400
Views
0
CrossRef citations to date
0
Altmetric
Review

Repairing the corneal epithelium using limbal stem cells or alternative cell-based therapies

, ORCID Icon, &
Pages 505-513 | Received 26 Aug 2017, Accepted 16 Feb 2018, Published online: 06 Mar 2018

References

  • Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986 Jul;103(1):49–62. PubMed PMID: 2424919; PubMed Central PMCID: PMC2113783. eng.
  • Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci. 1983 Oct;24(10):1442–1443. PubMed PMID: 6618809; eng.
  • Yoon JJ, Ismail S, Sherwin T. Limbal stem cells: central concepts of corneal epithelial homeostasis. World J Stem Cells. 2014 Sep 26;6(4):391–403. PubMed PMID: 25258661; PubMed Central PMCID: PMC4172668. eng.
  • Chen JJ, Tseng SC. Corneal epithelial wound healing in partial limbal deficiency. Invest Ophthalmol Vis Sci. 1990 Jul;31(7):1301–1314. PubMed PMID: 1694836; eng.
  • Tseng SC. Concept and application of limbal stem cells. Eye (Lond). 1989;3Pt 2:141–157. PubMed PMID: 2695347; eng.
  • Aslan D, Akata RF. Dyskeratosis congenita and limbal stem cell deficiency. Exp Eye Res. 2010 Mar;90(3):472–473. PubMed PMID: 20036237; eng.
  • Baylis O, Figueiredo F, Henein C, et al. 13 years of cultured limbal epithelial cell therapy: a review of the outcomes. J Cell Biochem. 2011 Apr;112(4):993–1002. PubMed PMID: 21308743; eng.
  • Bobba S, Di Girolamo N, Mills R, et al. Nature and incidence of severe limbal stem cell deficiency in Australia and New Zealand. Clin Exp Ophthalmol. 2017 Mar;45(2):174–181. PubMed PMID: 27505295; eng.
  • Chan CC, Holland EJ. Severe limbal stem cell deficiency from contact lens wear: patient clinical features. Am J Ophthalmol. 2013 Mar;155(3):544–549 e2. PubMed PMID: 23218703; eng.
  • Di Iorio E, Kaye SB, Ponzin D, et al. Limbal stem cell deficiency and ocular phenotype in ectrodactyly-ectodermal dysplasia-clefting syndrome caused by p63 mutations. Ophthalmology. 2012 Jan;119(1):74–83. PubMed PMID: 21959367; eng.
  • Lim P, Fuchsluger TA, Jurkunas UV. Limbal stem cell deficiency and corneal neovascularization. Semin Ophthalmol. 2009 May-Jun;24(3):139–148. PubMed PMID: 19437349; eng.
  • Mohammadpour M, Javadi MA. Keratitis associated with multiple endocrine deficiency. Cornea. 2006 Jan;25(1):112–114. PubMed PMID: 16331052; eng.
  • Nishida K, Kinoshita S, Ohashi Y, et al. Ocular surface abnormalities in aniridia. Am J Ophthalmol. 1995 Sep;120(3):368–375. PubMed PMID: 7661209; eng.
  • Haagdorens M, Van Acker SI, Van Gerwen V, et al. Limbal stem cell deficiency: current treatment options and emerging therapies. Stem Cells Int. 2016;2016:9798374. PubMed PMID: 26788074; PubMed Central PMCID: PMC4691643. eng.
  • Pellegrini G, Dellambra E, Golisano O, et al. p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3156–3161. PubMed PMID: 11248048; PubMed Central PMCID: PMCPMC30623.
  • Brzeszczynska J, Ramaesh K, Dhillon B, et al. Molecular profile of organ culture-stored corneal epithelium: LGR5 is a potential new phenotypic marker of residual human corneal limbal epithelial stem cells. Int J Mol Med. 2012 May;29(5):871–876. PubMed PMID: 22322201.
  • Lu R, Qu Y, Ge J, et al. Transcription factor TCF4 maintains the properties of human corneal epithelial stem cells. Stem Cells. 2012 Apr;30(4):753–761. PubMed PMID: 22232078.
  • Horenstein AL, Sizzano F, Lusso R, et al. CD38 and CD157 ectoenzymes mark cell subsets in the human corneal limbus. Mol Med. 2009 Mar-Apr;15(3–4):76–84. PubMed PMID: 19052657; PubMed Central PMCID: PMCPMC2593003.
  • Hayashi R, Yamato M, Saito T, et al. Enrichment of corneal epithelial stem/progenitor cells using cell surface markers, integrin alpha6 and CD71. Biochem Biophys Res Commun. 2008 Mar 07;367(2):256–263. PubMed PMID: 18155160.
  • Qi H, Li DQ, Shine HD, et al. Nerve growth factor and its receptor TrkA serve as potential markers for human corneal epithelial progenitor cells. Exp Eye Res. 2008 Jan;86(1):34–40. PubMed PMID: 17980361; PubMed Central PMCID: PMCPMC2198932.
  • Hayashi R, Yamato M, Sugiyama H, et al. N-Cadherin is expressed by putative stem/progenitor cells and melanocytes in the human limbal epithelial stem cell niche. Stem Cells. 2007 Feb;25(2):289–296. PubMed PMID: 17008425.
  • Budak MT, Alpdogan OS, Zhou M, et al. Ocular surface epithelia contain ABCG2-dependent side population cells exhibiting features associated with stem cells. J Cell Sci. 2005 Apr 15;118(Pt 8):1715–1724. PubMed PMID: 15811951; PubMed Central PMCID: PMCPMC1237017.
  • De Paiva CS, Chen Z, Corrales RM, et al. ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells. 2005;23(1):63–73. PubMed PMID: 15625123; PubMed Central PMCID: PMC2906389. eng.
  • Yoshida S, Shimmura S, Kawakita T, et al. Cytokeratin 15 can be used to identify the limbal phenotype in normal and diseased ocular surfaces. Invest Ophthalmol Vis Sci. 2006 Nov;47(11):4780–4786. PubMed PMID: 17065488.
  • Ksander BR, Kolovou PE, Wilson BJ, et al. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature. 2014 Jul 17;511(7509):353–357. PubMed PMID: 25030174; PubMed Central PMCID: PMC4246512. eng
  • Ahmad S, Kolli S, Li DQ, et al. A putative role for RHAMM/HMMR as a negative marker of stem cell-containing population of human limbal epithelial cells. Stem Cells. 2008 Jun;26(6):1609–1619. PubMed PMID: 18356573.
  • Chen Z, Evans WH, Pflugfelder SC, et al. Gap junction protein connexin 43 serves as a negative marker for a stem cell-containing population of human limbal epithelial cells. Stem Cells. 2006 May;24(5):1265–1273. PubMed PMID: 16424398; PubMed Central PMCID: PMCPMC2906383.
  • Thoft RA. Conjunctival transplantation. Arch Ophthalmol. 1977 Aug;95(8):1425–1427. PubMed PMID: 889519; eng.
  • Thoft RA. Keratoepithelioplasty. Am J Ophthalmol. 1984 Jan;97(1):1–6. PubMed PMID: 6364814; eng.
  • Kenyon KR, Tseng SC. Limbal autograft transplantation for ocular surface disordersOphthalmology1989May965709–722 discussion 722-3PubMed PMID: 2748125; eng
  • Kenyon KR, Rapoza PA. Limbal allograft transplantation for ocular surface disorders. Ophthalmology. 1995;102(suppl):101–102.
  • Tan DT, Ficker LA, Buckley RJ. Limbal transplantation. Ophthalmology. 1996 Jan;103(1):29–36. PubMed PMID: 8628556; eng.
  • Tsai RJ, Tseng SC. Human allograft limbal transplantation for corneal surface reconstruction. Cornea. 1994 Sep;13(5):389–400. PubMed PMID: 7995060; eng.
  • Holland EJ. Epithelial transplantation for the management of severe ocular surface disease. Trans Am Ophthalmol Soc. 1996;94: 677–743. PubMed PMID: 8981714; PubMed Central PMCID: PMCPMC1312113.
  • Pellegrini G, Traverso CE, Franzi AT, et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997 Apr 05;349(9057):990–993. PubMed PMID: 9100626; eng.
  • Lindberg K, Brown ME, Chaves HV, et al. In vitro propagation of human ocular surface epithelial cells for transplantation. Invest Ophthalmol Vis Sci. 1993 Aug;34(9):2672–2679. PubMed PMID: 8344790; eng.
  • Ang LP, Sotozono C, Koizumi N, et al. A comparison between cultivated and conventional limbal stem cell transplantation for Stevens-Johnson syndrome. Am J Ophthalmol. 2007 Jan;143(1):178–180. PubMed PMID: 17188066; eng.
  • Schwab IR, Reyes M, Isseroff RR. Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea. 2000 Jul;19(4):421–426. PubMed PMID: 10928750; eng.
  • Sangwan VS, Basu S, MacNeil S, et al. Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol. 2012 Jul;96(7):931–934. PubMed PMID: 22328817; eng.
  • Gain P, Jullienne R, He Z, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016 Feb;134(2):167–173. PubMed PMID: 26633035; eng.
  • Nakamura T, Endo K, Cooper LJ, et al. The successful culture and autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane. Invest Ophthalmol Vis Sci. 2003 Jan;44(1):106–116. PubMed PMID: 12506062; eng.
  • Nishida K, Yamato M, Hayashida Y, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004 Sep 16;351(12):1187–1196. PubMed PMID: 15371576; eng.
  • Ricardo JR, Cristovam PC, Filho PA, et al. Transplantation of conjunctival epithelial cells cultivated ex vivo in patients with total limbal stem cell deficiency. Cornea. 2013 Mar;32(3):221–228. PubMed PMID: 22580434; eng.
  • Ahmad S, Stewart R, Yung S, et al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells. 2007 May;25(5):1145–1155. PubMed PMID: 17255521; eng.
  • Hayashi R, Ishikawa Y, Ito M, et al. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One. 2012;7(9):e45435. PONE-D-12-19308 [pii]. PubMed PMID: 23029008; PubMed Central PMCID: PMC3454439. eng.
  • Shalom-Feuerstein R, Serror L, De La Forest Divonne S, et al. Pluripotent stem cell model reveals essential roles for miR-450b-5p and miR-184 in embryonic corneal lineage specification. Stem Cells. 2012 May;30(5):898–909. PubMed PMID: 22367714; eng.
  • Hayashi R, Ishikawa Y, Katori R, et al. Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nat Protoc. 2017 Apr;12(4):683–696. PubMed PMID: 28253236; eng.
  • Hayashi R, Ishikawa Y, Sasamoto Y, et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature. 2016 Mar 17;531(7594):376–380. PubMed PMID: 26958835; eng.
  • Blazejewska EA, Schlotzer-Schrehardt U, Zenkel M, et al. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells. 2009 Mar;27(3):642–652. PubMed PMID: 19074417; PubMed Central PMCID: PMC2729676. eng.
  • Gu S, Xing C, Han J, et al. Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Mol Vis. 2009;15:99–107, PubMed PMID: 19156227; PubMed Central PMCID: PMC2627808. eng.
  • Kitazawa K, Hikichi T, Nakamura T, et al. OVOL2 maintains the transcriptional program of human corneal epithelium by suppressing epithelial-to-mesenchymal transition. Cell Rep. 2016 May 10;15(6):1359–1368. PubMed PMID: 27134177; eng.
  • Ouyang H, Xue Y, Lin Y, et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature. 2014 Jul 17;511(7509):358–361. PubMed PMID: 25030175; PubMed Central PMCID: PMC4610745. eng.
  • Sasamoto Y, Hayashi R, Park SJ, et al. PAX6 isoforms, along with reprogramming factors, differentially regulate the induction of cornea-specific genes. Sci Rep. 2016 Feb 22;6:20807. PubMed PMID: 26899008; PubMed Central PMCID: PMC4761963. eng.
  • Jiang TS, Cai L, Ji WY, et al. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol Vis. 2010 Jul 14;16:1304–1316. PubMed PMID: 20664793; PubMed Central PMCID: PMC2905634. eng.
  • Rohaina CM, Then KY, Ng AM, et al. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res. 2014 Mar;163(3):200–210. PubMed PMID: 24286920.
  • Reinshagen H, Auw-Haedrich C, Sorg RV, et al. Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits. Acta Ophthalmol. 2011 Dec;89(8):741–748. PubMed PMID: 20039850.
  • Galindo S, Herreras JM, Lopez-Paniagua M, et al. Therapeutic effect of human adipose tissue-derived mesenchymal stem cells in experimental corneal failure due to limbal stem cell niche damage. Stem Cells. 2017 Oct;35(10):2160–2174. PubMed PMID: 28758321.
  • Gomes JA, Geraldes Monteiro B, Melo GB, et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci. 2010 Mar;51(3):1408–1414. PubMed PMID: 19892864; eng.
  • Kobayashi M, Nakamura T, Yasuda M, et al. Ocular surface reconstruction with a tissue-engineered nasal mucosal epithelial cell sheet for the treatment of severe ocular surface diseases. Stem Cells Transl Med. 2015;Jan;4(1):99–109. PubMed PMID: 25411478; PubMed Central PMCID: PMC4275014. eng.
  • Aravena C, Bozkurt TK, Yu F, et al. Long-term outcomes of the Boston type I keratoprosthesis in the management of corneal limbal stem cell deficiency. Cornea. 2016 Sep;35(9):1156–1164. PubMed PMID: 27387566; eng.
  • Sejpal K, Yu F, Aldave AJ. The Boston keratoprosthesis in the management of corneal limbal stem cell deficiency. Cornea. 2011 Nov;30(11):1187–1194. PubMed PMID: 21885964; eng.
  • Holland EJ, Djalilian AR, Schwartz GS. Management of aniridic keratopathy with keratolimbal allograft: a limbal stem cell transplantation technique. Ophthalmology. 2003 Jan;110(1):125–130. PubMed PMID: 12511357; eng.
  • Shimazaki J, Shimmura S, Tsubota K. Donor source affects the outcome of ocular surface reconstruction in chemical or thermal burns of the cornea. Ophthalmology. 2004 Jan;111(1):38–44. PubMed PMID: 14711712; eng.
  • Rama P, Matuska S, Paganoni G, et al. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010 Jul 08;363(2):147–155. PubMed PMID: 20573916; eng.
  • Sangwan VS, Basu S, Vemuganti GK, et al. Clinical outcomes of xeno-free autologous cultivated limbal epithelial transplantation: a 10-year study. Br J Ophthalmol. 2011 Nov;95(11):1525–1529. PubMed PMID: 21890785; eng.
  • Zhao Y, Ma L. Systematic review and meta-analysis on transplantation of ex vivo cultivated limbal epithelial stem cell on amniotic membrane in limbal stem cell deficiency. Cornea. 2015 May;34(5):592–600. PubMed PMID: 25789694; eng.
  • Holland EJ. Management of limbal stem cell deficiency: a historical perspective, past, present, and future. Cornea. 2015 Oct;34(Suppl 10):S9–15. PubMed PMID: 26203759; eng.
  • Basu S, Sureka SP, Shanbhag SS, et al. Simple limbal epithelial transplantation: long-term clinical outcomes in 125 cases of unilateral chronic ocular surface burns. Ophthalmology. 2016 May;123(5):1000–1010. PubMed PMID: 26896125; eng.
  • Sejpal K, Ali MH, Maddileti S, et al. Cultivated limbal epithelial transplantation in children with ocular surface burns. JAMA Ophthalmol. 2013 Jun;131(6):731–736. PubMed PMID: 23559315; eng.
  • Vazirani J, Ali MH, Sharma N, et al. Autologous simple limbal epithelial transplantation for unilateral limbal stem cell deficiency: multicentre results. Br J Ophthalmol. 2016 Oct;100(10):1416–1420. PubMed PMID: 26817481.
  • Satake Y, Higa K, Tsubota K, et al. Long-term outcome of cultivated oral mucosal epithelial sheet transplantation in treatment of total limbal stem cell deficiency. Ophthalmology. 2011 Aug;118(8):1524–1530. PubMed PMID: 21571372; eng.
  • Basu S, Ali H, Sangwan VS. Clinical outcomes of repeat autologous cultivated limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol. 2012 Apr;153(4):643–650. 650 e1-2. PubMed PMID: 22265153; eng.
  • Shimazaki J, Aiba M, Goto E, et al. Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology. 2002 Jul;109(7):1285–1290. PubMed PMID: 12093651; eng.
  • Baradaran-Rafii A, Eslani M, Djalillian AR. Complications of keratolimbal allograft surgery. Cornea. 2013 May;32(5):561–566. PubMed PMID: 23073489; eng.
  • Jenkins C, Tuft S, Liu C, et al. Limbal transplantation in the management of chronic contact-lens-associated epitheliopathy. Eye (Lond). 1993;7(Pt 5):629–633. PubMed PMID: 8287983; eng.
  • Miri A, Said DG, Dua HS. Donor site complications in autolimbal and living-related allolimbal transplantation. Ophthalmology. 2011 Jul;118(7):1265–1271. PubMed PMID: 21458075; eng.
  • Busin M, Breda C, Bertolin M, et al. Corneal epithelial stem cells repopulate the donor area within 1 year from limbus removal for limbal autograft. Ophthalmology. 2016 Dec;123(12):2481–2488. PubMed PMID: 27665215; eng.
  • Shah KJ, Mogilishetty G, Holland EJ. Ocular surface squamous neoplasia in a living-related conjunctival limbal allograft. Cornea. 2016 Feb;35(2):274–276. PubMed PMID: 26655479; eng.
  • Satake Y, Dogru M, Yamaguchi T, et al. Immunological rejection following allogeneic cultivated limbal epithelial transplantation. JAMA Ophthalmol. 2013 Jul;131(7):920–922. PubMed PMID: 23559125; eng.
  • Krakauer M, Welder JD, Pandya HK, et al. Adverse effects of systemic immunosuppression in keratolimbal allograft. J Ophthalmol. 2012;2012:576712, PubMed PMID: 22523651; PubMed Central PMCID: PMC3317135. eng.
  • Tsubota K. Ocular surface management in corneal transplantation, a review. Jpn J Ophthalmol. 1999 Nov-Dec;43(6):502–508. PubMed PMID: 10672879; eng.
  • Nakamura T, Inatomi T, Sotozono C, et al. Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Br J Ophthalmol. 2004 Oct;88(10):1280–1284. PubMed PMID: 15377551; PubMed Central PMCID: PMC1772364. eng.
  • Kanayama S, Nishida K, Yamato M, et al. Analysis of soluble vascular endothelial growth factor receptor-1 secreted from cultured corneal and oral mucosal epithelial cell sheets in vitro. Br J Ophthalmol. 2009 Feb;93(2):263–267. PubMed PMID: 19174402; eng.
  • Sekiyama E, Nakamura T, Kawasaki S, et al. Different expression of angiogenesis-related factors between human cultivated corneal and oral epithelial sheets. Exp Eye Res. 2006 Oct;83(4):741–746. PubMed PMID: 16720021; eng.
  • Murphy FA. The public health risk of animal organ and tissue transplantation into humans. Science. 1996 Aug 09;273(5276):746–747. PubMed PMID: 8701323; eng.
  • Kolli S, Ahmad S, Mudhar HS, et al. Successful application of ex vivo expanded human autologous oral mucosal epithelium for the treatment of total bilateral limbal stem cell deficiency. Stem Cells. 2014 Aug;32(8):2135–2146. PubMed PMID: 24590515; eng.
  • Miri A, Al-Deiri B, Dua HS. Long-term outcomes of autolimbal and allolimbal transplants. Ophthalmology. 2010 Jun;117(6):1207–1213. PubMed PMID: 20163866; eng.
  • Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981 Jul 09;292(5819):154–156. PubMed PMID: 7242681; eng.
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998 Nov 06;282(5391):1145–1147. PubMed PMID: 9804556; eng.
  • Grinnemo KH, Sylven C, Hovatta O, et al. Immunogenicity of human embryonic stem cells. Cell Tissue Res. 2008 Jan;331(1):67–78. PubMed PMID: 17846795.
  • Miyashita H, Yokoo S, Yoshida S, et al. Long-term maintenance of limbal epithelial progenitor cells using rho kinase inhibitor and keratinocyte growth factor. Stem Cells Transl Med. 2013 Oct;2(10):758–765. PubMed PMID: 23981725; PubMed Central PMCID: PMC3785260. eng.
  • Miura K, Okada Y, Aoi T, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009 Aug;27(8):743–745. PubMed PMID: 19590502; eng.
  • Taylor CJ, Peacock S, Chaudhry AN, et al. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell. 2012 Aug 03;11(2):147–152. PubMed PMID: 22862941; eng.
  • Kelaini S, Cochrane A, Margariti A. Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning. 2014;7: 19–29. PubMed PMID: 24627642; PubMed Central PMCID: PMC3931695. eng.
  • Kerkis I, Kerkis A, Dozortsev D, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT- 4and other embryonic stem cell markers. Cells Tissues Organs. 2006;184(3–4):105–116. PubMed PMID: 17409736.
  • Zhao T, Zhang ZN, Rong Z, et al. Immunogenicity of induced pluripotent stem cells. Nature. 2011 May 13;474(7350):212–215. PubMed PMID: 21572395.
  • Guha P, Morgan JW, Mostoslavsky G, et al. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. 2013 Apr 04;12(4):407–412. PubMed PMID: 23352605.
  • Frank NY, Pendse SS, Lapchak PH, et al. Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-binding cassette transporter. J Biol Chem. 2003 Nov 21;278(47):47156–47165. PubMed PMID: 12960149; eng.
  • Schatton T, Yang J, Kleffel S, et al. ABCB5 identifies immunoregulatory dermal cells. Cell Rep. 2015 Sep 08;12(10):1564–1574. PubMed PMID: 26321644; PubMed Central PMCID: PMC4565759. eng.
  • Frank MH, Frank NY. Restoring the cornea from limbal stem cells. Regen Med. 2015;10(1): 1–4. PubMed PMID: 25562345; PubMed Central PMCID: PMC4293634. eng.
  • Yeh SI, Ho TC, Chen SL, et al. Pigment epithelial-derived factor peptide regenerated limbus serves as regeneration source for limbal regeneration in rabbit limbal deficiency. Invest Ophthalmol Vis Sci. 2016 May 01;57(6):2629–2636. PubMed PMID: 27258435; eng.
  • Oie Y, Nishida K. Regenerative medicine for the cornea. Biomed Res Int. 2013;2013: 428247. PubMed PMID: 24396826; PubMed Central PMCID: PMC3876767. eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.