941
Views
2
CrossRef citations to date
0
Altmetric
Review

siRNA drug development against hepatitis B virus infection

, &
Pages 609-617 | Received 06 Nov 2017, Accepted 30 Apr 2018, Published online: 08 May 2018

References

  • EASL 2017 clinical practice guidelines on the management of hepatitis B virus infection. J Hepatol. 2017;67:370–398.
  • Schweitzer A, Horn J, Mikolajczyk RT, et al. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet. 2015;386:1546–1555.
  • Fattovich G. Natural history and prognosis of hepatitis B. Semin Liver Dis. 2003;23:47–58.
  • Raffetti E, Fattovich G, Donato F. Incidence of hepatocellular carcinoma in untreated subjects with chronic hepatitis B: a systematic review and metaanalysis. Liver Int. 2016;36:1239–1251.
  • EASL-EORT clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56:908–943.
  • Świderska M, Pawłowska M, Mazur W, et al. Original article distribution of HBV genotypes in Poland. Clin Exp Hepatol. 2015;1:1–4.
  • Flisiak R, Halota W, Jaroszewicz J, et al. Recommendations for the treatment of hepatitis B in 2017, Polish Group of Experts for HBV. Clin Exp Hepatology. 2017;3:35–46.
  • Terrault NA, Bzowej NH, Chang KM, et al. AASLD guidelines for treatment of chronic hepatitis B. Hepatology. 2016;63:261–283.
  • Levrero M, Pollicino T, Peterson J, et al. Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009;51:581–592.
  • Murakami E, Wang T, Park Y, et al. Implications of efficient hepatic delivery by tenofovir alafenamide (GS-7340) for hepatitis B virus therapy. Antimicrob Agents Chemother. 2015;59:3563–3569.
  • Buti M, Gane E, Seto WK, et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate for the treatment of patients with HBeAg-negative chronic hepatitis B virus infection: a randomised, double-blind, phase 3, non-inferiority trial. Lancet Gastroenterol Hepatol. 2016;1:196–206.
  • Chan HL, Fung S, Seto WK, et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate for the treatment of HBeAg-positive chronic hepatitis B virus infection: a randomised, double-blind, phase 3, non-inferiority trial. Lancet Gastroenterol Hepatol. 2016;1:185–195.
  • Jaroszewicz J, Ho H, Markova A, et al. Hepatitis B surface antigen (HBsAg) decrease and serum interferon-inducible protein-10 levels as predictive markers for HBsAg loss during treatment with nucleoside/nucleotide analogues. Antivir Ther. 2011;16:915–924.
  • Maasoumy B, Wiegand SB, Jaroszewicz J, et al. Hepatitis B core-related antigen (HBcrAg) levels in the natural history of hepatitis B virus infection in a large European cohort predominantly infected with genotypes A and D. Clin Microbiol Infect. 2015;21:606.e1–10.
  • Tanwandee T, Chatsiricharoenkul S, Thongsawat S, et al. Pharmacokinetics, safety and antiviral activity of CMX157, a novel prodrug of tenofovir, administered as ascending multiple doses to healthy volunteers and Hepatitis B virus-infected subjects. J Hepatol. 2017;Supp1:S24–25.
  • Ahn SH, Kim W, Jung YK, et al. Safety and efficacy of besifovir in treatment-naive chronic hepatitis B virus infection: a randomized, double-blind, double dummy, phase 3 study. J Hepatol. 2017;Supp1:S88–9.
  • Papatheodoridis GV, Manolakopoulos S, Su TH, et al. Significance of definitions of relapse after discontinuation of oral antivirals in HBeAg-negative chronic hepatitis B. Hepatology. 2017 Aug 31. [Epub ahead of print].
  • Höner Zu Siederdissen C, Rinker F, Maasoumy B, et al. Viral and host responses after stopping long-term nucleos(t)ide analogue therapy in HBeAg-negative chronic hepatitis B. J Infect Dis. 2016;214:1492–1497.
  • Marcellin P, Ahn SH, Ma X, et al. Combination of tenofovir disoproxil fumarate and peginterferon α-2a increases loss of hepatitis B surface antigen in patients with chronic hepatitis B. Gastroenterology. 2016;150:134–144.
  • Lim SG, Yang WL, Ngu J, et al. Switch or add-on peginterferon for chronic hepatitis B patients already on nucleos(t)ide analogue therapy (SWAP study): provisional analysis – add-on therapy superior. J Hepatol. 2017;Supp1:S60.
  • Soriano V, Barreiro P, Benitez L, et al. New antivirals for the treatment of chronic hepatitis B. Expert Opin Investig Drugs. 2017;26:843–851.
  • Wranke A, Wedemeyer H. Antiviral therapy of hepatitis delta virus infection – progress and challenges towards cure. Curr Opin Virol. 2016;20:112–118.
  • Gane E, Gaggar A, Nguyen AH, et al. A phase 1 study evaluating anti-PD-1 treatment with or without GS-4774 in HBeAg negative chronic hepatitis B patients. J Hepatol. 2017;Supp1:S26–7.
  • Gish RG, Yuen MF, Chan HL, et al. Synthetic RNAi triggers and their use in chronic hepatitis B therapies with curative intent. Antivir Res. 2015;121:97–108.
  • Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–655.
  • Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature. 2009;457:396–404.
  • Mello CC, Jr CD. Revealing the world of RNA interference. Nature. 2004;431:338–342.
  • Mette MF, Aufsatz W, van Der WJ, et al. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. Embo J. 2000;19:5194–5201.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297.
  • Tomari Y, Zamore PD. Perspective: machines for RNAi. Genes Dev. 2005;19:517–529.
  • Lippman Z, Martienssen R. The role of RNA interference in heterochromatic silencing. Nature. 2004;431:364–370.
  • Vazquez F, Vaucheret H, Rajagopalan R, et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell. 2004;16:69–79.
  • Golden DE, Gerbasi VR, Sontheimer EJ. An inside job for siRNAs. Mol Cell. 2008;31:309–312.
  • Chen Y, Cheng G, Mahato RI. RNAi for treating hepatitis B viral infection. Pharm Res. 2008;25(1):72–86.
  • Wang J, Lu Z, Wientjes MG, et al. Delivery of siRNA therapeutics: barriers and carriers. Aaps J. 2010;12:492–503.
  • Jeong JH, Mok H, Oh YK, et al. siRNA conjugate delivery systems. Bioconjug Chem. 2009;20(1):5–14.
  • Rozema DB, Lewis DL, Wakefield DH, et al. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci. 2007;104:12982–12987.
  • Wu J, Nantz MH, Zern MA. Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications. Front Biosci. 2002;7:d717–d725.
  • Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432:173–178.
  • Yamamoto N, Sato Y, Munakata T, et al. Novel pH-sensitive multifunctional envelopetype nanodevice for siRNA-based treatments for chronic HBV infection. J Hepatol. 2016;64:547–555.
  • Li W, Szoka JFC. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res. 2007;24:438–449.
  • Wisse E, Jacobs F, Topal B, et al. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther. 2008;15:1193–1199.
  • Yan M, Liang M, Wen J, et al. Single siRNA nanocapsules for enhanced RNAi delivery. J Am Chem Soc. 2012;134:13542–13545.
  • Sato Y, Matsui H, Yamamoto N, et al. Highly specific delivery of siRNA to hepatocytes circumvents endothelial cell-mediated lipid nanoparticle-associated toxicity leading to the safe and efficacious decrease in the hepatitis B virus. J Control Release. 2017;266:216–225.
  • Abrams MT, Koser ML, Seitzer J, et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment. Mol Ther. 2010;18:171–180.
  • Barros SA, Gollob JA. Safety profile of RNAi nanomedicines. Adv Drug Deliv Rev. 2012;64:1730–1737.
  • Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 2003;31(11):2705–2716.
  • Allerson CR, Sioufi N, Jarres R, et al. Fully 20-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem. 2005;48:901–904.
  • Choung S, Kim YJ, Kim S, et al. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun. 2006;342:919–927.
  • Jackson AL, Burchard J, Leake D, et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. Rna. 2006;12:1197–1205.
  • Judge A, MacLachlan I. Overcoming the innate immune response to small interfering RNA. Hum Gene Ther. 2008;19:111–124.
  • Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123:1183–1189.
  • Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J. 2001;20:6877–6888.
  • Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305:1437–1441.
  • Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431:343–349.
  • Orban TI, Izaurralde E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. Rna. 2005;11:459–469.
  • Chang CI, Yoo JW, Hong SW, et al. Asymmetric shorter-duplex siRNA structures trigger efficient gene silencing with reduced nonspecific effects. Mol Ther. 2009;17:725–732.
  • Wooddell CI, Rozema DB, Hossbach M, et al. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol Ther. 2013;21:973–985.
  • Wooddell CI, Chavez D, Goetzmann JE, et al. Reductions in cccDNA under NUC and ARC-520 therapy in chimpanzees with chronic hepatitis B virus infection implicate integrated DNA in maintaining circulating HBsAg. Hepatology. 2015;62:222A–223A.
  • Wooddell CI, Yuen MF, Chan HL, et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci Transl Med. 2017;9:eaan0241.
  • Wooddell C, Zhu R, Hamilton H, et al. Development of subcutaneously administered RNAi therapeutic ARO-HBV for chronic hepatitis B virus infection. J Hepatol. 2018;68(suppl 1):s18 (PS-030).
  • Fink Z. “New” tekmira emerges as HBV frontrunner. 2015. Available from: https://propthink.com/new-tekmira-emerges-hbv-frontrunner/
  • Durantel D. New treatments to reach functional cure: virological approaches. Best Pract Res Clin Gastroenterol. 2017;31:329–336.
  • Thi EP, Ye X, Dhillon AP, et al. Development of second generation RNA interference therapy for hepatitis B virus infection. Hepatology. 2016;64(Supp1):922A.
  • Lee AC, Dhillon AP, Reid SP, et al. Exploring combination therapy for curing HBV: preclinical studies with capsid inhibitor AB-423 and a siRNA agent, ARB-1740. Hepatology. 2016;64(Suppl1):122A.
  • Thi E, Huang H, Pei L. In vivo study of a LNP siRNA investigational agent applied sequentially with immunomodulatory treatments for chronic hepatitis B infection. Hepatology. 2017;66(Suppl1):929.
  • Lee ACH, Heyes J, Ye X, et al. Durable inhibition of hepatitis B virus replication and antigenemia using subcutaneously administered siRNA agentAB-729 in preclinical models. J Hepatol. 2018;68(suppl1):s18(PS-029).
  • Sepp-Lorenzino L, Sprague AG, Mayo T, et al. Alnylam pharmaceuticals, Cambridge, MAGalNAc-siRNA conjugate ALN-HBV targets a highly conserved, pan-genotypic X-orf viral site and mediates profound and durable HBsAg silencing in vitro and in vivo. Hepatology. 2015;62:224A–225A.
  • Yuen MF, Liu K, Chan HL, et al. Prolonged RNA interference therapy with ARC-520 injection in treatment naive, HBeAg positive and negative patients with chronic HBV results in significant reductions of HBs antigen. J Hepatol. 2017;Supp1:S27.
  • Gane E, Schwabe C, Given B, et al. A phase 1 study to evaluate safety and tolerability of escalating single doses of the hepatitis B virus RNA interference drug ARC-521 in a healthy volunteer population. J Hepatol. 2017;Supp1:S265.
  • ClinicalTrials.gov. [Internet]. Bethesda (MD): National Library of Medicine (US). 2000 Feb 29 – 2018 Mar 12. Identifier NCT03365947, Study of ARO-HBV in Normal Adult Volunteers and Patients With Hepatitis B Virus (HBV). 2017 Dec 8; [cited 2018 Apr 22]. [about 4 screens]. Available from https://clinicaltrials.gov/ct2/show/NCT03365947
  • Streinu-Cercel A, Gane E, Cheng W, et al. A phase 2a study evaluating the multi-dose activity of ARB-1467 in HBeAg positive and negative virally suppressed subjects with hepatitis B. J Hepatol. 2017;Supp1:S688–9.
  • Agarwal K, Gane E, Cheng W, et al. HBcrAg, HBV-RNA declines in a phase 2a study evaluating the multi-dose activity of ARB-1467 in HBeAg-positive and negative virally suppressed subjects with hepatitis B. Hepatology. 2017;66(Supp1):22A.
  • Alnylam Pharmeceuticals – press release. 2017 Sep 25 . Available from: http://investors.alnylam.com/releasedetail.cfm?ReleaseID=1041495

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.