotti C, et al. Reduced T-cell repertoire restrictions in abatacept-treated rheumatoid arthritis patients. J Transl Med. 2015;13:12. Epub 2015/01/17. PubMed PMID: 25592982; PubMed Central PMCID: PMCPMC4310138.
  • Liu D, Krummey SM, Badell IR, et al. 2B4 (CD244) induced by selective CD28 blockade functionally regulates allograft-specific CD8+ T cell responses. J Exp Med. 2014;211:297–311.
  • Poirier N, Azimzadeh AM, Zhang T, et al. Inducing CTLA-4-dependent immune regulation by selective CD28 blockade promotes regulatory T cells in organ transplantation. Sci Transl Med. 2010;2(17):17ra0. Epub 2010/04/08. PubMed PMID: 20371478; PubMed Central PMCID: PMCPMC2860737.
  • Suchard SJ, Davis PM, Kansal S, et al. A monovalent anti-human CD28 domain antibody antagonist: preclinical efficacy and safety. J Immunol. 2013;191(9):4599–4610. Epub 2013/10/02. PubMed PMID: 24081989.
  • Zhang T, Fresnay S, Welty E, et al. Selective CD28 blockade attenuates acute and chronic rejection of murine cardiac allografts in a CTLA-4-dependent manner. Am J Transplant. 2011;11(8):1599–1609. Epub 2011/07/14. PubMed PMID: 21749640; PubMed Central PMCID: PMCPMC3158027.
  • Butte MJ, Keir ME, Phamduy TB, et al. PD-L1 interacts specifically with B7-1 to inhibit T cell proliferation. Immunity. 2007;27(1):111–122. PubMed PMID: 17629517; PubMed Central PMCID: PMC2707944.
  • Yao S, Zhu Y, Zhu G, et al. B7-H2 is a costimulatory ligand for CD28 in human. Immunity. 2011;34(5):729–740. PubMed PMID: 21530327; PubMed Central PMCID: PMC3103603.
  • Vanhove B, Laflamme G, Coulon F, et al. Selective blockade of CD28 and not CTLA-4 with a single-chain Fv-alpha1-antitrypsin fusion antibody. Blood. 2003;102(2):564–570. Epub 2003/03/22. PubMed PMID: 12649149.
  • Poirier N, Mary C, Dilek N, et al. Preclinical efficacy and immunological safety of FR104, an antagonist anti-CD28 monovalent Fab’ antibody. Am J Transplant. 2012;12(10):2630–2640. Epub 2012/07/05. PubMed PMID: 22759318.
  • Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126–1136.
  • Ignatovich O, Jespers L, Tomlinson IM, et al. Creation of the large and highly functional synthetic repertoire of human VH and Vkappa domain antibodies. Methods Mol Biol. 2012;911:39–63. Epub 2012/08/14. PubMed PMID: 22886245.
  • Ville S, Poirier N, Branchereau J, et al. Anti-CD28 antibody and belatacept exert differential effects on mechanisms of renal allograft rejection. J Am Soc Nephrol. 2016;27:3577–3588.
  • Wing JB, Ise W, Kurosaki T, et al. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4. Immunity. 2014;41(6):1013–1025. Epub 2014/12/20. PubMed PMID: 25526312.
  • Sage PT, Paterson AM, Lovitch SB, et al. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity. 2014;41(6):1026–1039. Epub 2014/12/20. PubMed PMID: 25526313; PubMed Central PMCID: PMCPMC4309019.
  • Wang CJ, Heuts F, Ovcinnikovs V, et al. CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement. Proc Natl Acad Sci USA. 2015;112(2):524–529. Epub 2014/12/31. PubMed PMID: 25548162; PubMed Central PMCID: PMCPMC4299196.
  • Riella LV, Liu T, Yang J, et al. Deleterious effect of CTLA4-Ig on a Treg-dependent transplant model. Am J Transplant. 2012;12(4):846–855. Epub 2012/02/04. PubMed PMID: 22300534.
  • Zhang R, Huynh A, Whitcher G, et al. An obligate cell-intrinsic function for CD28 in Tregs. J Clin Invest. 2013;123(2):580–593. Epub 2013/01/03. PubMed PMID: 23281398; PubMed Central PMCID: PMCPMC3561819.
  • Zhang R, Borges CM, Fan MY, et al. Requirement for CD28 in effector regulatory T cell differentiation, CCR6 induction, and skin homing. J Immunol. 2015;195(9):4154–4161. Epub 2015/09/27. PubMed PMID: 26408668; PubMed Central PMCID: PMCPMC4610862.
  • Kirk AD, Burkly LC, Batty DS, et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med. 1999;5(6):686–693. Epub 1999/06/17. PubMed PMID: 10371508.
  • Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature. 1996;381(6581):434–438. Epub 1996/05/30. PubMed PMID: 8632801.
  • Ferrer IR, Wagener ME, Song M, et al. Antigen-specific induced Foxp3+ regulatory T cells are generated following CD40/CD154 blockade. Proc Natl Acad Sci USA. 2011;108(51):20701–20706. Epub 2011/12/07. PubMed PMID: 22143783; PubMed Central PMCID: PMCPMC3251074.
  • Taylor PA, Friedman TM, Korngold R, et al. Tolerance induction of alloreactive T cells via ex vivo blockade of the CD40: CD40Lcostimulatory pathway results in the generation of a potent immune regulatory cell. Blood. 2002;99(12):4601–4609. Epub 2002/05/31. PubMed PMID: 12036894.
  • Dodd-O JM, Lendermon EA, Miller HL, et al. CD154 blockade abrogates allospecific responses and enhances CD4+ regulatory T cells in mouse orthotopic lung transplant. Am J Transplant. 2011;11(9):1815–1824. PubMed PMID: 21827610; PubMed Central PMCID: PMC3827913.
  • Nakayama Y, Brinkman CC, Bromberg JS. Murine fibroblastic reticular cells from lymph node interact with CD4+ T cells through CD40-CD40L. Transplantation. 2015;99(8):1561–1567. Epub 2015/04/10. PubMed PMID: 25856408; PubMed Central PMCID: PMCPMC4792266.
  • Pinelli D, Wagener M, Liu D, et al. An anti-CD154 domain antibody prolongs graft survival and induces FoxP3+ iTreg in the absence and presence of CTLA-4 Ig. Am J Transplant. 2013;13(11):3021–3030. PubMed PMID: 24007441; PubMed Central PMCID: PMC4287239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.