699
Views
2
CrossRef citations to date
0
Altmetric
Drug Evaluation

Alemtuzumab for the treatment of multiple sclerosis

, , &
Pages 323-334 | Received 19 Jul 2017, Accepted 04 Jan 2018, Published online: 26 Feb 2018

References

  • Pugliatti M, Rosati G, Carton H, et al. The epidemiology of multiple sclerosis in Europe. Eur J Neurol. 2006;13:700–722.
  • Dilokthornsakul P, Valuck RJ, Nair KV, et al. Multiple sclerosis prevalence in the United States commercially insured population. Neurology. 2016;86:1014–1021.
  • Langer-Gould A, Brara SM, Beaber BE, et al. Incidence of multiple sclerosis in multiple racial and ethnic groups. Neurology. 2013;80:1734–1739.
  • Noseworthy JH, Lucchinetti C, Rodriguez M, et al. Multiple sclerosis. N Engl J Med. 2000;343:938–952.
  • Rovira À, Wattjes MP, Tintoré M, et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat Rev Neurol. 2015;11:471–482.
  • Van Walderveen MA, Kamphorst W, Scheltens P, et al. Histopathologic correlate of hypointense lesions on T1‐weighted spin‐echo MRI in multiple sclerosis. Neurology. 1998;50:1282–1288.
  • Bagnato F, Jeffries N, Richert ND, et al. Evolution of T1 black holes in patients with multiple sclerosis imaged monthly for 4 years. Brain. 2003;126:1782–1789.
  • Wattjes MP, Rovira À, Miller D, et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-establishing disease prognosis and monitoring patients. Nat Rev Neurol. 2015;11:597–606.
  • Lublin FS, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83:278–286.
  • Stüve O. Knowns and unknowns in the future of multiple sclerosis treatment. J Neurol Sci. 2009;287:S30–S36.
  • Berger JR. Classifying PML risk with disease modifying therapies. Mult Scler Relat Disor. 2017;12:59–63.
  • Herwerth M, Hemmer B. Daclizumab for the treatment of relapsing-remitting multiple sclerosis. Expert Opin Biol Th. 2017;17:747–753.
  • ZINBRYTA prescribing information. Food and Drug Administration. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/761029s000lbl.pdf
  • Zinbryta Referral: European Medicines Agency. Available from: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/referrals/Zinbryta/human_referral_prac_000067.jsp&mid=WC0b01ac05805c516f
  • Moreno Torres I, García-Merino A. Anti-CD20 monoclonal antibodies in multiple sclerosis. Expert Rev Neurother. 2017;17:359–371.
  • Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/761053Orig1s000Approv.pdf
  • EMA. Lemtrada (alemtuzumab): EU summary of product characteristics. 2014. [cited 2017 Mar]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003718/WC500150521.pdf
  • US FDA. Lemtrada: prescribing information. 2016. [cited 2017 Mar]. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/103948s5139lbl.pdf
  • Buggins AG, Mufti GJ, Salisbury J, et al. Peripheral blood but not tissue dendritic cells express CD52 and are depleted by treatment with alemtuzumab. Blood. 2002;100:1715–1720.
  • Ratzinger G, Reagan JL, Heller G, et al. Differential CD52 expression by distinct myeloid dendritic cell subsets: implications for alemtuzumab activity at the level of antigen presentation in allogeneic graft-host interactions in transplantation. Blood. 2003;101:1422–1429.
  • Gilleece MH, Dexter TM. Effect of Campath-1H antibody on human hematopoietic progenitors in vitro. Blood. 1993;82:807–812.
  • Elsner J, Höchstetter R, Spiekermann K, et al. Surface and mRNA expression of the CD52 antigen by human eosinophils but not by neutrophils. Blood. 1996;88:4684–4693.
  • Hu Y, Turner MJ, Shields J, et al. Investigation of the mechanisms of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology. 2009;128:260–270.
  • Olweus J, Lund-Johansen F, Terstappen LW. Expression of cell surface markers during differentiation of CD34+, CD38-/lo fetal and adult bone marrow cells. Immunomethods. 1994;5:179–188.
  • Williams RJ, Clarke A, Blair A, et al. Impact on T-cell depletion and CD34+ cell recovery using humanised CD52 monoclonal antibody (CAMPATH-1H) in BM and PSBC collections; comparison with CAMPATH-1M and CAMPATH-1G. CytoTherapy. 2000;2:5–14.
  • Yang Z, Su H, Shen X, et al. The immunological function of CD52 and its targeting in organ transplantation. Inflam Res. 2017;66:571–578.
  • Gross CC, Ahmetspahic D, Ruck T, et al. Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis. Neurol Neuroimmunol Neuroinflam. 2016;3:e289.
  • Turner MJ, Lamorte MJ, Chretien N, et al. Immune status following alemtuzumab treatment in human CD52 transgenic mice. J Neuroimmunol. 2013;261:29–36.
  • Dubey D, Cano CA, Stüve O. Intractable and highly active relapsing multiple sclerosis – role of alemtuzumab. Neuropsychiatr Dis Treat. 2015;11:2405–2414.
  • Dubey D, Kieseier BC, Hartung HP, et al. Clinical management of multiple sclerosis and neuromyeiltis optica with therapeutic monoclonal antibodies: approved therapies and emerging candidates. Expert Rev Clin Immunol. 2015;11:93–108.
  • Mone AP, Cheney C, Banks AL, et al. Alemtuzumab induces caspase-independent cell death in human chronic lymphocytic leukemia cells through a lipid-raft dependent mechanism. Leukemia. 2006;20:272–279.
  • Riechmann L, Clark M, Waldmann H, et al. Reshaping human antibodies for therapy. Nature. 1988;332:323–327.
  • Klotz L, Meuth SG, Wiendl H. Immune mechanisms of new therapeutic strategies in multiple sclerosis: a focus on alemtuzumab. Clin Immunol. 2012;142:25–30.
  • De Mercanti S, Rolla S, Cucci A, et al. Alemtuzumab long-term immunologic effect: treg suppressor function increases up to 24 months. Neurol Neuroimmunol Neuroinflamm. 2016;3:e194.
  • Havari E, Turner MJ, Campos-Rivera J, et al. Impact of alemtuzumab treatment on the survival and function of human regulatory T cells in vitro. Immunology. 2014;141:123–131.
  • Kousin-Ezewu O, Azzopardi L, Parker RA, et al. Accelerated lymphocyte recovery after alemtuzumab does not predict multiple sclerosis activity. Neurology. 2014;82:2158–2164.
  • Moreau T, Coles J, Wing M, et al. Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain. 1996;119:225–237.
  • Ashton DS, Beddell CR, Cooper DJ, et al. Mass spectrometry of the humanized antibody CAMPATH 1H. Annal Chem. 1995;67:835–842.
  • Willis MD, Robertson NP. Alemtuzumab for multiple sclerosis. Curr Neurol Neurosci Rep. 2016;16:84.
  • Lemtrada Assessment Report: european Medicines Agency. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/003718/WC500150522.pdf
  • Moreau TH, Coles A, Thorpe J, et al. CAMPTH-1H in multiple sclerosis. Multiple Sclerosis. 1996;1:357–365.
  • Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380:1819–1828.
  • Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease modifying therapy: a randomized controlled phase 3 trial. Lancet. 2012;380:1829–1839.
  • Baker D, Herrod SS, Alvarez-Gonzalez C, et al. Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab. JAMA Neurol. 2017;74:961–969.
  • Moreau T, Thorpe J, Miller D, et al. Preliminary evidence form magnetic resonance imaging for deduction in disease activity after lymphocyte depletion in multiple sclerosis. Lancet. 1994;344:298–301.
  • Kurtzke J. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33:1444–1452.
  • Paolillo A, Coles AJ, Molyneux PD, et al. Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1H. Neurology. 1999;53:751–757.
  • Hirst CL, Pace A, Pickersgill TP, et al. Campath 1-H treatment in patients with aggressive relapsing remitting multiple sclerosis. J Neurol. 2008;255:231–238.
  • Coles AJ, Compston DA, et al.; CAMMS223 Trial Investigators. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359:1786–1801.
  • Arnold DL, Fisher E, Brinar VV, et al. Superior MRI outcomes with alemtuzumab compared with subcutaneous interferon β-1a in MS. Neurology. 2016;87:1464–1472.
  • Fox EJ, Wynn D, Coles AJ, et al. Alemtuzumab improves neurological functional systems in treatment-naïve relapsing-remitting multiple sclerosis patients. J Neurol Sci. 2016;363:188–194.
  • Coles AJ, Fox E, Vladic A, et al. Alemtuzumab more effective than interferon B-1a at 5-year follow up of CAMMS223 clinical trial. Neurology. 2012 Apr 3;78:1069–1078.
  • Giovannoni G, Cohen JA, Coles AJ, et al. Alemtuzumab improves preexisting disability in active relapsing-remitting MS patients. Neurology. 2016;87:1985–1992.
  • Arroyo González RA, Kita M, Crayton H, et al. Alemtuzumab improves quality-of-life outcomes compared with subcutaneous interferon Beta-1a in patients with active relapsing-remitting multiple sclerosis. Mult Scler J. 2017;23:1367–1376.
  • Kalincik T, Brown JWL, Robertson N, et al. Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: a cohort study. Lancet Neurology. 2017;16:271–281.
  • Willis M, Pearson O, Illes Z, et al. An observational study of alemtuzumab following fingolimod for multiple sclerosis. Neurol: Neuroimmunol Neuroinflamm. 2017;4:e320.
  • Button T, Dan Altmann D, Tozer D, et al. Magnetization transfer imaging in multiple sclerosis treated with alemtuzumab. Mult Scler J. 2012;19:241–244.
  • Azzopardi L, Thompson SAJ, Harding KE, et al. Predicting autoimmunity after alemtuzumab treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2014;85:795–798.
  • Baker D, Giovannoni G, Schmierer K. Marked neutropenia: significant but rare in people with multiple sclerosis after alemtuzumab treatment. Mult Scler Relat Disord. 2017;18:181–183.
  • Willis MD, Harding KE, Pickersgill PE, et al. Alemtuzumab for multiple sclerosis: long-term follow up in a multicenter cohort. Mult Scler J. 2016;22:1215–1223.
  • Havrdova E, Cohen JA, Horakova D, et al. Understanding the positive benefit: riskprofile of alemtuzumab in relapsing multiple sclerosis: perspectives from the Alemtuzumab Clinical Development Program. Ther Clin Risk Manag. 2017;13:1423–1437.
  • Vijiaratnam N, Rath L, Xu SS, et al. Pancolitis a novel early complication of Alemtuzumab for MS treatment. Mult Scler Relat Disord. 2016;7:83–84.
  • Rau D, Lang M, Harth A, et al. Listeria meningitis complicating alemtuzumab treatment in multiple sclerosis. Int J Mol Sci. 2015;16:14669–14676.
  • Wallace BJ, Chataway J. Opportunistic infections after alemtuzumab: new cases of nocardial infection and cytomegalovirus syndrome. Mult Scler. 2017;23:876–877.
  • D’Souza A, Wilson J, Mukherjee S, et al. Progressive multifocal leukoencephalopathy in chronic lymphocytic leukemia: a report of three cases and review of literature. Clin Lymphoma Myeloma Leuk. 2010;10:E1-9.
  • Martin S, Marty F, Fiumara K, et al. Infectious complications associated with alemtuzumab use for lymphoproliferative disorders. Clin Infect Dis. 2006;43:16–24.
  • Isidoro L, Pires P, Rito L, et al. Progressive multifocal leukoencephalopathy in a patient with chronic lymphocytic leukaemia treated with alemtuzumab. BMJ Case Rep. 2014;pii:bcr2013201781.
  • Waggoner J, Martinu T, Palmer SM. Progressive multifocal leukoencephalopathy following heightened immunosuppression after lung transplant. J Heart Lung Transplant. 2009;28:395–398.
  • Jones JL, Phuah CL, Cox AL, et al. IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J Clin Invest. 2009;119:2052–2061.
  • Cossbaum M, Pace AA, Jone J, et al. Autoimmune disease after alemtuzumab treatment for multiple sclerosis in a multicenter cohort. Neurology. 2011;77:573–579.
  • Algenes AA, Amer S, Reda ES, et al. Autoimmune thyroid disease in the use of alemtuzumab for multiple sclerosis: a review. Endocr Pract. 2013;19:821–828.
  • Rotondi M, Molteni M, Leporati P, et al. Autoimmune thyroid diseases in patients treated with alemtuzumab for multiple sclerosis: an example of selective anti-TSH-receptor immune response. Front Endocrinol (Lausanne). 2017;8:254. eCollection 2017.
  • Clatworthy MR, Wallin EF, Jayne DR. Anti-glomerular basement membrane disease after alemtuzumab. N Engl J Med. 2008;359:768–769.
  • Blasco MR, Ramos A, Malo CG, et al. Acute pneumonitis and pericarditis related to alemtuzumab therapy in relapsing-remitting multiple sclerosis. J Neurol. 2017;264:168–169.
  • Hradilek P, Woznicova I, Slonkova J, et al. Atypical acute motor axonal neuropathy following alemtuzumab treatment in multiple sclerosis patient. Acta Neurol Belg. 2017;117:965–967.
  • Malmeström C, Andersson BA, Lycke J. First reported case of diabetes mellitus type 1 as a possible secondary autoimmune disease following alemtuzumab treatment in MS. J Neurol. 2014;261:2016–2018.
  • Metz I, Rieckmann P, Kallmann BA, et al. Disseminated necrotizing leukoencephalopathy eight months after alemtuzumab, treatment for multiple sclerosis. Acta Neuropathol Commun. 2016;4:81.
  • Yann K, Jackson F, Sharaf N, et al. Acute respiratory distress syndrome following alemtuzumab therapy for relapsing multiple sclerosis. Mult Scler Relat Disord. 2017;14:1–3.
  • Barton J, Hardy TA, Riminton S, et al. Tumefactive demyelination following treatment for relapsing multiple sclerosis with alemtuzumab. Neurology. 2017;88:1004–1006.
  • Penkert H, Delbridge C, Wantia N, et al. Fulminant central nervous system nocardiosis in a patient treated with alemtuzumab for relapsing-remitting multiple sclerosis. JAMA Neurol. 2016;73:757–759.
  • Gaitán MI, Ysrraelit MG, Correale J. Neutropenia in patients with multiple sclerosis treated with alemtuzumab. JAMA Neurol. 2017 Jul 17;74: 1143–1144.
  • McCarthy CL, Tuohy O, Compston DAS, et al. Immune competence after alemtuzumab treatment of multiple sclerosis. Neurology. 2013;81:872–876.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.