359
Views
12
CrossRef citations to date
0
Altmetric
Review

Thymosin-β4: A key modifier of renal disease

ORCID Icon, &
Pages 185-192 | Received 19 Feb 2018, Accepted 02 May 2018, Published online: 09 May 2018

References

  • Eckardt KU, Coresh J, Devuyst O, et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet. 2013;382:158–169.
  • Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–1305.
  • El Nahas M. The global challenge of chronic kidney disease. Kidney Int. 2005;68:2918–2929.
  • Turner JM, Bauer C, Abramowitz MK, et al. Treatment of chronic kidney disease. Kidney Int. 2012;81:351–362.
  • Gilg J, Methven S, Casula A, et al. UK renal registry 19th annual report: chapter 1 UK RRT adult incidence in 2015: national and centre-specific analyses. Nephron. 2017;137(Suppl 1):11–44.
  • Meng XM, Nikolic-Paterson DJ, Lan HY. Inflammatory processes in renal fibrosis. Nat Rev Nephrol. 2014;10:493–503.
  • Kurts C, Panzer U, Anders HJ, et al. The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol. 2013;13:738–753.
  • Navarro-Gonzalez JF, Mora-Fernandez C, Muros De Fuentes M, et al. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol. 2011;7:327–340.
  • Rodriguez-Iturbe B, Pons H, Quiroz Y, et al. The immunological basis of hypertension. Am J Hypertens. 2014;27:1327–1337.
  • Long DA, Norman JT, Fine LG. Restoring the renal microvasculature to treat chronic kidney disease. Nat Rev Nephrol. 2012;8:244–250.
  • Welsh GI, Saleem MA. The podocyte cytoskeleton–key to a functioning glomerulus in health and disease. Nat Rev Nephrol. 2012;8:14–21.
  • Gnudi L, Benedetti S, Woolf AS, et al. Vascular growth factors play critical roles in kidney glomeruli. Clin Sci (Lond). 2015;129:1225–1236.
  • Low TL, Hu SK, Goldstein AL. Complete amino acid sequence of bovine thymosin beta 4: a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci U S A. 1981;78:1162–1166.
  • Sanders MC, Goldstein AL, Wang YL. Thymosin beta 4 (Fx peptide) is a potent regulator of actin polymerization in living cells. Proc Natl Acad Sci U S A. 1992;89:4678–4682.
  • Fan Y, Gong Y, Ghosh PK, et al. Spatial coordination of actin polymerization and ILK-Akt2 activity during endothelial cell migration. Dev Cell. 2009;16:661–674.
  • Santra M, Zhang ZG, Yang J, et al. Thymosin beta4 up-regulation of microRNA-146a promotes oligodendrocyte differentiation and suppression of the Toll-like proinflammatory pathway. J Biol Chem. 2014;289:19508–19518.
  • Bock-Marquette I, Saxena A, White MD, et al. Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature. 2004;432:466–472.
  • Smart N, Risebro CA, Melville AA, et al. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 2007;445:177–182.
  • Sosne G, Qiu P, Christopherson PL, et al. Thymosin beta 4 suppression of corneal NFkappaB: a potential anti-inflammatory pathway. Exp Eye Res. 2007;84:663–669.
  • Conte E, Genovese T, Gili E, et al. Protective effects of thymosin beta4 in a mouse model of lung fibrosis. Ann N Y Acad Sci. 2012;1269:69–73.
  • Qiu P, Wheater MK, Qiu Y, et al. Thymosin beta4 inhibits TNF-alpha-induced NF-kappaB activation, IL-8 expression, and the sensitizing effects by its partners PINCH-1 and ILK. Faseb J. 2011;25:1815–1826.
  • Lee SJ, So IS, Park SY, et al. Thymosin beta4 is involved in stabilin-2-mediated apoptotic cell engulfment. FEBS Lett. 2008;582:2161–2166.
  • Smart N, Bollini S, Dube KN, et al. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011;474:640–644.
  • Morris DC, Cui Y, Cheung WL, et al. A dose-response study of thymosin beta4 for the treatment of acute stroke. J Neurol Sci. 2014;345:61–67.
  • Sosne G, Qiu P, Ousler GW 3rd, et al. Thymosin beta4: a potential novel dry eye therapy. Ann N Y Acad Sci. 2012;1270:45–50.
  • Conte E, Genovese T, Gili E, et al. Thymosin beta4 protects C57BL/6 mice from bleomycin-induced damage in the lung. Eur J Clin Invest. 2013;43:309–315.
  • Goldstein AL, Hannappel E, Sosne G, et al. Thymosin beta4: a multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther. 2012;12:37–51.
  • Young JD, Lawrence AJ, MacLean AG, et al. Thymosin beta 4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nat Med. 1999;5:1424–1427.
  • Evans MA, Smart N, Dube KN, et al. Thymosin beta4-sulfoxide attenuates inflammatory cell infiltration and promotes cardiac wound healing. Nat Commun. 2013;4:2081.
  • Kumar N, Nakagawa P, Janic B, et al. The anti-inflammatory peptide Ac-SDKP is released from thymosin-beta4 by renal meprin-alpha and prolyl oligopeptidase. Am J Physiol Renal Physiol. 2016;310:F1026–F1034.
  • Cavasin MA, Rhaleb NE, Yang XP, et al. Prolyl oligopeptidase is involved in release of the antifibrotic peptide Ac-SDKP. Hypertension. 2004;43:1140–1145.
  • Rieger KJ, Saez-Servent N, Papet MP, et al. Involvement of human plasma angiotensin I-converting enzyme in the degradation of the haemoregulatory peptide N-acetyl-seryl-aspartyl-lysyl-proline. Biochem J. 1993;296(Pt 2):373–378.
  • Castoldi G, di Gioia CR, Bombardi C, et al. Renal antifibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline in diabetic rats. Am J Nephrol. 2013;37:65–73.
  • Shibuya K, Kanasaki K, Isono M, et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents renal insufficiency and mesangial matrix expansion in diabetic db/db mice. Diabetes. 2005;54:838–845.
  • Zuo Y, Chun B, Potthoff SA, et al. Fogo, AB: thymosin beta4 and its degradation product, Ac-SDKP, are novel reparative factors in renal fibrosis. Kidney Int. 2013;84:1166–1175.
  • Guinobert I, Viltard M, Piquemal D, et al. Identification of differentially expressed genes between fetal and adult mouse kidney: candidate gene in kidney development. Nephron Physiol. 2006;102:p81–p91.
  • Brunskill EW, Georgas K, Rumballe B, et al. Defining the molecular character of the developing and adult kidney podocyte. PLoS One. 2011;6:e24640.
  • Vasilopoulou E, Kolatsi-Joannou M, Lindenmeyer MT, et al. Long, DA: loss of endogenous thymosin beta4 accelerates glomerular disease. Kidney Int. 2016;90:1056–1070.
  • Nemolato S, Cabras T, Fanari MU, et al. Immunoreactivity of thymosin beta 4 in human foetal and adult genitourinary tract. Eur J Histochem. 2010;54:e43.
  • Xu BJ, Shyr Y, Liang X, et al. Proteomic patterns and prediction of glomerulosclerosis and its mechanisms. J Am Soc Nephrol. 2005;16:2967–2975.
  • Pippin JW, Brinkkoetter PT, Cormack-Aboud FC, et al. Inducible rodent models of acquired podocyte diseases. Am J Physiol Renal Physiol. 2009;296:F213–F229.
  • Khan SB, Cook HT, Bhangal G, et al. Antibody blockade of TNF-alpha reduces inflammation and scarring in experimental crescentic glomerulonephritis. Kidney Int. 2005;67:1812–1820.
  • Knop J, App C, Hannappel E. Antibodies in research of thymosin beta4: investigation of cross-reactivity and influence of fixatives. Ann N Y Acad Sci. 2012;1270:105–111.
  • Al Haj A, Mazur AJ, Buchmeier S, et al. Thymosin beta4 inhibits ADF/cofilin stimulated F-actin cycling and hela cell migration: reversal by active Arp2/3 complex. Cytoskeleton (Hoboken). 2014;71:95–107.
  • Ehrlich HP, Hazard SW. Thymosin beta4 affecting the cytoskeleton organization of the myofibroblasts. Ann N Y Acad Sci. 2012;1269:74–78.
  • Golla R, Philp N, Safer D, et al. Nachmias, VT: co-ordinate regulation of the cytoskeleton in 3T3 cells overexpressing thymosin-beta4. Cell Motil Cytoskeleton. 1997;38:187–200.
  • Malinda KM, Goldstein AL, Kleinman HK. Thymosin beta 4 stimulates directional migration of human umbilical vein endothelial cells. Faseb J. 1997;11:474–481.
  • Peng H, Xu J, Yang XP, et al. Thymosin-beta4 prevents cardiac rupture and improves cardiac function in mice with myocardial infarction. Am J Physiol Heart Circ Physiol. 2014;307:H741–H751.
  • Kumar N, Liao TD, Romero CA, et al. Thymosin beta4 deficiency exacerbates renal and cardiac injury in angiotensin-II-induced hypertension. Hypertension. 2018.
  • Yuan J, Shen Y, Yang X, et al. Thymosin beta4 alleviates renal fibrosis and tubular cell apoptosis through TGF-beta pathway inhibition in UUO rat models. BMC Nephrol. 2017;18:314.
  • Zhu J, Su LP, Zhou Y, et al. Thymosin beta4 attenuates early diabetic nephropathy in a mouse model of type 2 diabetes mellitus. Am J Ther. 2013;22:141–146.
  • Azizi M, Ezan E, Reny JL, et al. Renal and metabolic clearance of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) during angiotensin-converting enzyme inhibition in humans. Hypertension. 1999;33:879–886.
  • Le Meur Y, Lorgeot V, Comte L, et al. Plasma levels and metabolism of AcSDKP in patients with chronic renal failure: relationship with erythropoietin requirements. Am J Kidney Dis. 2001;38:510–517.
  • Nagai T, Nitta K, Kanasaki M, et al. The biological significance of angiotensin-converting enzyme inhibition to combat kidney fibrosis. Clin Exp Nephrol. 2014;19:65–74.
  • Cavasin MA, Liao TD, Yang XP, et al. Decreased endogenous levels of Ac-SDKP promote organ fibrosis. Hypertension. 2007;50:130–136.
  • Wang M, Liu R, Jia X, et al. N-acetyl-seryl-aspartyl-lysyl-proline attenuates renal inflammation and tubulointerstitial fibrosis in rats. Int J Mol Med. 2010;26:795–801.
  • Chan GC, Yiu WH, Wu HJ, et al. N-acetyl-seryl-aspartyl-lysyl-proline alleviates renal fibrosis induced by unilateral ureteric obstruction in BALB/C mice. Mediators Inflamm. 2015;2015:283123.
  • Liao TD, Yang XP, D’Ambrosio M, et al. N-acetyl-seryl-aspartyl-lysyl-proline attenuates renal injury and dysfunction in hypertensive rats with reduced renal mass: council for high blood pressure research. Hypertension. 2010;55:459–467.
  • Rhaleb NE, Pokharel S, Sharma U, et al. Renal protective effects of N-acetyl-ser-asp-lys-pro in deoxycorticosterone acetate-salt hypertensive mice. J Hypertens. 2011;29:330–338.
  • Worou ME, Liao TD, D’Ambrosio M, et al. Renal protective effect of N-acetyl-seryl-aspartyl-lysyl-proline in dahl salt-sensitive rats. Hypertension. 2015;66:816–822.
  • Liao TD, Nakagawa P, Janic B, et al. N-acetyl-seryl-aspartyl-lysyl-proline: mechanisms of renal protection in mouse model of systemic lupus erythematosus. Am J Physiol Renal Physiol. 2015;308:F1146–F1154.
  • Nakagawa P, Masjoan-Juncos JX, Basha H, et al. Effects of N-acetyl-seryl-asparyl-lysyl-proline on blood pressure, renal damage, and mortality in systemic lupus erythematosus. Physiol Rep. 2017;5:e13084.
  • Nagai T, Kanasaki M, Srivastava SP, et al. N-acetyl-seryl-aspartyl-lysyl-proline inhibits diabetes-associated kidney fibrosis and endothelial-mesenchymal transition. Biomed Res Int. 2014;2014:696475.
  • Li J, Qu X, Bertram JF. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol. 2009;175:1380–1388.
  • Patel V, Noureddine L. MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens. 2012;21:410–416.
  • Wang B, Jha JC, Hagiwara S, et al. Transforming growth factor-beta1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int. 2014;85:352–361.
  • Srivastava SP, Shi S, Kanasaki M, et al. Effect of antifibrotic microRNAs crosstalk on the action of N-acetyl-seryl-aspartyl-lysyl-proline in diabetes-related kidney fibrosis. Sci Rep. 2016;6:29884.
  • Nitta K, Shi S, Nagai T, et al. Oral administration of N-acetyl-seryl-aspartyl-lysyl-proline ameliorates kidney disease in both type 1 and type 2 diabetic mice via a therapeutic regimen. Biomed Res Int. 2016;2016:9172157.
  • Omata M, Taniguchi H, Koya D, et al. N-acetyl-seryl-aspartyl-lysyl-proline ameliorates the progression of renal dysfunction and fibrosis in WKY rats with established anti-glomerular basement membrane nephritis. J Am Soc Nephrol. 2006;17:674–685.
  • Babelova A, Jansen F, Sander K, et al. Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease. PLoS One. 2013;8:e80328.
  • Wang L, Ellis MJ, Gomez JA, et al. Mechanisms of the proteinuria induced by Rho GTPases. Kidney Int. 2012;81:1075–1085.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.