831
Views
14
CrossRef citations to date
0
Altmetric
Review

Promise of gene therapy to treat sickle cell disease

, &
Pages 1123-1136 | Received 26 Mar 2018, Accepted 10 Oct 2018, Published online: 19 Oct 2018

References

  • Pauling L, Itano HA, Singer SJ, et al. Sickle cell anemia. Science. 1949;110:543–548.
  • Ingram VM. Gene mutations in human hæmoglobin: the chemical difference between normal and sickle cell hæmoglobin. Nature. 1957;180(4581):326–328.
  • Noguchi CT, Schechter AN. The intracellular polymerization of sickle hemoglobin and its relevance to sickle cell disease. Blood. 1981;58(6):1057LP–1068.
  • Mohandas N, Evans E. Rheological and adherence properties of sickle cells: potential contribution to hematologic manifestations of the disease. Ann N Y Acad Sci. 1989;565(1):327–337.
  • Brousseau DC, Panepinto JA, Nimmer M, et al. The number of people with sickle-cell disease in the United States: national and state estimates. Am J Hematol. 2010;85(1):77–78.
  • Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Vol. 86. Bulletin of the World Health Organization; 2008. p. 480–487.
  • Piel FB, Patil AP, Howes RE, et al. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet 2013;381(9861):142-151.
  • Thein SL. Genetic basis and genetic modifiers of β-Thalassemia and sickle cell disease. In: Malik P, Tisdale J, editors. Gene and cell therapies for beta-globinopathies. New York, NY: Springer New York; 2017. p. 27–57.
  • Powars DR, Chan LS, Hiti A, et al. Outcome of sickle cell anemia: A 4-decade observational study of 1056 patients. Medicine (Baltimore). 2005;84(6):363–376.
  • Walters MC, De Castro LM, Sullivan KM, et al. Indications and results of HLA-identical sibling hematopoietic cell transplantation for sickle cell disease. Biol Blood Marrow Transplant. 2016;22:207–211.
  • Walters MC, Patience M, Leisenring W, et al. Barriers to bone marrow transplantation for sickle cell anemia. Biol Blood Marrow Transplant. 1996;2(2):100–104.
  • Lucarelli G, Isgrò A, Sodani P, et al. Hematopoietic SCT for the black African and non-black African variants of sickle cell anemia. Bone Marrow Transplant. 2014;49(11):1376–1381.
  • Gluckman E, Cappelli B, Bernaudin F, et al. Sickle cell disease : an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood. 2017;129(11):1548–1557.
  • Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease – life expectancy and risk factors for early death. N Engl J Med. 1994;330(23):1639–1644.
  • Lanzkron S, Carroll CP, Haywood C Jr. Mortality rates and age at death from sickle cell disease: U.S., 1979-2005. Public Health Rep. 2013;128(2):110–116.
  • Streetly A, Sisodia R, Dick M, et al. Evaluation of newborn sickle cell screening programme in England: 2010–2016. Arch Dis Child. 2018 Jul;103(7):648-653.
  • Debaun MR, Clayton EW. Primum non nocere : the case against transplant for children with sickle cell anemia without progressive end-organ disease. Blood Adv. 2017;1(26):12–15.
  • Hassell KL. Population estimates of sickle cell disease in the U.S. Am J Prev Med Elsevier Inc. 2010;38(4SUPPL): S512–21.
  • Orkin SHMAG Report and recommendations of the panel to assess the NIH investment in research on gene therapy, Report to the NIH Director. 1995.
  • Dunbar CE, High KA, Joung JK, et al. Gene therapy comes of age. Science. 2018;359:6372.
  • Aiuti A, Roncarolo MG. Ten years of gene therapy for primary immune deficiencies. Hematol Am Soc Hematol Educ Progr. 2009;682–689.
  • Aiuti A, Slavin S, Aker M, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 2002;296(June):2410–2413.
  • Aiuti A, Cattaneo F, Galimberti S, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med. 2009;360(5):447–458.
  • Aiuti A, Cassani B, Andolfi G, et al. Multilineage hematopoietic reconsitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. J Clin Investig Clin Investig. 2007;117(8):2233–2240.
  • Candotti F, Shaw KL, Muul L, et al. Gene therapy for adenosine deaminase – deficient severe combined immune deficiency : clinical comparison of retroviral vectors and treatment plans. Blood. 2012;120(18):3635–3646.
  • Gaspar HB, Cooray S, Gilmour KC, et al. Hematopoietic stem cell gene therapy for adenosine deaminase – deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci Transl Med. 2011;3:97.
  • Otsu M, Yamada M, Nakajima S, et al. Outcomes in two Japanese adenosine deaminase-deficiency patients treated by stem cell gene therapy with no cytoreductive conditioning. J Clin Immunol. 2015;35(4):384–398.
  • Shaw KL, Garabedian E, Mishra S, et al. Clinical efficacy of gene-modified stem cells in adenosine deaminase-deficiency immunodeficiency. J Clin Invest. 2017;127(5):1689–1699.
  • Cooper AR, Lill GR, Shaw K, et al. Cytoreductive conditioning intensity predicts clonal diversity in ADA-SCID retroviral gene therapy patients. Blood. 2017;129(19):2624–2635.
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. C-CM. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(October):415–419.
  • Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. C-CM. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118(9):3132–3142.
  • Howe SJ, Mansour MR, Schwarzwaelder K, et al. Insertional mutagenesis in combination with acquired somatic mutations leads to leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 2008;118(9):3143–3150.
  • Stein S, Ott MG, Schultze-Strasser S, et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med. 2010;16(2):198–204.
  • Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996;272(5259):263–267.
  • Wu X, Li Y, Crise B, et al. Transcription start regions in the human genome are favored targets for MLV integration. Science. 2003;300(5626):1749–1751.
  • Zufferey R, Nagy D, Mandel RJ, et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol. 1997;15(9):871–875.
  • Zufferey R, Dull T, Mandel RJ, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 1998;72(12):9873–9880.
  • Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998;72(11):8463–8471.
  • Stamatoyannopoulos G. Control of globin gene expression during development and erythroid differentiation. Exp Hematol. 2005;33(3):259–271.
  • Collis P, Antoniou M, Grosveld F. Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression. Embo J. 1990;9(1):233–240.
  • Antoniou M, Geraghty F, Hurst J, et al. Efficient 3’-end formation of human β-globin mRNA in vivo requires sequences within the last intron but occurs independently of the splicing reaction. Nucleic Acids Res. 1998;26(3):721–729.
  • Custódio N, Carmo-Fonseca M, Geraghty F, et al. Inefficient processing impairs release of RNA from the site of transcription. Embo J. 1999;18(10):2855–2866.
  • Forrester WC, Takegawa S, Papayannopoulou T, et al. Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res. 1987;15(24):10159–10177.
  • Talbot D, Collis P, Antoniou M, et al. A dominant control region from the human beta-globin locus conferring integration site-independent gene expression. Nature. 1989;338(6213):352–355.
  • Plavec I, Papayannopoulou T, Maury C, et al. A human beta-globin gene fused to the human beta-globin locus control region is expressed at high levels in erythroid cells of mice engrafted with retrovirus-transduced hematopoietic stem cells. Blood. 1993;81(5):1384–1392.
  • Novak U, Harris EA, Forrester W, et al. High-level beta-globin expression after retroviral transfer of locus activation region-containing human beta-globin gene derivatives into murine erythroleukemia cells. Proc Natl Acad Sci U S A. 1990;87(9):3386–3390.
  • Fraser P, Hurst J, Collis P, et al. DNasel hypersensitive sites 1, 2 and 3 of the human beta-globin dominant control region direct position independent expression. Nucleic Acids Res. 1990;18(12):3503–3508.
  • Fraser P, Pruzina S, Antoniou M, et al. Each hypersensitive site of the human beta-globin locus control region confers a different developmental pattern of expression on the globin genes. Genes Dev. 1993;7(1):10S.6–13.
  • Leboulch P, Huang GMS, Humphries RK, et al. Mutagenesis of retroviral vectors transducing human beta-globin gene and, beta-globin locus control region derivatives results in stable transmission of an active transcriptional structure. Embo J. 1994;13(13):3065–3076.
  • Sadelain M, Wang CH, Antoniou M, et al. Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene. Proc Natl Acad Sci U S A. 1995;92(15):6728–6732.
  • Negre O, Eggimann A-V, Beuzard Y, et al. Gene therapy of the β-hemoglobinopathies by Lentiviral transfer of the β A(T87Q) - Globin gene. Human Gene Therapy. 2016;27(2):148–165.
  • May C, Rivella S, Callegari J, et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature. 2000;406(6791):82–86.
  • Pawliuk R, Westerman KA, Fabry ME, et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science. 2001;294(5550):2368–2371.
  • Nagel RL, Bookchin RM, Johnson J, et al. Structural bases of the inhibitory effects of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S. Proc Natl Acad Sci U S A. 1979;76(2):670–672.
  • Cavazzana-Calvo M, Payen E, Negre O, et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature. 2010;467(7313):318–322.
  • Thompson AA, Walters MC, Kwiatkowski J, et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2018;378(16):1479–1493.
  • Ribeil J-A, Hacein-Bey-Abina S, Payen E, et al. Gene therapy in a patient with sickle cell disease. N Engl J Med. 2017;376(9):848–855.
  • Levasseur DN, Ryan TM, Pawlik KM, et al. Correction of a mouse model of sickle cell disease: lentiviral/ antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood. 2003;102(13):4312–4319.
  • Mccune SL, Reilly MP, Chomo MJ, et al. Recombinant human hemoglobins designed for gene-therapy of sickle-cell disease. Proc Natl Acad Sci U S A. 1994;91(21):9852–9856.
  • Romero Z, Urbinati F, Geiger S, et al. Beta-globin gene transfer to human bone marrow for sickle cell disease. J Clin Investig Clin Investig. 2013;123(8):3317–3330.
  • Ramezani A, Hawley TS, Hawley RG. Combinatorial incorporation of enhancer-blocking components of the chicken beta-globin 5’HS4 and human T-cell receptor alpha/delta BEAD-1 insulators in self-inactivating retroviral vectors reduces their genotoxic potential. Stem Cells. 2008;26(12):3257–3266.
  • Urbinati F, Hargrove PW, Geiger S, et al. Potentially therapeutic levels of anti-sickling globin gene expression following lentivirus-mediated gene transfer in sickle cell disease bone marrow CD34+cells. Exp Hematol. ISEH Int Soc Exp Hematol. 2015;43(5):346–351.
  • Ngo DA, Aygun B, Akinsheye I, et al. Fetal haemoglobin levels and haematological characteristics of compound heterozygotes for haemoglobin S and deletional hereditary persistence of fetal haemoglobin. Br J Haematol. 2011;156:(October):259–64.
  • Persons DA, Hargrove PW, Allay ER, et al. The degree of phenotypic correction of murine beta-thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. Blood. 2003;101(6):2175–2183.
  • Hanawa H, Hargrove PW, Kepes S, et al. Extended beta-globin locus control region elements promote consistent therapeutic expression of a gamma-globin lentiviral vector in murine beta-thalassemia. Blood. 2004;104(8):2281–2290.
  • Pestina TI, Hargrove PW, Jay D, et al. Correction of murine sickle cell disease using gamma-globin lentiviral vectors to mediate high-level expression of fetal hemoglobin. Mol Ther. 2009;17(2):245–252.
  • Perumbeti A, Higashimoto T, Urbinati F, et al. A novel human gamma-globin gene vector for genetic correction of sickle cell anemia in a humanized sickle mouse model: critical determinants for successful correction. Blood. 2009;114(6):1174–1185.
  • Russell JE. A post-transcriptional process contributes to efficient gamma-globin gene silencing in definitive erythroid cells. Eur J Haematol. 2007;79(6):516–525.
  • Puthenveetil G, Scholes J, Carbonell D, et al. Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood. 2004;104(12):3445–3453.
  • Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet. Nature Publishing Group. 2014;15(5):321–334.
  • Carroll D. Genome Engineering with Targetable Nucleases. Annu Rev Biochem. 2014;83(1):409–439.
  • Mali P, Yang L, Esvelt KM, et al. RNA-guide human genome engineering via cas9. Science. 2013;339(6121):823–826.
  • Metzger L, Iliakis G. Kinetics of DNA double-Strand break repair throughout the cell cycle as assayed by pulsed field gel electrophoresis in CHO cells. Int J Radiat Biol. 1991;59(6):1325–1339.
  • Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. Genet Soc America. 2010 Oct;186(2):757–761.
  • Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol Nature Publishing Group. 2011 Feb;29(2):143–148.
  • Jinek M, East A, Cheng A, et al. RNA-programmed genome editing in human cells. Elife. 2013;2013(2):1–9.
  • Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(August):816–821.
  • Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–910.
  • Sather BD, Ibarra GSR, Sommer K, et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med. 2015;7:307.
  • Vierstra J, Reik A, Chang KH, et al. Functional footprinting of regulatory DNA. Nat Methods. 2015;12(10):927–930.
  • Urnov FD, Reik A, Vierstra J, et al. Clinical-scale genome editing of the human BCL11A erythroid enhancer for treatment of the hemoglobinopathies. Blood. 2015 Dec 3;126(23):204LP–204.
  • Chang KH, Smith SE, Sullivan T, et al. Long-term engraftment and fetal globin induction upon BCL11A gene editing in bone-marrow-derived CD34+ hematopoietic stem and progenitor cells. Mol Ther - Methods Clin Dev Elsevier Ltd. 2017;4(March):137–148.
  • Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 2008;9(4):297–308.
  • Pietras EM, Warr MR, Passegué E. Cell cycle regulation in hematopoietic stem cells. J Cell Biol. 2011;195(5):709–720.
  • Hoban MD, Cost GJ, Mendel MC, et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood. 2015;125(17):2597–2604.
  • Genovese P, Schiroli G, Escobar G, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature Nature Publishing Group. 2014;510(7504):235–240.
  • Naldini L, Blomer U, Gage FH, et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci. 1996;93(21):11382–11388.
  • Lombardo A, Genovese P, Beausejour CM, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007;25(11):1298–1306.
  • Chen F, Pruett-Miller SMDG. Gene editing using ssODNs with engineered endonucleases. Methods Mol Biol. 2015;1239:251–265.
  • Richardson CD, Ray GJ, DeWitt MA, et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. 2016;34(3):339–344.
  • Rios X, Briggs AW, Chistodoulou D, et al. Stable gene targeting in human cells using single-strand oligonucleotides with modified bases. PLoS One. 2012;7:5.
  • Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583–593.
  • Asokan A, Schaffer DV, Samulski RJ. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther. Am Soc Gene Ther. 2012;20(4):699–708.
  • Naso MF, Tomkowicz B, Perry WL, et al. Adeno-Associated Virus (AAV) as a vector for gene therapy. BioDrugs Springer International Publishing. 2017;31(4): 317–334.
  • Ling C, Bhukhai K, Yin Z, et al. High-efficiency transduction of primary human hematopoietic stem/progenitor cells by AAV6 Vectors: strategies for overcoming donor-variation and implications in genome editing. Sci Rep Nature Publishing Group. 2016;6(May):1–8.
  • Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci. 2008;105(5):1620–1625.
  • Menzel S, Garner C, Gut I, et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet. 2007;39(10):1197–1199.
  • Xu J, Peng C, Sankaran VG, et al. Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science. 2011;334(6058):993–996.
  • Yu Y, Wang J, Khaled W, et al. Bcl11a is essential for lymphoid development and negatively regulates p53. J Exp Med. 2012;209(13):2467–2483.
  • Luc S, Huang J, McEldoon JL, et al. Bcl11a deficiency leads to hematopoietic stem cell defects with an aging-like phenotype. Cell Rep The Authors. 2016;16(12):3181–3194.
  • Bauer DE, Kamran SC, Lessard S, et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013;342(October):253–257.
  • Canver MC, Smith EC, Sher F, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527(7577):192–197.
  • Traxler EA, Yao Y, Wang YD, et al. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. 2016;22(9):987–990.
  • Wienert B, Funnell APW, Norton LJ, et al. Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin. Nat Commun Nature Publishing Group. 2015;6:(May):1–8,
  • Ye L, Wang J, Tan Y, et al. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: an approach for treating sickle cell disease and β-thalassemia. Proc Natl Acad Sci. 2016;113(38):10661–10665.
  • Antoniani C, Meneghini V, Lattanzi A, et al. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human b-globin locus. Blood. 2018;131(17):1960–1973.
  • Martyn GE, Wienert B, Yang L, et al. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat Genet Springer US. 2018;50(4):498–503.
  • Liu N, Hargreaves VV, Zhu Q, et al. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell Elsevier Inc. 2018;173(2):430–442.e17.
  • DeWitt MA, Magis W, Bray NL, et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med. 2016;8(360):360ra134.
  • Lin S, Staahl BT, Alla RK, et al. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 2014;3:e04766.
  • Hendel A, Bak RO, Clark JT, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. 2015;33(9):985–989.
  • Dever DP, Bak RO, Reinisch A, et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature Nature Publishing Group. 2016;539(7629):384–389. .
  • Cho SW, Lee J, Carroll D, et al. Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics. 2013;195(3):1177–1180.
  • Kim S, Kim D, Cho SW, et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24:1012–1019.
  • Bak RO, Dever DP, Porteus MH. CRISPR/Cas9 genome editing in human hematopoietic stem cells. Nat Protoc. 2018;13(2):358–376.
  • Hirata RK, Russell DW. Design and packaging of adeno-associated virus gene targeting vectors. J Virol. 2000;74(10):4612–4620.
  • Bonini C, Grez M, Traversari C, et al. Safety of retroviral gene marking with a truncated NGF receptor. Nat Med. 2003;9(4):367–369.
  • Naldini L. Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet Nature Publishing Group. 2011;12(5):301–315.
  • Naldini L. Gene therapy returns to centre stage. Nature. 2015;526(7573):351–360.
  • Biasco L, Pellin D, Scala S, et al. In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady-state reconstitution phases. Cell Stem Cell The Author(s). 2016;19(1):107–119.
  • Biffi A, Bartolomae CC, Cesana D, et al. Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood. 2011;117(20):5332–5339.
  • Biffi A, Montini E, Lorioli L, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013;341:6148.
  • Aiuti A, Biasco L, Scaramuzza S, et al. Lentiviral hematopoietic stem cell gene therapy in patients with wiskott-aldrich syndrome. Science. 2013;341:6148.
  • Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR–cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018 Sep;36(8):765-771.
  • Haapaniemi E, Botla S, Persson J, et al. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med Springer US. 2018;24(7): 927–930.
  • Ihry RJ, Worringer KA, Salick MR, et al. P53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med Springer US. 2018;24(7):939–946.
  • Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of pre-existing adaptive immunity to Cas9 proteins in humans. bioRxiv. 2018.
  • Abboud M, Laver J, Blau C. Granulocytosis causing sickle-cell crisis. Lancet. 1998;351(9107):959.
  • Fitzhugh CD, Hsieh MM, Bolan CD, et al. Granulocyte colony-stimulating factor (G-CSF) administration in individuals with sickle cell disease: time for a moratorium? Cytotherapy. 2009;11(4):464–471.
  • Choi E, Branch C, Cui MH, et al. No evidence for cell activation or brain vaso-occlusion with plerixafor mobilization in sickle cell mice. Blood Cells, Mol Dis Elsevier Inc. 2016;57:67–70,

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.