264
Views
1
CrossRef citations to date
0
Altmetric
Review

Understanding how combinatorial targeting of TLRs and TNFR family costimulatory members promote enhanced T cell responses

, , , &
Pages 1073-1083 | Received 09 Apr 2018, Accepted 28 Aug 2018, Published online: 12 Sep 2018

References

  • Pantaleo G, Koup RA. Correlates of immune protection in HIV-1 infection: what we know, what we don’t know, what we should know. Nat Med. 2004 Aug;10(8):806–810.
  • Hoft DF. Tuberculosis vaccine development: goals, immunological design, and evaluation. Lancet. 2008 Jul 12;372(9633):164–175.
  • Reyes-Sandoval A, Pearson FE, Todryk S, et al. Potency assays for novel T cell-inducing vaccines against malaria. Curr Opin Mol Ther. 2009 Feb;11(1):72–80.
  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011 Jun;12(6):509–517.
  • Dubensky TW Jr., Reed SG. Adjuvants for cancer vaccines. Semin Immunol. 2010 Jun;22(3):155–161.
  • Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001 Aug;2(8):675–680.
  • Schnare M, Barton GM, Holt AC, et al. Toll-like receptors control activation of adaptive immune responses. Nat Immunol. 2001 Oct;2(10):947–950.
  • Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol Rev. 2009 Jan;227(1):221–233.
  • Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010 Jan 15;327(5963):291–295.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010 May;11(5):373–384.
  • Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol. 2003 Aug;3(8):609–620.
  • Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol. 2005;23:23–68.
  • Wortzman ME, Clouthier DL, McPherson AJ, et al. The contextual role of TNFR family members in CD8(+) T-cell control of viral infections. Immunol Rev. 2013 Sep;255(1):125–148.
  • Moran AE, Kovacsovics-Bankowski M, Weinberg AD. The TNFRs OX40, 4-1BB, and CD40 as targets for cancer immunotherapy. Curr Opin Immunol. 2013 Apr;25(2):230–237.
  • Reed SG, Bertholet S, Coler RN, et al. New horizons in adjuvants for vaccine development. Trends Immunol. 2009 Jan;30(1):23–32.
  • Tong NK, Beran J, Kee SA, et al. Immunogenicity and safety of an adjuvanted hepatitis B vaccine in pre-hemodialysis and hemodialysis patients. Kidney Int. 2005 Nov;68(5):2298–2303.
  • Kundi M. New hepatitis B vaccine formulated with an improved adjuvant system. Expert Rev. Vaccines. 2007 Apr;6(2):133–140.
  • Harper DM, Franco EL, Wheeler C, et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet. 2004 Nov 13-19;364(9447):1757–1765.
  • Paavonen J, Jenkins D, Bosch FX, et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet. 2007 Jun 30;369(9580):2161–2170.
  • Kurche JS, Burchill MA, Sanchez PJ, et al. Comparison of OX40 ligand and CD70 in the promotion of CD4+ T cell responses. J Immunol. 2010 Aug 15;185(4):2106–2115.
  • Dawicki W, Watts TH. Expression and function of 4-1BB during CD4 versus CD8 T cell responses in vivo. Eur J Immunol. 2004 Mar;34(3):743–751.
  • Shuford WW, Klussman K, Tritchler DD, et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med. 1997 Jul 7;186(1):47–55.
  • Cooper D, Bansal-Pakala P, Croft M. 4-1BB (CD137) controls the clonal expansion and survival of CD8 T cells in vivo but does not contribute to the development of cytotoxicity. Eur J Immunol. 2002 Feb;32(2):521–529.
  • Schriever F, Freedman AS, Freeman G, et al. Isolated human follicular dendritic cells display a unique antigenic phenotype. J Exp Med. 1989 Jun 1;169(6):2043–2058.
  • Caux C, Massacrier C, Vanbervliet B, et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med. 1994 Oct 1;180(4):1263–1272.
  • Alderson MR, Armitage RJ, Tough TW, et al. CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med. 1993 Aug 1;178(2):669–674.
  • Paulie S, Rosen A, Ehlin-Henriksson B, et al. The human B lymphocyte and carcinoma antigen, CDw40, is a phos phoprotein involved in growth signal transduction. J Immunol. 1989 Jan 15;142(2):590–595.
  • Aruffo A, Farrington M, Hollenbaugh D, et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X linked hyper IgM syndrome. Cell. 1993 Jan 29;72(2):291–300.
  • Farrington M, Grosmaire LS, Nonoyama S, et al. CD40 ligand expression is defective in a subset of patients with common variable immunodeficiency. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1099–1103.
  • Kedl RM, Jordan M, Potter T, et al. CD40 stimulation accelerates deletion of tumor-specific CD8(+) T cells in the absence of tumor-antigen vaccination. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10811–10816.
  • Mauri C, Mars LT, Londei M. Therapeutic activity of agonistic monoclonal antibodies against CD40 in a chronic autoimmune inflammatory process. Nat Med. 2000. 6;Jun(6):673–679.
  • Vonderheide RH, Dutcher JP, Anderson JE, et al. Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol. 2001 Jul 1;19(13):3280–3287.
  • Ahonen CL, Doxsee CL, McGurran SM, et al. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J Exp Med. 2004 Mar 15;199(6):775–784.
  • Assudani D, Cho HI, DeVito N, et al. In vivo expansion, persistence, and function of peptide vaccine-induced CD8 T cells occur independently of CD4 T cells. Cancer Res. 2008 Dec 1;68(23):9892–9899.
  • Kawai T, Takeuchi O, Fujita T, et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol. 2001 Nov 15;167(10):5887–5894.
  • Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003 Aug 1;301(5633):640–643.
  • Hoebe K, Du X, Georgel P, et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature. 2003 Aug 14;424(6950):743–748.
  • Kawai T, Akira S. TLR signaling. Semin. Immunol. 2007 Feb;19(1):24–32.
  • Maxwell JR, Campbell JD, Kim CH, et al. CD40 activation boosts T cell immunity in vivo by enhancing T cell clonal expansion and delaying peripheral T cell deletion. J Immunol. 1999 Feb 15;162(4):2024–2034.
  • Maxwell JR, Ruby C, Kerkvliet NI, et al. Contrasting the roles of costimulation and the natural adjuvant lipopolysaccharide during the induction of T cell immunity. J Immunol. 2002 May 1;168(9):4372–4381.
  • Lee S, Stokes KL, Currier MG, et al. Vaccine- elicited CD8+ T cells protect against respiratory syncytial virus strain A2-line19 F-induced pathogenesis in BALB/c mice. J Virol. 2012 Dec;86(23):13016–13024.
  • Thompson EA, Liang F, Lindgren G, et al. Human anti-CD40 antibody and poly IC:LC adjuvant combination induces potent T cell responses in the lung of nonhuman primates. J Immunol. 2015 Aug 1;195(3):1015–1024.
  • Zabaleta A, Arribillaga L, Llopiz D, et al. Induction of potent and long-lasting CD4 and CD8 T-cell responses against hepatitis C virus by immunization with viral antigens plus poly(I:C) and anti-CD40. Antiviral Res. 2007 Apr;74(1):25–35.
  • Bain C, Fatmi A, Zoulim F, et al. Impaired allostimulatory function of dendritic cells in chronic hepatitis C infection. Gastroenterology. 2001 Feb;120(2):512–524.
  • Kanto T, Hayashi N, Takehara T, et al. Impaired allostimulatory capacity of peripheral blood dendritic cells recovered from hepatitis C virus-infected individuals. J Immunol. 1999 May 1;162(9):5584–5591.
  • Lapointe R, Toso JF, Butts C, et al. Human dendritic cells require multiple activation signals for the efficient generation of tumor antigen-specific T lymphocytes. Eur J Immunol. 2000 Nov;30(11):3291–3298.
  • Schulz O, Edwards AD, Schito M, et al. CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity. 2000 Oct;13(4):453–462.
  • Stitz L, Baenziger J, Pircher H, et al. Effect of rabbit anti-asialo GM1 treatment in vivo or with anti-asialo GM1 plus complement in vitro on cytotoxic T cell activities. J Immunol. 1986 Jun 15;136(12):4674–4680.
  • Llopiz D, Dotor J, Zabaleta A, et al. Combined immunization with adjuvant molecules poly(I:C) and anti-CD40 plus a tumor antigen has potent prophylactic and therapeutic antitumor effects. Cancer Immunol Immunother. 2008 Jan;57(1):19–29.
  • Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001 Oct 18;413(6857):732–738.
  • Sivori S, Falco M, Della Chiesa M, et al. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10116–10121.
  • Mackey MF, Gunn JR, Maliszewsky C, et al. Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol. 1998 Sep 1;161(5):2094–2098.
  • Carbone E, Ruggiero G, Terrazzano G, et al. A new mechanism of NK cell cytotoxicity activation: the CD40-CD40 ligand interaction. J Exp Med. 1997 Jun 16;185(12):2053–2060.
  • Turner JG, Rakhmilevich AL, Burdelya L, et al. Anti-CD40 antibody induces antitumor and antimetastatic effects: the role of NK cells. J Immunol. 2001 Jan 1;166(1):89–94.
  • Garbi N, Arnold B, Gordon S, et al. CpG motifs as proinflammatory factors render autochthonous tumors permissive for infiltration and destruction. J Immunol. 2004 May 15;172(10):5861–5869.
  • Uk S, Jr C-R, Nesbeth YC, et al. In situ stimulation of CD40 and toll-like receptor 3 transforms ovarian cancer-infiltrating dendritic cells from immunosuppressive to immunostimulatory cells. Cancer Res. 2009 Sep 15;69(18):7329–7337.
  • US Dept. of Health & Human Services C. Human papillomavirus (HPV)- associated cancers. 2013 [cited 2014 Nov 5]. Available from: http://www.cdc.gov/cancer/hpv/statistics/cases.htm
  • Viens LJ, Henley SJ, Watson M, et al. Human papillomavirus-associated cancers - United States, 2008-2012. MMWR Morb Mortal Wkly Rep. 2016 Jul 8;65(26):661–666.
  • Munger K, Phelps WC, Bubb V, et al. E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol. 1989 Oct;63(10):4417–4421.
  • Yin W, Duluc D, Joo H, et al. Therapeutic HPV cancer vaccine targeted to CD40 elicits effective CD8+ T-cell immunity. Cancer Immunol Res. 2016 Oct;4(10):823–834.
  • Sanchez PJ, McWilliams JA, Haluszczak C, et al. Combined TLR/CD40 stimulation mediates potent cellular immunity by regulating dendritic cell expression of CD70 in vivo. J Immunol. 2007 Feb 1;178(3):1564–1572.
  • McWilliams JA, Sanchez PJ, Haluszczak C, et al. Multiple innate signaling pathways cooperate with CD40 to induce potent, CD70-dependent cellular immunity. Vaccine. 2010 Feb 10;28(6):1468–1476.
  • Paterson DJ, Jefferies WA, Green JR, et al. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol Immunol. 1987 Dec;24(12):1281–1290.
  • al-Shamkhani A, Birkeland ML, Puklavec M, et al. OX40 is differentially expressed on activated rat and mouse T cells and is the sole receptor for the OX40 ligand. Eur J Immunol. 1996 Aug;26(8):1695–1699.
  • Gramaglia I, Weinberg AD, Lemon M, et al. Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol. 1998 Dec 15;161(12):6510–6517.
  • Rogers PR, Song J, Gramaglia I, et al. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity. 2001 Sep;15(3):445–455.
  • Weinberg AD, Vella AT, Croft M. OX-40: life beyond the effector T cell stage. Sem Immunol. 1998 Dec;10(6):471–480.
  • Williams CA, Murray SE, Weinberg AD, et al. OX40-mediated differentiation to effector function requires IL-2 receptor signaling but not CD28, CD40, IL-12Rbeta2, or T-bet. J Immunol. 2007 Jun 15;178(12):7694–7702.
  • Redmond WL, Gough MJ, Charbonneau B, et al. Defects in the acquisition of CD8 T cell effector function after priming with tumor or soluble antigen can be overcome by the addition of an OX40 agonist. J Immunol. 2007 Dec 1;179(11):7244–7253.
  • Maxwell JR, Weinberg A, Prell RA, et al. Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J Immunol. 2000 Jan 1;164(1):107–112.
  • Shinde P, Liu W, Menoret A, et al. Optimal CD4 T cell priming after LPS-based adjuvanticity with CD134 costimulation relies on CXCL9 production. J Leukoc Biol. 2017 Jul;102(1):57–69.
  • Grubin CE, Kovats S, deRoos P, et al. Deficient positive selection of CD4 T cells in mice displaying altered repertoires of MHC class II-bound self- peptides. Immunity. 1997 Aug;7(2):197–208.
  • Firpo EJ, Kong RK, Zhou Q, et al. Antigen specific dose-dependent system for the study of an inheritable and reversible phenotype in mouse CD4+ T cells. Immunology. 2002 Dec;107(4):480–488.
  • Sagiv-Barfi I, Czerwinski DK, Levy S, et al. Eradication of spontaneous malignancy by local immunotherapy. Sci Transl Med. 2018 Jan 31;10(426).
  • Van Pel A, Boon T. Protection against a nonimmunogenic mouse leukemia by an immunogenic variant obtained by mutagenesis. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4718–4722.
  • Trapani JA. Target cell apoptosis induced by cytotoxic T cells and natural killer cells involves synergy between the pore-forming protein, perforin, and the serine protease, granzyme B. Aust N Z J Med. 1995 Dec;25(6):793–799.
  • Young JD, Hengartner H, Podack ER, et al. Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell. 1986 Mar 28;44(6):849–859.
  • Zhang S, Li W, Xia Z, et al. CD4 T cell dependent tumor immunity stimulated by dendritic cell based vaccine. Biochem Biophys Res Commun. 2011 Sep 23;413(2):294–298.
  • Kreiter S, Vormehr M, van de Roemer N, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015 Apr 30;520(7549):692–696.
  • Kumai T, Matsuda Y, Ohkuri T, et al. c-Met is a novel tumor associated antigen for T-cell based immunotherapy against NK/T cell lymphoma. Oncoimmunology. 2015 Feb;4(2):e976077.
  • Kumai T, Matsuda Y, Oikawa K, et al. EGFR inhibitors augment antitumour helper T-cell responses of HER family-specific immunotherapy. Br J Cancer. 2013 Oct 15;109(8):2155–2166.
  • Kumai T, Lee S, Cho HI, et al. Optimization of peptide vaccines to induce robust antitumor CD4 T-cell responses. Cancer Immunol Res. 2017 Jan;5(1):72–83.
  • Qui HZ, Hagymasi AT, Bandyopadhyay S, et al. CD134 plus CD137 dual costimulation induces Eomesodermin in CD4 T cells to program cytotoxic Th1 differentiation. J Immunol. 2011 Oct 1;187(7):3555–3564.
  • Mittal P, St Rose MC, Wang X, et al. Tumor-unrelated CD4 T cell help augments CD134 plus CD137 dual costimulation tumor therapy. J Immunol. 2015 Dec 15;195(12):5816–5826.
  • Kim JJ, Nottingham LK, Sin JI, et al. CD8 positive T cells influence antigen-specific immune responses through the expression of chemokines. J Clin Invest. 1998 Sep 15;102(6):1112–1124.
  • Warger T, Osterloh P, Rechtsteiner G, et al. Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo. Blood. 2006 Jul 15;108(2):544–550.
  • Teague TK, Marrack P, Kappler JW, et al. IL-6 rescues resting mouse cells from apoptosis. J Immunol. 1997 Jun 15;158(12):5791–5796.
  • Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science. 2003 Feb 14;299(5609):1033–1036.
  • Takahashi C, Mittler RS, Vella AT. Cutting edge: 4-1BB is a bona fide CD8 T cell survival signal. J Immunol. 1999 May 1;162(9):5037–5040.
  • Bertram EM, Lau P, Watts TH. Temporal segregation of 4-1BB versus CD28- mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J Immunol. 2002 Apr 15;168(8):3777–3785.
  • Tan JT, Whitmire JK, Ahmed R, et al. 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses. J Immunol. 1999 Nov 1;163(9):4859–4868.
  • Melero I, Shuford WW, Newby SA, et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicated established tumors. Nat Med. 1997 Jun;3(6):682–685.
  • Melero I, Johnston JV, Shufford WW, et al. NK1.1 cells express 4-1BB (CDw137) costimulatory molecule and are required for tumor immunityelicited by anti-4-1BB monoclonal antibodies. Cellular Immunol. 1998 Dec 15;190(2):167–172.
  • Myers L, Lee SW, Rossi RJ, et al. Combined CD137 (4-1BB) and adjuvant therapy generates a developing pool of peptide- specific CD8 memory T cells. Int Immunol. 2006 Feb;18(2):325–333.
  • Joseph AM, Srivastava R, Zabaleta J, et al. Cross-talk between 4-1BB and TLR1-TLR2 signaling in CD8+ T cells regulates TLR2’s costimulatory effects. Cancer Immunol Res. 2016 Aug;4(8):708–716.
  • Sznol M, Hodi FS, Margolin K, et al. Phase I study of BMS-663513, a fully human anti-CD137 agonist monoclonal antibody, in patients (pts) with advanced cancer (CA). J Clin Oncol. 2008;26(15_suppl):3007–3007.
  • Tolcher AW, Sznol M, Hu-Lieskovan S, et al. Phase Ib study of utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res. 2017 Sep 15;23(18):5349–5357.
  • Srivastava AK, Dinc G, Sharma RK, et al. SA-4-1BBL and monophosphoryl lipid A constitute an efficacious combination adjuvant for cancer vaccines. Cancer Res. 2014 Nov 15;74(22):6441–6451.
  • Martin-Fontecha A, Thomsen LL, Brett S, et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nature Immunol. 2004 Dec;5(12):1260–1265.
  • Castle BE, Kishimoto K, Stearns C, et al. Regulation of expression of the ligand for CD40 on T helper lymphocytes. J Immunol. 1993 Aug 15;151(4):1777–1788.
  • Taraban VY, Rowley TF, Al-Shamkhani A. Cutting edge: a critical role for CD70 in CD8 T cell priming by CD40-licensed APCs. J Immunol. 2004 Dec 1;173(11):6542–6546.
  • Bullock TN, Yagita H. Induction of CD70 on dendritic cells through CD40 or TLR stimulation contributes to the development of CD8+ T cell responses in the absence of CD4+ T cells. J Immunol. 2005 Jan 15;174(2):710–717.
  • Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998 Jun 4;393(6684):474–478.
  • Hermans IF, Ritchie DS, Daish A, et al. Impaired ability of MHC class II-/- dendritic cells to provide tumor protection is rescued by CD40 ligation. J Immunol. 1999 Jul 1;163(1):77–81.
  • Faiola B, Doyle C, Gilboa E, et al. Influence of CD4 T cells and the source of major histocompatibility complex class II-restricted peptides on cytotoxic T-cell priming by dendritic cells. Immunology. 2002 Jan;105(1):47–55.
  • Wang JC, Livingstone AM. Cutting edge: CD4+ T cell help can be essential for primary CD8+ T cell responses in vivo. J Immunol. 2003 Dec 15;171(12):6339–6343.
  • Bourgeois C, Rocha B, Tanchot C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science. 2002 Sep 20;297(5589):2060–2063.
  • Dong H, Franklin NA, Ritchea SB, et al. CD70 and IFN-1 selectively induce eomesodermin or T-bet and synergize to promote CD8+T-cell responses. Eur J Immunol. 2015 Dec;45(12):3289–3301.
  • Intlekofer AM, Takemoto N, Wherry EJ, et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nature Immunol. 2005 Dec;6(12):1236–1244.
  • Agarwal P, Raghavan A, Nandiwada SL, et al. Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory. J Immunol. 2009 Aug 1;183(3):1695–1704.
  • Peperzak V, Xiao Y, Veraar EA, et al. CD27 sustains survival of CTLs in virus-infected nonlymphoid tissue in mice by inducing autocrine IL-2 production. J Clin Invest. 2010 Jan;120(1):168–178.
  • Pipkin ME, Sacks JA, Cruz-Guilloty F, et al. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity. 2010 Jan 29;32(1):79–90.
  • Maxwell JR, Yadav R, Rossi RJ, et al. IL-18 bridges innate and adaptive immunity through IFN-gamma and the CD134 pathway. J Immunol. 2006 Jul 1;177(1):234–245.
  • Tough DF, Borrow P, Sprent J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science. 1996 Jun 28;272(5270):1947–1950.
  • Marrack P, Kappler J, Type MT. I interferons keep activated T cells alive. J Exp Med. 1999 Feb 1;189(3):521–530.
  • Vella AT, Dow S, Potter TA, et al. Cytokine-induced survival of activated T cells in vitro and in vivo. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3810–3815.
  • Schluns KS, Lefrancois L. Cytokine control of memory T-cell development and survival. Nat Rev Immunol. 2003 Apr;3(4):269–279.
  • Melchionda F, Fry TJ, Milliron MJ, et al. Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J Clin Invest. 2005 May;115(5):1177–1187.
  • Pulle G, Vidric M, Watts TH. IL-15-dependent induction of 4-1BB promotes antigen-independent CD8 memory T cell survival. J Immunol. 2006 Mar 1;176(5):2739–2748.
  • Sawa Y, Arima Y, Ogura H, et al. Hepatic interleukin-7 expression regulates T cell responses. Immunity. 2009 Mar 20;30(3):447–457.
  • Li P, Mitra S, Spolski R, et al. STAT5-mediated chromatin interactions in superenhancers activate IL-2 highly inducible genes: functional dissection of the Il2ra gene locus. Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12111–12119.
  • Bitar A, De R, Melgar S, et al. Induction of immunomodulatory miR-146a and miR-155 in small intestinal epithelium of Vibrio cholerae infected patients at acute stage of cholera. PloS One. 2017;12(3):e0173817.
  • Starczynowski DT, Kuchenbauer F, Argiropoulos B, et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med. 2010 Jan;16(1):49–58.
  • Hou J, Wang P, Lin L, et al. MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol. 2009 Aug 1;183(3):2150–2158.
  • Nahid MA, Yao B, Dominguez-Gutierrez PR, et al. Regulation of TLR2-mediated tolerance and cross-tolerance through IRAK4 modulation by miR-132 and miR-212. J Immunol. 2013 Feb 1;190(3):1250–1263.
  • Cameron JE, Yin Q, Fewell C, et al. Epstein-Barr virus latent membrane protein 1 induces cellular microRNA miR-146a, a modulator of lymphocyte signaling pathways. J Virol. 2008 Feb;82(4):1946–1958.
  • O’Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1604–1609.
  • McAleer JP, Zammit DJ, Lefrancois L, et al. The lipopoly- saccharide adjuvant effect on T cells relies on nonoverlapping contributions from the MyD88 pathway and CD11c+ cells. J Immunol. 2007 Nov 15;179(10):6524–6535.
  • McAleer JP, Rossi RJ, Vella AT. Lipopolysaccharide potentiates effector T cell accumulation into nonlymphoid tissues through TRIF. J Immunol. 2009 May 1;182(9):5322–5330.
  • Gelman AE, Zhang J, Choi Y, et al. Toll-like receptor ligands directly promote activated CD4+ T cell survival. J Immunol. 2004 May 15;172(10):6065–6073.
  • Gelman AE, LaRosa DF, Zhang J, et al. The adaptor molecule MyD88 activates PI-3 kinase signaling in CD4+ T cells and enables CpG oligodeoxynucleotide-mediated costimulation. Immunity. 2006 Nov;25(5):783–793.
  • Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004 Jan 2;303(5654):83–86.
  • Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007 Apr 6;129(1):147–161.
  • Papapetrou EP, Kovalovsky D, Beloeil L, et al. Harnessing endogenous miR-181a to segregate transgenic antigen receptor expression in developing versus post-thymic T cells in murine hematopoietic chimeras. J Clin Invest. 2009 Jan;119(1):157–168.
  • Ebert PJ, Jiang S, Xie J, et al. An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a. Nat Immunol. 2009 Nov;10(11):1162–1169.
  • Fragoso R, Mao T, Wang S, et al. Modulating the strength and threshold of NOTCH oncogenic signals by mir-181a-1/b-1. PLoS Genet. 2012;8(8):e1002855.
  • Curtale G, Citarella F, Carissimi C, et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood. 2010 Jan 14;115(2):265–273.
  • Jindra PT, Bagley J, Godwin JG, et al. Costimulation-dependent expression of microRNA-214 increases the ability of T cells to proliferate by targeting Pten. JImmunol. 2010 Jul 15;185(2):990–997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.