97
Views
0
CrossRef citations to date
0
Altmetric
Review

Biological therapies targeting arrhythmias: are cells and genes the answer?

, , , , , & show all
Pages 237-249 | Received 30 Apr 2017, Accepted 23 Nov 2017, Published online: 05 Dec 2017

References

  • Wilde AA, Bezzina CR. Genetics of cardiac arrhythmias. Heart. 2005 Oct;91(10):1352–1358.
  • Spellberg RD. Familial sinus node disease. Chest. 1971 Sep;60(3):246–251.
  • Wagner S, Maier LS, Bers DM. Role of sodium and calcium dysregulation in tachyarrhythmias in sudden cardiac death. Circ Res. 2015 Jun 05;116(12):1956–1970.
  • Xiao YF. Cell and gene therapy for arrhythmias: repair of cardiac conduction damage. J Geriatr Cardiol. 2011 Sep;8(3):147–158.
  • Zipes DP. Mechanisms of clinical arrhythmias. Heart Rhythm. 2004 Nov;1(5 Suppl):4C–18C.
  • Zhang H, Lau DH, Shlapakova IN, et al. Implantation of sinoatrial node cells into canine right ventricle: biological pacing appears limited by the substrate. Cell Transplant. 2011;20(11–12):1907–1914.
  • Lugenbiel P, Schweizer PA, Katus HA, et al. Antiarrhythmic gene therapy – will biologics replace catheters, drugs and devices? Eur J Pharmacol. 2016 Nov;15(791):264–273.
  • Greener I, Donahue JK. Gene therapy strategies for cardiac electrical dysfunction. J Mol Cell Cardiol. 2011 May;50(5):759–765.
  • Gaztanaga L, Marchlinski FE, Betensky BP. Mechanisms of cardiac arrhythmias. Rev Esp Cardiol (Engl Ed). 2012 Feb;65(2):174–185. PubMed PMID: 22192903. DOI:10.1016/j.recesp.2011.09.018
  • Pandit SV, Jalife J. Rotors and the dynamics of cardiac fibrillation. Circ Res. 2013 Mar 01;112(5):849–862.
  • Tse G. Mechanisms of cardiac arrhythmias. J Arrhythm. 2016 Apr;32(2):75–81.
  • Antzelevitch C, Burashnikov A. Overview of basic mechanisms of cardiac arrhythmia. Card Electrophysiol Clin. 2011 Mar 01;3(1):23–45.
  • Heijman J, Voigt N, Nattel S, et al. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res. 2014 Apr 25;114(9):1483–1499.
  • Wakili R, Voigt N, Kääb S, et al. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011 Aug;121(8):2955–2968.
  • Maruyama M, Lin SF, Xie Y, et al. Genesis of phase 3 early afterdepolarizations and triggered activity in acquired long-QT syndrome. Circ Arrhythm Electrophysiol. 2011 Feb;4(1):103–111.
  • Vogler J, Breithardt G, Eckardt L. Bradyarrhythmias and conduction blocks. Rev Esp Cardiol (Engl Ed). 2012 Jul;65(7):656–667.
  • Schmidt C, Kisselbach J, Schweizer PA, et al. The pathology and treatment of cardiac arrhythmias: focus on atrial fibrillation. Vasc Health Risk Manag. 2011;7:193–202.
  • Yu FS, Zhang Y, Feng Y, et al. [Nerve remodeling in a canine model of atrial fibrillation induced by 48 hours right atrial pacing]. Zhonghua Xin Xue Guan Bing Za Zhi. 2010 Jul;38(7):644–647.
  • Zhang Y, Zheng S, Geng Y, et al. MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1. PLoS One. 2015;10(3):e0122674.
  • Itzhaki I, Rapoport S, Huber I, et al. Calcium handling in human induced pluripotent stem cell derived cardiomyocytes. PLoS One. 2011 Apr 01;6(4):e18037.
  • Kehat I, Khimovich L, Caspi O, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol. 2004 Oct;22(10):1282–1289.
  • Xue T, Cho HC, Akar FG, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation. 2005 Jan 04;111(1):11–20.
  • Pijnappels DA, Schalij MJ, Van Tuyn J, et al. Progressive increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced electrical coupling. Cardiovasc Res. 2006 Nov 01;72(2):282–291.
  • Yokokawa M, Ohnishi S, Ishibashi-Ueda H, et al. Transplantation of mesenchymal stem cells improves atrioventricular conduction in a rat model of complete atrioventricular block. Cell Transplant. 2008;17(10–11):1145–1155.
  • Thompson SA, Burridge PW, Lipke EA, et al. Engraftment of human embryonic stem cell derived cardiomyocytes improves conduction in an arrhythmogenic in vitro model. J Mol Cell Cardiol. 2012 Jul;53(1):15–23.
  • Katritsis DG, Sotiropoulou PA, Karvouni E, et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv. 2005 Jul;65(3):321–329.
  • Boink GJ, Seppen J, De Bakker JM, et al. Biological pacing by gene and cell therapy. Neth Heart J. 2007;15(9):318–322.
  • Gepstein L, Feld Y, Yankelson L. Somatic gene and cell therapy strategies for the treatment of cardiac arrhythmias. Am J Physiol Heart Circ Physiol. 2004 Mar;286(3):H815–22.
  • Chauveau S, Brink PR, Cohen IS. Stem cell-based biological pacemakers from proof of principle to therapy: a review. Cytotherapy. 2014 Jul;16(7):873–880.
  • Boink GJ, Rosen MR. Regenerative therapies in electrophysiology and pacing: introducing the next steps. J Interv Card Electrophysiol. 2011 Jun;31(1):3–16.
  • Hoffman LM, Carpenter MK. Characterization and culture of human embryonic stem cells. Nat Biotechnol. 2005 Jun;23(6):699–708.
  • Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001 Aug;108(3):407–414.
  • Mummery C, Ward-Van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003 Jun 03;107(21):2733–2740.
  • Xu C, Police S, Rao N, et al. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res. 2002 Sep 20;91(6):501–508.
  • Marban E, Cho HC. Biological pacemakers as a therapy for cardiac arrhythmias. Curr Opin Cardiol. 2008 Jan;23(1):46–54.
  • Kehat I, Gepstein A, Spira A, et al. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ Res. 2002 Oct 18;91(8):659–661.
  • Zhang J, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res. 2009 Feb 27;104(4):e30–41.
  • Sartiani L, Bettiol E, Stillitano F, et al. Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells. 2007 May;25(5):1136–1144.
  • Laflamme MA, Gold J, Xu C, et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol. 2005 Sep;167(3):663–671.
  • Leor J, Gerecht S, Cohen S, et al. Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart. 2007 Oct;93(10):1278–1284.
  • Van Den Borne SW, Diez J, Blankesteijn WM, et al. Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol. 2010 Jan;7(1):30–37.
  • Wit AL, Janse MJ. Experimental models of ventricular tachycardia and fibrillation caused by ischemia and infarction. Circulation. 1992 Jan;85(1 Suppl):I32–42.
  • Roell W, Lewalter T, Sasse P, et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature. 2007 Dec 06;450(7171):819–824.
  • Rosen MR, Brink PR, Cohen IS, et al. Genes, stem cells and biological pacemakers. Cardiovasc Res. 2004 Oct 01;64(1):12–23.
  • Valiunas V, Doronin S, Valiuniene L, et al. Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J Physiol. 2004 Mar 16;555(Pt 3):617–626.
  • Chang MG, Tung L, Sekar RB, et al. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation. 2006 Apr 18;113(15):1832–1841.
  • Song H, Hwang HJ, Chang W, et al. Cardiomyocytes from phorbol myristate acetate-activated mesenchymal stem cells restore electromechanical function in infarcted rat hearts. Proc Natl Acad Sci U S A. 2011 Jan 04;108(1):296–301.
  • Menasche P, Alfieri O, Janssens S, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008 Mar 04;117(9):1189–1200.
  • Macia E, Boyden PA. Stem cell therapy is proarrhythmic. Circulation. 2009 Apr 07;119(13):1814–1823.
  • Takaki M. Gut pacemaker cells: the interstitial cells of Cajal (ICC). J Smooth Muscle Res. 2003 Oct;39(5):137–161.
  • Talkhabi M, Aghdami N, Baharvand H. Human cardiomyocyte generation from pluripotent stem cells: a state-of-art. Life Sci. 2016 Jan;15(145):98–113.
  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov 30;131(5):861–872.
  • Sanchez-Freire V, Lee AS, Hu S, et al. Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. J Am Coll Cardiol. 2014 Aug 05;64(5):436–448.
  • Chauveau S, Anyukhovsky EP, Ben-Ari M, et al. Induced pluripotent stem cell-derived cardiomyocytes provide in vivo biological pacemaker function. Circ Arrhythm Electrophysiol. 2017 May;10(5):e004508.
  • Freestone B, Lip GY. The endothelium and atrial fibrillation. The prothrombotic state revisited. Hamostaseologie. 2008 Oct;28(4):207–212.
  • Siu CW, Watson T, Lai WH, et al. Relationship of circulating endothelial progenitor cells to the recurrence of atrial fibrillation after successful conversion and maintenance of sinus rhythm. Europace. 2010 Apr;12(4):517–521.
  • Goette A, Jentsch-Ullrich K, Lendeckel U, et al. Effect of atrial fibrillation on hematopoietic progenitor cells: a novel pathophysiological role of the atrial natriuretic peptide? Circulation. 2003 Nov 18;108(20):2446–2449.
  • Robertson JA. Embryo stem cell research: ten years of controversy. J Law Med Ethics. 2010;38(2): 191–203. Summer.
  • Bolli R, Chugh AR, D’Amario D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011 Nov 26;378(9806):1847–1857.
  • Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012 Mar 10;379(9819):895–904.
  • Clancy CE, Kass RS. Inherited and acquired vulnerability to ventricular arrhythmias: cardiac Na+ and K+ channels. Physiol Rev. 2005 Jan;85(1):33–47.
  • Savio-Galimberti E, Darbar D. Atrial fibrillation and SCN5A variants. Card Electrophysiol Clin. 2014 Dec 01;6(4):741–748.
  • Wilde AA, Antzelevitch C, Borggrefe M, et al. Proposed diagnostic criteria for the Brugada syndrome. Eur Heart J. 2002 Nov;23(21):1648–1654.
  • Kontula K, Laitinen PJ, Lehtonen A, et al. Catecholaminergic polymorphic ventricular tachycardia: recent mechanistic insights. Cardiovasc Res. 2005 Aug 15;67(3):379–387.
  • Bharati S, Surawicz B, Vidaillet HJ Jr., et al. Familial congenital sinus rhythm anomalies: clinical and pathological correlations. Pacing Clin Electrophysiol. 1992 Nov;15(11 Pt 1):1720–1729.
  • Milanesi R, Baruscotti M, Gnecchi-Ruscone T, et al. Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N Engl J Med. 2006 Jan 12;354(2):151–157.
  • Gui J, Wang T, Jones RP, et al. Multiple loss-of-function mechanisms contribute to SCN5A-related familial sick sinus syndrome. PLoS One. 2010 Jun 07;5(6):e10985.
  • Roberts R. Mechanisms of disease: genetic mechanisms of atrial fibrillation. Nat Clin Pract Cardiovasc Med. 2006 May;3(5):276–282.
  • Brugada R, Tapscott T, Czernuszewicz GZ, et al. Identification of a genetic locus for familial atrial fibrillation. N Engl J Med. 1997 Mar 27;336(13):905–911.
  • Tucker NR, Ellinor PT. Emerging directions in the genetics of atrial fibrillation. Circ Res. 2014 Apr 25;114(9):1469–1482.
  • Chen YH, Xu SJ, Bendahhou S, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003 Jan 10;299(5604):251–254.
  • Christophersen IE, Olesen MS, Liang B, et al. Genetic variation in KCNA5: impact on the atrial-specific potassium current IKur in patients with lone atrial fibrillation. Eur Heart J. 2013 May;34(20):1517–1525.
  • Olesen MS, Refsgaard L, Holst AG, et al. A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation. Cardiovasc Res. 2013 Jun 01;98(3):488–495.
  • Xia M, Jin Q, Bendahhou S, et al. A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun. 2005 Jul 15;332(4):1012–1019.
  • Darbar D, Kannankeril PJ, Donahue BS, et al. Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. Circulation. 2008 Apr 15;117(15):1927–1935.
  • Ellinor PT, Nam EG, Shea MA, et al. Cardiac sodium channel mutation in atrial fibrillation. Heart Rhythm. 2008 Jan;5(1):99–105.
  • Prunier F, Kawase Y, Gianni D, et al. Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation. 2008 Aug 05;118(6):614–624.
  • Lyon AR, Bannister ML, Collins T, et al. SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circ Arrhythm Electrophysiol. 2011 Jun;4(3):362–372.
  • Cutler MJ, Wan X, Plummer BN, et al. Targeted sarcoplasmic reticulum Ca2+ ATPase 2a gene delivery to restore electrical stability in the failing heart. Circulation. 2012 Oct 23;126(17):2095–2104.
  • Cutler MJ, Wan X, Laurita KR, et al. Targeted SERCA2a gene expression identifies molecular mechanism and therapeutic target for arrhythmogenic cardiac alternans. Circ Arrhythm Electrophysiol. 2009 Dec;2(6):686–694.
  • Donahue JK, Heldman AW, Fraser H, et al. Focal modification of electrical conduction in the heart by viral gene transfer. Nat Med. 2000 Dec;6(12):1395–1398.
  • Lugenbiel P, Thomas D, Kelemen K, et al. Genetic suppression of Galphas protein provides rate control in atrial fibrillation. Basic Res Cardiol. 2012 May;107(3):265.
  • Amit G, Kikuchi K, Greener ID, et al. Selective molecular potassium channel blockade prevents atrial fibrillation. Circulation. 2010 Jun 01;121(21):2263–2270.
  • Soucek R, Thomas D, Kelemen K, et al. Genetic suppression of atrial fibrillation using a dominant-negative ether-a-go-go-related gene mutant. Heart Rhythm. 2012 Feb;9(2):265–272.
  • Liu Z, Hutt JA, Rajeshkumar B, et al. Preclinical efficacy and safety of KCNH2-G628S gene therapy for postoperative atrial fibrillation. J Thorac Cardiovasc Surg. 2017 Nov;154(5):1644–1651.e8.
  • Igarashi T, Finet JE, Takeuchi A, et al. Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation. Circulation. 2012 Jan 17;125(2):216–225.
  • Bikou O, Thomas D, Trappe K, et al. Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. Cardiovasc Res. 2011 Nov 01;92(2):218–225.
  • Kunamalla A, Ng J, Parini V, et al. Constitutive expression of a dominant-negative tgf-beta type ii receptor in the posterior left atrium leads to beneficial remodeling of atrial fibrillation substrate. Circ Res. 2016 Jun 24;119(1):69–82.
  • Boink GJ, Nearing BD, Shlapakova IN, et al. Ca(2+)-stimulated adenylyl cyclase AC1 generates efficient biological pacing as single gene therapy and in combination with HCN2. Circulation. 2012 Jul 31;126(5):528–536.
  • Lau DH, Clausen C, Sosunov EA, et al. Epicardial border zone overexpression of skeletal muscle sodium channel SkM1 normalizes activation, preserves conduction, and suppresses ventricular arrhythmia: an in silico, in vivo, in vitro study. Circulation. 2009 Jan 06;119(1):19–27.
  • Sasano T, McDonald AD, Kikuchi K, et al. Molecular ablation of ventricular tachycardia after myocardial infarction. Nat Med. 2006 Nov;12(11):1256–1258.
  • Denegri M, Avelino-Cruz JE, Boncompagni S, et al. Viral gene transfer rescues arrhythmogenic phenotype and ultrastructural abnormalities in adult calsequestrin-null mice with inherited arrhythmias. Circ Res. 2012 Mar 02;110(5):663–668.
  • Denegri M, Bongianino R, Lodola F, et al. Single delivery of an adeno-associated viral construct to transfer the CASQ2 gene to knock-in mice affected by catecholaminergic polymorphic ventricular tachycardia is able to cure the disease from birth to advanced age. Circulation. 2014 Jun 24;129(25):2673–2681.
  • Kurtzwald-Josefson E, Yadin D, Harun-Khun S, et al. Viral delivered gene therapy to treat catecholaminergic polymorphic ventricular tachycardia (CPVT2) in mouse models. Heart Rhythm. 2017 Jul;14(7):1053–1060.
  • Qu J, Plotnikov AN, Danilo P Jr., et al. Expression and function of a biological pacemaker in canine heart. Circulation. 2003 Mar 04;107(8):1106–1109.
  • Plotnikov AN, Sosunov EA, Qu J, et al. Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation. 2004 Feb 03;109(4):506–512.
  • Tse HF, Xue T, Lau CP, et al. Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation. 2006 Sep 05;114(10):1000–1011.
  • Zhong YM, Guo JH, Zhang P, et al. [Transfecting rat heart with human pacemaker gene in vivo to create a biological pacemaker]. Zhonghua Yi Xue Za Zhi. 2006 Oct 31;86(40):2831–2835.
  • Cai J, Yi FF, Li YH, et al. Adenoviral gene transfer of HCN4 creates a genetic pacemaker in pigs with complete atrioventricular block. Life Sci. 2007 Apr 17;80(19):1746–1753.
  • Edelberg JM, Huang DT, Josephson ME, et al. Molecular enhancement of porcine cardiac chronotropy. Heart. 2001 Nov;86(5):559–562.
  • Ruhparwar A, Kallenbach K, Klein G, et al. Adenylate-cyclase VI transforms ventricular cardiomyocytes into biological pacemaker cells. Tissue Eng Part A. 2010 Jun;16(6):1867–1872.
  • Boink GJ, Duan L, Nearing BD, et al. HCN2/SkM1 gene transfer into canine left bundle branch induces stable, autonomically responsive biological pacing at physiological heart rates. J Am Coll Cardiol. 2013 Mar 19;61(11):1192–1201.
  • Kapoor N, Liang W, Marban E, et al. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat Biotechnol. 2013 Jan;31(1):54–62.
  • Hu YF, Dawkins JF, Cho HC, et al. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci Transl Med. 2014 Jul 16;6(245):245ra94.
  • Li Y, Fu X, Zhang Z, et al. Knockdown of cardiac Kir3.1 gene with siRNA can improve bradycardia in an experimental sinus bradycardia rat model. Mol Cell Biochem. 2017 May;429(1–2):103–111.
  • Lodola F, Morone D, Denegri M, et al. Adeno-associated virus-mediated CASQ2 delivery rescues phenotypic alterations in a patient-specific model of recessive catecholaminergic polymorphic ventricular tachycardia. Cell Death Dis. 2016 Oct 06;7(10):e2393.
  • Lue WM, Boyden PA. Abnormal electrical properties of myocytes from chronically infarcted canine heart. Alterations in Vmax and the transient outward current. Circulation. 1992 Mar;85(3):1175–1188.
  • Bongianino R, Denegri M, Mazzanti A, et al. Allele-specific silencing of mutant mRNA rescues ultrastructural and arrhythmic phenotype in mice carriers of the R4496C mutation in the ryanodine receptor gene (RYR2). Circ Res. 2017 Aug 18;121(5):525–536.
  • Khan R. Examining potential therapies targeting myocardial fibrosis through the inhibition of transforming growth factor-beta 1. Cardiology. 2007;108(4):368–380.
  • Li Y, Jian Z, Yang ZY, et al. Increased expression of connective tissue growth factor and transforming growth factor-beta-1 in atrial myocardium of patients with chronic atrial fibrillation. Cardiology. 2013;124(4):233–240.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.