365
Views
0
CrossRef citations to date
0
Altmetric
Review

Treating childhood traumatic brain injury with autologous stem cell therapy

, & ORCID Icon
Pages 515-524 | Received 21 Aug 2017, Accepted 07 Feb 2018, Published online: 15 Feb 2018

References

  • Tajiri N, Hernandez D, Acosta S, et al. Suppressed cytokine expression immediately following traumatic brain injury in neonatal rats indicates an expeditious endogenous anti-inflammatory response. Brain Res. 2014 Apr;22(1559):65–71.
  • Maillacheruvu PF, Engel LM, Crum IT, et al. From cord to caudate: characterizing umbilical cord blood stem cells and their paracrine interactions with the injured brain. Pediatr Res. 2017 Oct 5. Epub ahead of print. DOI:10.1038/pr.2017.251
  • Liao Y, Cotten M, Tan S, et al. Rescuing the neonatal brain from hypoxic injury with autologous cord blood. Bone Marrow Transplant. 2013;48(7):890–900.
  • Stonesifer C, Corey S, Ghanekar S, et al. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol. 2017;158:94–131.
  • Sullivan R, Duncan K, Dailey T, et al. A possible new focus for stroke treatment - migrating stem cells. Expert Opin Biol Ther. 2015;15(7):949–958.
  • Maxwell WL. Traumatic brain injury in the neonate, child and adolescent human: an overview of pathology. Int J Dev Neurosci. 2012 May;30(3):167–183.
  • Gatson JW, Liu -M-M, Abdelfattah K, et al. Resveratrol decreases inflammation in the brain of mice with mild traumatic brain injury. J Trauma Acute Care Surg. 2013 Feb;74(2):470–474. discussion 74-5.
  • Hernandez-Ontiveros DG, Tajiri N, Acosta S, et al. Microglia activation as a biomarker for traumatic brain injury. Front Neurol. 2013;4:30.
  • Acosta SA, Tajiri N, Shinozuka K, et al. Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model. PLoS One. 2013;8(1):e53376.
  • Niedzwecki CM, Marwitz JH, Ketchum JM, et al. Traumatic brain injury: a comparison of inpatient functional outcomes between children and adults. J Head Trauma Rehabil. 2008 Jul-Aug;23(4):209–219.
  • Wang J-Y, Huang Y-N, Chiu C-C, et al. Pomalidomide mitigates neuronal loss, neuroinflammation, and behavioral impairments induced by traumatic brain injury in rat. J Neuroinflammation. 2016 Jun 28;13(1):168.
  • Simon DW, Aneja RK, Alexander H, et al. Minocycline attenuates high mobility group box 1 translocation, microglial activation, and thalamic neurodegeneration after traumatic brain injury in postnatal day 17 rats. J Neurotrauma. 2018 Jan;35(1):130-138.
  • Rachmany L, Tweedie D, Rubovitch V, et al. Exendin-4 attenuates blast traumatic brain injury induced cognitive impairments, losses of synaptophysin and in vitro TBI-induced hippocampal cellular degeneration. Sci Rep. 2017 Jun 16;7(1):3735.
  • Homsi S, Federico F, Croci N, et al. Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res. 2009 Sep;1291:122–132.
  • Siopi E, Llufriu-Dabén G, Fanucchi F, et al. Evaluation of late cognitive impairment and anxiety states following traumatic brain injury in mice: the effect of minocycline. Neurosci Lett. 2012 Mar 09;511(2):110–115.
  • Phuc PV, Ngoc VB, Lam DH, et al. Isolation of three important types of stem cells from the same samples of banked umbilical cord blood. Cell Tissue Bank. 2012;13(2):341–351.
  • Acosta SA, Tajiri N, Shinozuka K, et al. Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One. 2014;9(3):e90953.
  • Walker PA, Shah SK, Jimenez F, et al. Bone marrow-derived stromal cell therapy for traumatic brain injury is neuroprotective via stimulation of non-neurologic organ systems. Surgery. 2012 Nov;152(5):790–793.
  • Chen C, Shi J, Stanley R, et al. U.S. trends of ED visits for pediatric traumatic brain injuries: implications for clinical trials. Int J Environ Res Public Health. 2017 Apr 13;14(4).
  • Lee JA, Kim BI, Jo CH, et al. Mesenchymal stem-cell transplantation for hypoxic-ischemic brain injury in neonatal rat model. Pediatr Res. 2010 Jan;67(1):42–46.
  • Bonilla C, Zurita M, Otero L, et al. Delayed intralesional transplantation of bone marrow stromal cells increases endogenous neurogenesis and promotes functional recovery after severe traumatic brain injury. Brain Inj. 2009 Aug;23(9):760–769.
  • Pigott JH, Ishihara A, Wellman ML, et al. Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet Immunol Immunopathol. 2013 Nov 15;156(1–2):99–106.
  • Rodrigues MC, Glover LE, Weinbren N, et al. Toward personalized cell therapies: autologous menstrual blood cells for stroke. J Biomed Biotechnol. 2011;2011:194720.
  • Sanberg PR, Park DH, Borlongan CV. Stem cell transplants at childbirth. Stem Rev Rep. 2010;6:27–30.
  • Stone BS, Zhang J, Mack DW, et al. Delayed neural network degeneration after neonatal hypoxia-ischemia. Ann Neurol. 2008 Nov;64(5):535–546.
  • Nakanishi K, Sato Y, Mizutani Y, et al. Rat umbilical cord blood cells attenuate hypoxic-ischemic brain injury in neonatal rats. Sci Rep. 2017 Mar 10;7:44111.
  • Titomanlio L, Kavelaars A, Dalous J, et al. Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol. 2011;70(5):698–712.
  • Reyes S, Tajiri N, Borlongan CV. Development in intracerebral stem cell grafts. Expert Rev Neurother. 2015 April;15(4):381–393.
  • Jiang J, Bu X, Liu M, et al. Transplantation of autologous bone marrow-derived stem cells for traumatic brain injury. Neural Regen Res. 2012 Jan 5;7(1):46–53.
  • Cotten CM, Murtha AP, Goldberg RN, et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr. 2014 May;164(5):973–79 e1.
  • Lee IH, O’Gorman L, Gibson J, et al. Delayed epidural transplantation of human induced pluripotent stem cell-derived neural progenitors enhances functional recovery after stroke. Sci Rep. 2017 May 16;7(1):1943.
  • Liu F, McCullough LD. Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin. 2013 Sep;34(9):1121–1130.
  • Giunta B, Obregon D, Velisetty R, et al. The immunology of traumatic brain injury: a prime target for Alzheimer’s disease prevention. J Neuroinflammation. 2012 Aug 01;9:185.
  • Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol. 2013;4:18.
  • Selden NR, Guillaume DJ, Steiner RD, et al. Cellular therapy for childhood neurodegenerative disease. Part II: clinical trial design and implementation. Neurosurg Focus. 2008;24(3–4):E23.
  • Lozano D, Gonzales-Portillo GS, Acosta S, et al. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatr Dis Treat. 2015;11:97–106.
  • Hasan A, Deeb G, Rahal R, et al. Mesenchymal stem cells in the treatment of traumatic brain injury. Front Neurol. 2017;8:28.
  • Kassis I, Grigoriadis N, Gowda-Kurkalli B, et al. Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol. 2008 Jun;65(6):753–761.
  • Nakajima M, Nito C, Sowa K, et al. Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Mol Ther Methods Clin Dev. 2017 Sep 15;6:102–111.
  • Nichols JE, Zhang J, Schwartz MP, et al. Neurogenic and neuro-protective potential of a novel subpopulation of peripheral blood-derived CD133+ ABCG2+CXCR4+ mesenchymal stem cells: development of autologous cell-based therapeutics for traumatic brain injury. Stem Cell Res Ther. 2013 Jan 06;4 Suppl 1(1):3.
  • Zanier ER, Montinaro M, Vigano M, et al. Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma. Crit Care Med. 2011 Nov;39(11):2501–2510.
  • Monsel A, Zhu Y-G, Gennai S, et al. Cell-based therapy for acute organ injury: preclinical evidence and ongoing clinical trials using mesenchymal stem cells. Anesthesiology. 2014 Nov;121(5):1099–1121.
  • Kochanek PM, Jackson TC, Ferguson NM, et al. Emerging therapies in traumatic brain injury. Semin Neurol. 2015 Feb;35(1):83–100.
  • Kondziolka D, Steinberg GK, Cullen SB, et al. Evaluation of surgical techniques for neuronal cell transplantation used in patients with stroke. Cell Transplant. 2004;13(7–8):749–754.
  • Borlongan CV, Chopp M, Steinberg GK, et al. Potential of stem/progenitor cells in treating stroke: the missing steps in translating cell therapy from laboratory to clinic. Regen Med. 2008;3(3):249–250.
  • Gennai S, Monsel A, Hao Q, et al. Cell-based therapy for traumatic brain injury. Br J Anaesth. 2015 Aug;115(2):203–212.
  • Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011 Mar;9(1):29.
  • Borlongan CV, Hadman M, Sanberg CD, et al. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke. 2004 Oct;35(10):2385–2389.
  • Sheridan DC, Newgard CD, Selden NR, et al. QuickBrain MRI for the detection of acute pediatric traumatic brain injury. J Neurosurg Pediatr. 2017 Feb;19(2):259–264.
  • Yue EL, Meckler GD, Fleischman RJ, et al. Test characteristics of quick brain MRI for shunt evaluation in children: an alternative modality to avoid radiation. J Neurosurg Pediatr. 2015 Apr;15(4):420–426.
  • Roguski M, Morel B, Sweeney M, et al. Magnetic resonance imaging as an alternative to computed tomography in select patients with traumatic brain injury: a retrospective comparison. J Neurosurg Pediatr. 2015 May;15(5):529–534.
  • Bassiouny MR, El-Chennawi F, Mansour AK, et al. Optimal method for collection of umbilical cord blood: an Egyptian trial for a public cord blood bank. Transfusion. 2015 Jun;55(6):1263–1268.
  • Petrini C. Umbilical cord blood collection, storage and use: ethical issues. Blood Transfus. 2010 Jul;8(3):139–148.
  • Sabatino M, Codas R, Marchand E, et al. The establishment of a bank of stored clinical bone marrow stromal cell products. J Transl Med. 2012 Feb 06;10:23.
  • Higgins RD, Raju T, Edwards AD, et al. Hypothermia and other treatment options for neonatal encephalopathy: an executive summary of the Eunice Kennedy Shriver NICHD workshop. J Pediatr. 2011 Nov;159(5):851–858.e1.
  • Keret A, Bennett-Back O, Rosenthal G, et al. Posttraumatic epilepsy: long-term follow-up of children with mild traumatic brain injury. J Neurosurg Pediatr. 2017 Jul;20(1):64–70.
  • Tajiri N, Acosta SA, Shahaduzzaman M, et al. Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. J Neurosci. 2014 Jan 01;34(1):313–326.
  • van Velthoven CTJ, Kavelaars A, Van Bel F, et al. Repeated mesenchymal stem cell treatment after neonatal hypoxia-ischemia has distinct effects on formation and maturation of new neurons and oligodendrocytes leading to restoration of damage, corticospinal motor tract activity, and sensorimotor function. J Neurosci. 2010 Jul 14;30(28):9603–9611.
  • Donega V, Nijboer CH, Braccioli L, et al. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement. PLoS ONE. 2013;8:1e515123.
  • Ding H, Zhang H, Ding H, et al. Transplantation of placenta-derived mesenchymal stem cells reduces hypoxic-ischemic brain damage in rats by ameliorating the inflammatory response. Cell Mol Immunol. 2017 Aug;14(8):693-701.
  • Merchant N, Azzopardi DV, Edwards D. Neonatal hypoxic ischemic encephalopathy: current and future treatment options. Expert Opin Orphan Stud. 2015;3(4):357–377.
  • Addington CP, Roussas A, Dutta D, et al. Endogenous repair signaling after brain injury and complementary bioengineering approaches to enhance neural regeneration. Biomark Insights. 2015;10(Suppl 1):43–60.
  • Tajiri N, Duncan K, Antoine A, et al. Stem cell-paved biobridge facilitates neural repair in traumatic brain injury. Front Syst Neurosci. 2014;8:116.
  • Liska MG, Crowley MG, Nguyen H, et al. Biobridge concept in stem cell therapy for ischemic stroke. J Neurosurg Sci. 2017 Apr;61(2):173–179.
  • Duncan K, Gonzales-Portillo GS, Acosta SA, et al. Stem cell-paved biobridges facilitate stem transplant and host brain cell interactions for stroke therapy. Brain Res. 2015 Oct 14;1623:160–165.
  • Oki K, Tatarishvili J, Wood J, et al. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells. 2012 Jun;30(6):1120–1133.
  • Bonde S, Ekdahl CT, Lindvall O. Long-term neuronal replacement in adult rat hippocampus after status epilepticus despite chronic inflammation. Eur J Neurosci. 2006 Feb;23(4):965–974.
  • Lindvall O, Bjorklund A. Cell replacement therapy: helping the brain to repair itself. NeuroRx. 2004 Oct;1(4):379–381.
  • Dietrich WD, Bramlett HM. Therapeutic hypothermia and targeted temperature management in traumatic brain injury: clinical challenges for successful translation. Brain Res. 2016 Jun 01; 1640(Pt A):94–103.
  • Liu B, Wang L, Cao Y, et al. Hypothermia pretreatment improves cognitive impairment via enhancing synaptic plasticity in a traumatic brain injury model. Brain Res. 2017 Oct;1672:18-28.
  • Gonzales-Portillo GS, Reyes S, Aguirre D, et al. Stem cell therapy for neonatal hypoxic-ischemic encephalopathy. Front Neurol. 2014;5:147.
  • van Velthoven CT, Kavelaars A, Heijnen CJ. Mesenchymal stem cells as a treatment for neonatal ischemic brain damage. Pediatr Res. 2012 Apr;71(4 Pt 2):474-481.
  • Kocarnik JM, Park SL, Han J, et al. Hypothermia augments neuroprotective activity of mesenchymal stem cells for neonatal hypoxic-ischemic encephalopathy. PLoS One. 2015;10(3):e0120893.
  • Kaneko Y, Tajiri N, Su T-P, et al. Combination treatment of hypothermia and mesenchymal stromal cells amplifies neuroprotection in primary rat neurons exposed to hypoxic-ischemic-like injury in vitro: role of the opioid system. PLoS One. 2012;7(10):e47583.
  • Crowley MG, Liska MG, Borlongan CV. Stem cell therapy for sequestering neuroinflammation in traumatic brain injury: an update on exosome-targeting to the spleen. J Neurosurg Sci. 2017 Jun;61(3):291–302.
  • Borlongan CV, Stahl CE, Cameron DF, et al. CNS immunological modulation of neural graft rejection and survival. Neurol Res. 1996;18(4):297–304.
  • Saporta S, Cameron DF, Borlongan CV, et al. Survival of rat and porcine sertoli cell transplants in the rat striatum without cyclosporine-A immunosuppression. Exp Neurol. 1997;146(2):299–304.
  • Nishino H, Borlongan CV. Restoration of function by neural transplantation in the ischemic brain. Prog Brain Res. 2000;127:461–476.
  • Borlongan CV, Su TP, Wang Y. Treatment with delta opioid peptide enhances in vitro and in vivo survival of rat dopaminergic neurons. Neuroreport. 2000;11(5):923–926.
  • Yasuhara T, Matsukawa N, Hara K, et al. Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev. 2009;18(10):1501–1514.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.