245
Views
16
CrossRef citations to date
0
Altmetric
Review

Thymosin β4 and the vasculature: multiple roles in development, repair and protection against disease

&
Pages 131-139 | Received 05 Jan 2018, Accepted 27 Mar 2018, Published online: 31 Jul 2018

References

  • Henry TD, Annex BH, McKendall GR, et al. The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation. 2003;107(10):1359–1365.
  • Simons M, Annex BH, Laham RJ, et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation. 2002;105(7):788–793.
  • Siu CW, Liao SY, Liu Y, et al. Stem cells for myocardial repair. Thromb Haemost. 2010;104(1):6–12.
  • Smart N, Dube KN, Riley PR. Identification of thymosin beta4 as an effector of Hand1-mediated vascular development. Nat Commun. 2010;1:46.
  • Rossdeutsch A, Smart N, Dube KN, et al. Essential role for Thymosin beta4 in regulating vascular smooth muscle cell development and vessel wall stability. Circ Res. 2012;111(4):e89–e102.
  • Smart N, Risebro CA, Melville AAD, et al. Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 2007;445(7124):177–182.
  • Dubé KN, Thomas TM, Munshaw S, et al. Recapitulation of developmental mechanisms to revascularize the ischemic heart. JCI Insight. 2017;2:22.
  • Smart N, Risebro CA, Clark JE, et al. Thymosin beta4 facilitates epicardial neovascularization of the injured adult heart. Ann NY Acad Sci. 2010;1194:97–104.
  • Smart N, Bollini S, Dube KN, et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011;474:640–644.
  • Bock-Marquette I, Shrivastava S, Pipes GC, et al. Thymosin beta4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. J Mol Cell Cardiol. 2009;46(5):728–738.
  • Smart N, Bollini S, Dube KN, et al. Myocardial regeneration: expanding the repertoire of Thymosin beta4 in the ischemic heart. Ann NY Acad Sci. 2012;1269(1):92–101.
  • Hinkel R, Howe A, Renner S, et al. Diabetes mellitus-induced microvascular destabilization in the myocardium. J Am Coll Cardiol. 2017;69(2):131–143.
  • Hinkel R, Trenkwalder T, Petersen B, et al. MRTF-A controls vessel growth and maturation by increasing the expression of CCN1 and CCN2. Nat Commun. 2014;5:3970.
  • Park KM, Gerecht S. Harnessing developmental processes for vascular engineering and regeneration. Development. 2014;141(14):2760–2769.
  • Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85(3):221–228.
  • Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057–1069.
  • Bock-Marquette I, Saxena A, White MD, et al. Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature. 2004;432(7016):466–472.
  • Smart N, Rossdeutsch A, Riley PR. Thymosin beta4 and angiogenesis: modes of action and therapeutic potential. Angiogenesis. 2007;10(4):229–241.
  • Red-Horse K, Ueno H, Weissman IL, et al. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464(7288):549–553.
  • Wu B, Zhang Z, Lui W, et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell. 2012;151(5):1083–1096.
  • Smart N. Prospects for improving neovascularization of the ischemic heart: lessons from development. Microcirculation (New York, NY: 1994). 2017;24(1).e12335
  • Tian X, Hu T, Zhang H, et al. Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science. 2014;345(6192):90–94.
  • Chen HI, Sharma B, Akerberg BN, et al. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development. 2014;141(23):4500–4512.
  • Katz TC, Singh MK, Degenhardt K, et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev Cell. 2012;22(3):639–650.
  • Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol. 1996;174(2):221–232.
  • Low TL, Hu SK, Goldstein AL. Complete amino acid sequence of bovine Thymosin β4: a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci USA. 1981;78(2):1162–1166.
  • Low TL, Goldstein AL. Chemical characterization of Thymosin beta 4. J Biol Chem. 1982;257(2):1000–1006.
  • Huff T, Muller CSG, Otto AM, et al. β-Thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol. 2001;33:205–220.
  • Wodnar-Filipowicz A, Gubler U, Furuichi Y, et al. Cloning and sequence analysis of cDNA for rat spleen Thymosin {beta} 4. Proc Natl Acad Sci. 1984;81(8):2295–2297.
  • Huff T, Ballweber E, Humeny A, et al. Thymosin β4 serves as a glutaminyl substrate of transglutaminase. Labeling with fluorescent dansylcadaverine does not abolish interaction with G-actin. FEBS Letts. 1999;464:14–20.
  • Huff T, Otto AM, Muller CSG, et al. Thymosin b4 is released from human blood platelets and attached by factor XIIIa (transglutaminase) to fibrin and collagen. FASEB J. 2002;16:691–696.
  • Bodendorf S, Born G, Hannappel E. Determination of Thymosin beta4 and protein in human wound fluid after abdominal surgery. Ann NY Acad Sci. 2007;1112:418–424.
  • Goldstein AL, Hannappel E, Sosne G, et al. Thymosin beta4: a multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther. 2012;12(1):37–51.
  • Safer D, Elzinga M, Nachmias VT. Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J Biol Chem. 1991;266(7):4029–4032.
  • Kobayashi T, Okada F, Fujii N, et al. Thymosin β4 regulates motility and metastasis of malignant mouse fibrosarcoma cells. Am J Pathol. 2002;160(3):869–882.
  • Sanger JM, Golla R, Safer D, et al. Increasing intracellular concentrations of Thymosin beta 4 in PtK2 cells: effects on stress fibers, cytokinesis, and cell spreading. Cell Motil Cytoskeleton. 1995;31:307–322.
  • Hinkel R, El-Aouni C, Olson T, et al. Thymosin beta4 is an essential paracrine factor of embryonic endothelial progenitor cell-mediated cardioprotection. Circulation. 2008;117(17):2232–2240.
  • Cierniewski CS, Sobierajska K, Selmi A, et al. Thymosin beta4 is rapidly internalized by cells and does not induce intracellular Ca2+ elevation. Ann NY Acad Sci. 2012;1269:44–52.
  • Huff T, Rosorius O, Otto AM, et al. Nuclear localisation of the G-actin sequestering peptide Thymosin β4. J Cell Sci. 2004 jcs
  • Piludu M, Piras M, Pichiri G, et al. Thymosin beta 4 may translocate from the cytoplasm in to the nucleus in HepG2 cells following serum starvation. An ultrastructural study. PloS One. 2015;10(3):e0119642.
  • Kim J, Hyun J, Wang S, et al. Thymosin beta-4 regulates activation of hepatic stellate cells via hedgehog signaling. Sci Rep. 2017;7(1):3815.
  • Vieira JM, Howard S, Villa Del Campo C, et al. BRG1-SWI/SNF-dependent regulation of the Wt1 transcriptional landscape mediates epicardial activity during heart development and disease. Nat Commun. 2017;8:16034.
  • Smart N, Riegler J, Turtle CW, et al. Aberrant developmental titin splicing and dysregulated sarcomere length in Thymosin beta4 knockout mice. J Mol Cell Cardiol. 2017;102:94–107.
  • Gomez-Marquez J, Del Amo FF, Carpintero P, et al. High levels of mouse Thymosin β4 mRNA in differentiating P19 embryonic cells and during development of cardiovascular tissues. Biochim Biophys Acta. 1996;1306:187–193.
  • Banerjee I, Zhang J, Moore-Morris T, et al. Thymosin beta 4 is dispensable for murine cardiac development and function. Circ Res. 2012;110(3):456–464.
  • Smart N, Riley PR. Thymosin beta4 in vascular development response to research commentary. Circ Res. 2013;112(3):e29–e30.
  • Smart N, Hill AA, Cross JC, et al. A differential screen for putative targets of the bHLH transcription factor Hand1 in cardiac morphogenesis. Mech Dev. 2002;119(1):S65–S71.
  • He L, Huang X, Kanisicak O, et al. Preexisting endothelial cells mediate cardiac neovascularization after injury. J Clin Invest. 2017;127(8):2968&2981.
  • Grant DS, Kinsella JL, Kibbey MC, et al. Matrigel induces Thymosin β4 gene in differentiating endothelial cells. J Cell Sci. 1995;108:3685–3694.
  • Grant DS, Rose W, Yaen C, et al. Thymosin β4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis. 1999;3(2):125–135.
  • Ho JH, Su Y, Chen KH, et al. Protection of Thymosin beta-4 on corneal endothelial cells from UVB-induced apoptosis. Chin J Physiol. 2010;53(3):190–195.
  • Zhao Y, Qiu F, Xu S, et al. Thymosin beta4 activates integrin-linked kinase and decreases endothelial progenitor cells apoptosis under serum deprivation. J Cell Physiol. 2011;226(11):2798–2806.
  • Ti D, Hao H, Xia L, et al. Controlled release of Thymosin beta 4 using a collagen-chitosan sponge scaffold augments cutaneous wound healing and increases angiogenesis in diabetic rats with hindlimb ischemia. Tissue Eng Part A. 2015;21(3–4):541–549.
  • Qiu FY, Song XX, Zheng H, et al. Thymosin beta4 induces endothelial progenitor cell migration via PI3K/Akt/eNOS signal transduction pathway. J Cardiovasc Pharmacol. 2009;53(3):209–214.
  • Lv S, Cheng G, Zhou Y, et al. Thymosin beta4 induces angiogenesis through Notch signaling in endothelial cells. Mol Cell Biochem. 2013;381(1–2):283–290.
  • Malinda KM, Goldstein AL, Kleinman HK. Thymosin β4 stimulates directional migration of human umbilical vein endothelial cells. FASEB J. 1997;11:474–481.
  • Kim S, Kwon J. Effect of Thymosin beta 4 in the presence of up-regulation of the insulin-like growth factor-1 signaling pathway on high-glucose-exposed vascular endothelial cells. Mol Cell Endocrinol. 2015;401:238–247.
  • Wang L, Chopp M, Szalad A, et al. Thymosin beta4 promotes the recovery of peripheral neuropathy in type II diabetic mice. Neurobiol Dis. 2012;48(3):546–555.
  • Boncela J, Smolarczyk K, Wyroba E, et al. Binding of PAI-1 to endothelial cells stimulated by Thymosin β4 and modulation of their fibrinolytic potential. J Biol Chem. 2005;281 (2): 1066–1072.
  • Selmi A, Malinowski M, Brutkowski W, et al. Thymosin beta4 promotes the migration of endothelial cells without intracellular Ca2+ elevation. Exp Cell Res. 2012;318(14):1659–1666.
  • Philp D, Huff T, Gho YS, et al. The actin binding site on Thymosin β4 promotes angiogenesis. FASEB J. 2003;17(14):2103–2105.
  • Wang D, Carretero OA, Yang XY, et al. N-acetyl-seryl-aspartyl-lysyl-proline stimulates angiogenesis in vitro and in vivo. AJP Heart Circulatory Physiology. 2004;287(5):H2099–H2105.
  • Fan Y, Gong Y, Ghosh PK, et al. Spatial coordination of actin polymerization and ILK-Akt2 activity during endothelial cell migration. Dev Cell. 2009;16(5):661–674.
  • Freeman KW, Bowman BR, Zetter BR. Regenerative protein Thymosin beta-4 is a novel regulator of purinergic signaling. FASEB J. 2011;25(3):907–915.
  • Kim S, Kwon J. Thymosin beta 4 improves dermal burn wound healing via downregulation of receptor of advanced glycation end products in db/db mice. Biochim Biophys Acta. 2014;1840(12):3452–3459.
  • Yamagishi S, Yonekura H, Yamamoto Y, et al. Advanced glycation end products-driven angiogenesis in vitro. Induction of the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor. J Biol Chem. 1997;272(13):8723–8730.
  • Kim S, Kwon J. Thymosin beta4 has a major role in dermal burn wound healing that involves actin cytoskeletal remodelling via heat-shock protein 70. J Tissue Eng Regen Med. 2017;11(4):1262–1273.
  • Philp D, Huff T, Gho YS, et al. The actin binding site on Thymosin beta4 promotes angiogenesis. FASEB J. 2003;17(14):2103–2105.
  • Duffey OJ, Smart N. Approaches to augment vascularisation and regeneration of the adult heart via the reactivated epicardium. Global Cardiol Sci Pract. 2016;2016(4):e201–e628.
  • Wang J, Karra R, Dickson AL, et al. Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol. 2013;382(2):427–435.
  • Peng H, Xu J, Yang XP, et al. Thymosin-beta4 prevents cardiac rupture and improves cardiac function in mice with myocardial infarction. Am J Physiol Heart Circ Physiol. 2014;307(5):H741–H751.
  • Stehlik J, Kobashigawa J, Hunt SA, et al. Honoring 50 years of clinical heart transplantation in circulation: in-depth state-of-the-art review. Circulation. 2018;137(1):71–87.
  • Taylor DO, Edwards LB, Boucek MM, et al. Registry of the international society for heart and lung transplantation: twenty-third official adult heart transplantation report–2006. J Heart Lung Transplant. 2006;25(8):869–879.
  • Postrach J, Schmidt M, Thormann M, et al. Adeno-associated viral vector 2.9 Thymosin ss4 application attenuates rejection after heart transplantation: results of a preclinical study in the pig. Transplantation. 2014;98(8):835–843.
  • Trenkwalder T, Deindl E, Bongiovanni D, et al. Thymosin-beta4-mediated therapeutic neovascularization: role of the PI3K/AKT pathway. Expert Opin Biol Ther. 2015;15(Suppl 1):S175–S185.
  • Bongiovanni D, Ziegler T, D’Almeida S, et al. Thymosin beta4 attenuates microcirculatory and hemodynamic destabilization in sepsis. Expert Opin Biol Ther. 2015;15(Suppl 1):S203–S210.
  • Psaltis PJ, Schwarz N, Toledo-Flores D, et al. Cellular therapy for heart failure. Curr Cardiol Rev. 2016;12(3):195–215.
  • Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006;20(6):661–669.
  • Bollini S, Cheung KK, Riegler J, et al. Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells Dev. 2011;20(11):1985–1994.
  • Kupatt C, Horstkotte J, Vlastos GA, et al. Embryonic endothelial progenitor cells expressing a broad range of proangiogenic and remodeling factors enhance vascularization and tissue recovery in acute and chronic ischemia. FASEB J. 2005;19(11):1576–1578.
  • Shelton EL, Poole SD, Reese J, et al. Omental grafting: a cell-based therapy for blood vessel repair. J Tissue Eng Regen Med. 2013;7(6):421–433.
  • Tung WS, Lee JK, Thompson RW. Simultaneous analysis of 1176 gene products in normal human aorta and abdominal aortic aneurysms using a membrane-based complementary DNA expression array. J Vasc Surg. 2001;34(1):143–150.
  • Delbosc S, Haloui M, Louedec L, et al. Proteomic analysis permits the identification of new biomarkers of arterial wall remodeling in hypertension. Mol Med. 2008;14(7–8):383–394.
  • Martin-Lorenzo M, Balluff B, Maroto AS, et al. Molecular anatomy of ascending aorta in atherosclerosis by MS imaging: specific lipid and protein patterns reflect pathology. J Proteomics. 2015;126:245–251.
  • Misu S, Takebayashi M, Miyamoto K. Nuclear actin in development and transcriptional reprogramming. Front Genet. 2017;8:27.
  • Xu YZ, Kanagaratham C, Radzioch D. 2012. Exploring Secrets of Nuclear Actin Involvement in the Regulation of Gene Transcription and Genome Organization, Current Frontiers and Perspectives in Cell Biology, Prof. Stevo Najman (Ed.), InTech, DOI:10.5772/35718. Available from: https://mts.intechopen.com/books/current-frontiers-and-perspectives-in-cell-biology/exploring-secrets-of-nuclear-actin-involvement-in-the-regulation-of-gene-transcription-and-genome-or.
  • Kapoor P, Shen X. Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol. 2014;24(4):238–246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.