140
Views
14
CrossRef citations to date
0
Altmetric
Review

Anti-inflammatory potential of thymosin β4 in the central nervous system: implications for progressive neurodegenerative diseases

ORCID Icon
Pages 165-169 | Received 07 Dec 2017, Accepted 06 Jun 2018, Published online: 31 Jul 2018

References

  • Goldstein AL. History of the discovery of the thymosins. Ann N Y Acad Sci. 2007;1112:1–13.
  • Huff T, Müller CS, Otto AM, et al. beta-Thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol. 2001;33(3):205–220.
  • Gomez-Marquez J, Dosil M, Segade F, et al. Thymosin-beta 4 gene. Preliminary characterization and expression in tissues, thymic cells, and lymphocytes. J Immunol. 1989;143(8):2740–2744.
  • Hannappel E, Xu GJ, Morgan J, et al. Thymosin beta 4: a ubiquitous peptide in rat and mouse tissues. Proc Natl Acad Sci U S A. 1982;79(7):2172–2175.
  • Paulussen M, Landuyt B, Schoofs L, et al. Thymosin beta 4 mRNA and peptide expression in phagocytic cells of different mouse tissues. Peptides. 2009;30(10):1822–1832.
  • Lever M, Theiss C, Morosan-Puopolo G, et al. Thymosin beta4 overexpression regulates neuron production and spatial distribution in the developing avian optic tectum. Histochem Cell Biol. 2017;147(5):555–564.
  • Yamamoto M, Yamagishi T, Yaginuma H, et al. Localization of thymosin beta 4 to the neural tissues during the development of Xenopus laevis, as studied by in situ hybridization and immunohistochemistry. Brain Res Dev Brain Res. 1994;79(2):177–185.
  • Carpintero P, Anadón R, Díaz-Regueira S, et al. Expression of thymosin beta4 messenger RNA in normal and kainate-treated rat forebrain. Neuroscience. 1999;90(4):1433–1444.
  • Mollinari C, Ricci-Vitiani L, Pieri M, et al. Downregulation of thymosin beta4 in neural progenitor grafts promotes spinal cord regeneration. J Cell Sci. 2009;122(Pt 22):4195–4207.
  • Goldstein AL, Kleinman HK. Advances in the basic and clinical applications of thymosin beta4. Expert Opin Biol Ther. 2015;15(Suppl 1):S139–S145.
  • Sosne G, Qiu P, Goldstein AL, et al. Biological activities of thymosin beta4 defined by active sites in short peptide sequences. FASEB J. 2010;24(7):2144–2151.
  • Chopp M, Zhang ZG. Thymosin beta4 as a restorative/regenerative therapy for neurological injury and neurodegenerative diseases. Expert Opin Biol Ther. 2015;15(Suppl 1):S9–S12.
  • Xiong Y, Mahmood A, Meng Y, et al. Neuroprotective and neurorestorative effects of thymosin beta4 treatment following experimental traumatic brain injury. Ann N Y Acad Sci. 2012;1270:51–58.
  • Xiong Y, Zhang Y, Mahmood A, et al. Neuroprotective and neurorestorative effects of thymosin beta4 treatment initiated 6 hours after traumatic brain injury in rats. J Neurosurg. 2012;116(5):1081–1092.
  • Zhang J, Zhang ZG, Li Y, et al. Thymosin beta4 promotes oligodendrogenesis in the demyelinating central nervous system. Neurobiol Dis. 2016;88:85–95.
  • Morris DC, Cui Y, Cheung WL, et al. A dose-response study of thymosin beta4 for the treatment of acute stroke. J Neurol Sci. 2014;345(12):61–67.
  • Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405.
  • Knierim JJ. The hippocampus. Curr Biol. 2015;25(23):R1116–R1121.
  • Burgess N, Maguire EA, O’Keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35(4):625–641.
  • Bartsch T, Wulff P. The hippocampus in aging and disease: from plasticity to vulnerability. Neuroscience. 2015;309:1–16.
  • Kim DH, Moon E-Y, Yi JH, et al. Peptide fragment of thymosin beta4 increases hippocampal neurogenesis and facilitates spatial memory. Neuroscience. 2015;310:51–62.
  • Novoseletskaia AV, Kiseleva NM, Belova OV, et al. [The impact of immunoactive drugs on passive avoidance response]. Vestn Ross Akad Med Nauk. 2014;(7–8):25–29.
  • Boldyrev AM, Orbachevskaia I, Mitrokhina SS. [The effect of thymosin fraction 5 and its synthetic component thymosin-alpha 1 on rat open-field behavior]. Farmakol Toksikol. 1990;53(6):15–17.
  • Padilla E, Shumake J, Barrett DW, et al. Novelty-evoked activity in open field predicts susceptibility to helpless behavior. Physiol Behav. 2010;101(5):746–754.
  • Negroni J, Venault P, Pardon MC, et al. Chronic ultra-mild stress improves locomotor performance of B6D2F1 mice in a motor risk situation. Behav Brain Res. 2004;155(2):265–273.
  • Pardon M, Pérez-Diaz F, Joubert C, et al. Age-dependent effects of a chronic ultramild stress procedure on open-field behaviour in B6D2F1 female mice. Physiol Behav. 2000;70(12):7–13.
  • Wang, G, He F, Xu Y, et al. Immunopotentiator Thymosin Alpha-1 Promotes Neurogenesis and Cognition in the Developing Mouse via a Systemic Th1 Bias. Neurosci Bull; 2017;33(6):675–684.
  • Ueda H, Sasaki K, Halder SK, et al. Prothymosin alpha-deficiency enhances anxiety-like behaviors and impairs learning/memory functions and neurogenesis. J Neurochem. 2017;141(1):124–136.
  • Sosne G, Qiu P, Christopherson PL, et al. Thymosin beta 4 suppression of corneal NFkappaB: a potential anti-inflammatory pathway. Exp Eye Res. 2007;84(4):663–669.
  • London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci. 2013;7:34.
  • Rezai-Zadeh K, Gate D, Town T. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease? J Neuroimmune Pharmacol. 2009;4(4):462–475.
  • Schwartz M, Kipnis J, Rivest S, et al. How do immune cells support and shape the brain in health, disease, and aging? J Neurosci. 2013;33(45):17587–17596.
  • Skaper SD, Facci L, Giusti P. Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: a review. CNS Neurol Disord Drug Targets. 2014;13(10):1654–1666.
  • Sapp E, Kegel KB, Aronin N, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol. 2001;60(2):161–172.
  • Burda JE, Sofroniew MV. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron. 2014;81(2):229–248.
  • Dong JH, Ying G-X, Liu X, et al. Expression of thymosin beta4 mRNA by activated microglia in the denervated hippocampus. Neuroreport. 2005;16(15):1629–1633.
  • Zhou T, Huang Y-X, Song J-W, et al. Thymosin beta4 inhibits microglia activation through microRNA 146a in neonatal rats following hypoxia injury. Neuroreport. 2015;26(17):1032–1038.
  • Pardon MC, Yanez Lopez M, Yuchun D, et al. Magnetic Resonance Spectroscopy discriminates the response to microglial stimulation of wild type and Alzheimer’s disease models. Sci Rep. 2016;6:19880.
  • Zhang J, Wu J, Zeng W, et al. Function of thymosin beta-4 in ethanol-induced microglial activation. Cell Physiol Biochem. 2016;38(6):2230–2238.
  • Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461.
  • Kannan L, Rath NC, Liyanage R, et al. Effect of toll-like receptor activation on thymosin beta-4 production by chicken macrophages. Mol Cell Biochem. 2010;344(12):55–63.
  • Zhang J, Zhang ZG, Morris D, et al. Neurological functional recovery after thymosin beta4 treatment in mice with experimental auto encephalomyelitis. Neuroscience. 2009;164(4):1887–1893.
  • Santra M, Zhang ZG, Yang J, et al. Thymosin beta4 up-regulation of microRNA-146a promotes oligodendrocyte differentiation and suppression of the Toll-like proinflammatory pathway. J Biol Chem. 2014;289(28):19508–19518.
  • Saba R, Gushue S, Huzarewich RLCH, et al. MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS One. 2012;7(2):e30832.
  • Cardoso AL, Guedes JR, De Lima MC. Role of microRNAs in the regulation of innate immune cells under neuroinflammatory conditions. Curr Opin Pharmacol. 2016;26:1–9.
  • Quinn EM, Wang JH, O’Callaghan G, et al. MicroRNA-146a is upregulated by and negatively regulates TLR2 signaling. PLoS One. 2013;8(4):e62232.
  • Henn A, Lund S, Hedtjärn M, et al. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX. 2009;26(2):83–94.
  • Kuzan A. Thymosin beta as an Actin-binding Protein with a Variety of Functions. Adv Clin Exp Med. 2016;25(6):1331–1336.
  • Young JD, Lawrence AJ, MacLean AG, et al. Thymosin beta 4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nat Med. 1999;5(12):1424–1427.
  • Evans MA, Smart N, Dubé KN, et al. Thymosin beta4-sulfoxide attenuates inflammatory cell infiltration and promotes cardiac wound healing. Nat Commun. 2013;4:2081.
  • Huff T, Otto AM, Müller CHRISTIANSG, et al. Thymosin β4 is released from human blood platelets and attached by factor XIIIa (transglutaminase) to fibrin and collagen. Faseb Journal. 2002;16:7.
  • Renault L. . Intrinsic, functional and structural properties of beta-Thymosins and beta-Thymosin/WH2 domains in the regulation and coordination of actin self-assembly dynamics and cytoskeleton remodeling. Thymosins. 2016;102:25–54.
  • Freeman KW, Bowman BR, Zetter BR. Regenerative protein thymosin beta-4 is a novel regulator of purinergic signaling. Faseb Journal. 2011;25(3):907–915.
  • Vazquez-Villoldo N, Domercq M, Martín A, et al. P2X4 receptors control the fate and survival of activated microglia. Glia. 2014;62(2):171–184.
  • Su F, Bai F, Zhou H, et al. Microglial toll-like receptors and Alzheimer’s disease. Brain Behav Immun. 2016;52:187–198.
  • Saba R, Sorensen DL, Booth SA. MicroRNA-146a: A dominant, negative regulator of the innate immune response. Front Immunol. 2014;5:578.
  • Le Pera M, Urso E, Sprovieri T, et al. Contribution of cerebrospinal fluid thymosin beta4 levels to the clinical differentiation of Creutzfeldt-Jakob disease. Arch Neurol. 2012;69(7):868–872.
  • Walker DG, Lue LF, Beach TG. Gene expression profiling of amyloid beta peptide-stimulated human post-mortem brain microglia. Neurobiol Aging. 2001;22(6):957–966.
  • Nelson PT, Alafuzoff I, Bigio EH, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71(5):362–381.
  • Laurent C, Dorothée G, Hunot S, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140(1):184–200.
  • Banks WA. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009;9(Suppl 1):S3.
  • Mora CA, Baumann CA, Paino JE, et al. Biodistribution of synthetic thymosin beta 4 in the serum, urine, and major organs of mice. Int J Immunopharmacol. 1997;19(1):1–8.
  • Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.