296
Views
6
CrossRef citations to date
0
Altmetric
Review

Biological therapy of autoimmune blistering diseases

Pages 149-156 | Received 07 Sep 2018, Accepted 12 Dec 2018, Published online: 18 Dec 2018

References

  • Baum S, Sakka N, Artsi O, et al. Diagnosis and classification of autoimmune blistering diseases. Autoimmun Rev. 2014;13:482–489.
  • Amber KT, Murrell DF, Schmidt E, et al. Autoimmune subepidermal bullous diseases of the skin and mucosae: clinical features, diagnosis, and management. Clin Rev Allergy Immunol. 2018;54:26–51.
  • Witte M, Zillikens D, Schmidt E. Diagnosis of Autoimmune Blistering Diseases. Front Med. DOI:10.3389/fmed.2018.00296
  • Ludwig RJ, Vanhoorelbeke K, Leypoldt F, et al. Mechanisms of autoantibody-induced pathology. Front Immunol. 2017;8:603.
  • Liu Y, Li L, Xia Y. BP180 is critical in the autoimmunity of bullous pemphigoid. Front Immunol. 2017 December 08. DOI:10.3389/fimmu.2017.01752
  • Venugopal SS, Murrell DF. Diagnosis and clinical features of pemphigus vulgaris. Dermatol Clin. 2011;29:373–380.
  • Koga H, Tsuruta D, Ohyama B, et al. Desmoglein 3, its pathogenecity and a possibility for therapeutic target in pemphigus vulgaris. Expert Opin Ther Targets. 2013;17:293–306.
  • Schmidt E, Zillikens D. Pemphigoid diseases. Lancet. 2013;381:320–332.
  • Lamberts A, Euverman HI, Terra JB, et al. Effectiveness and safety of rituximab in recalcitrant pemphigoid diseases. Front Immunol. 2018;9:248.
  • Kridin K, Ludwig RJ. The growing incidence of bullous pemphigoid: overview and potential explanations. Front Med. 2018;5:220.
  • Hofmann K, Clauder A, Armin Manz R. Targeting B cells and plasma cells in autoimmune diseases. Front Immunol. 2018;9:835.
  • Musette P, Bouaziz JD. B cell modulation strategies in autoimmune diseases: new concepts. Front Immunol. 2018;9:622.
  • Franks SE, Getahun A, Hogarth PM, et al. Targeting B cells in treatment of autoimmunity. Curr Opin Immunol. 2016;43:39–45.
  • Ahmed AR, Shetty S. The emerging role of rituximab in autoimmune blistering diseases. Am J Clin Dermatol. 2015;16:167–177.
  • Wang HH, Liu CW, Li YC, et al. Efficacy of rituximab for pemphigus: a systematic review and meta-analysis of different regimens. Acta Derm Venereol. 2015;95:928–932.
  • Joly P, Maho-Vaillant M, Prost-Squarcioni C, et al. First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux3): a prospective, multicentre, parallel-group, open-label randomised trial. Lancet. 2017;389:2031–2040.
  • Kanwar AJ, Vinay K, Sawatkar GU, et al. Clinical and immunological outcomes of high- and low-dose rituximab treatments in patients with pemphigus: a randomized, comparative, observer-blinded study. Br J Dermatol. 2014;170:1341–1349.
  • Amber KT, Hertl M. An assessment of treatment history and its association with clinical outcomes and relapse in 155 pemphigus patients with response to a single cycle of rituximab. J Eur Acad Dermatol Venereol. 2015;29:777–782.
  • Schoergenhofer C, Schwameis M, Firbas C, et al. Single, very low rituximab doses in healthy volunteers – a pilot and a randomized trial: implications for dosing and biosimilarity testing. Sci Rep. 2018;8:124.
  • Alaibac M. Ultra-low dosage regimen of rituximab in autoimmune blistering skin conditions. Front Immunol. 2018;9:810.
  • Mahévas M, Michel M, Weill JC, et al. Long-lived plasma cells in autoimmunity: lessons from B-cell depleting therapy. Front Immunol. 2013;4:494.
  • Eming R, Nagel A, Wolff-Franke S, et al. Rituximab exerts a dual effect in pemphigus vulgaris. J Invest Dermatol. 2008;128:2850–2858.
  • Podstawa E, Debus D, Hertl M, et al. CD19 as an attractive target for antibody-based therapy. MAbs. 2012;4:571–577.
  • Wilke AC, Gökbuget N. Clinical applications and safety evaluation of the new CD19 specific T-cell engager antibody construct blinatumomab. Expert Opin Drug Saf. 2017;16:1191–1202.
  • Chen D, Gallagher S, Monson NL, et al. Inebilizumab, a B cell-depleting anti-CD19 antibody for the treatment of autoimmune neurological diseases: insights from preclinical studies. J Clin Med. 2016;5:107.
  • Viardot A, Bargou R. Bispecific antibodies in haematological malignancies. Cancer Treat Rev. 2018;65:87–95.
  • Agius MA, Klodowska-Duda G, Maciejowski M, et al. Safety and tolerability of inebilizumab (MEDI-551), an anti-CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: results from a phase 1 randomised, placebo-controlled, escalating intravenous and subcutaneous dose study. Mult Scler. 2017 Nov 1: 1352458517740641.
  • Geh D, Gordon C. Epratuzumab for the treatment of systemic lupus erythematosus. Expert Rev Clin Immunol. 2018;14:245–258.
  • Ellebrecht CT, Bhoj VG, Nace A, et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science. 2016;8(353):179–184.
  • Amber KT, Valdebran M, Grando SA. Non-desmoglein antibodies in patients with Pemphigus Vulgaris. Front Immunol. 2018;9:1190.
  • Ulrichts P, Guglietta A, Dreier T, et al. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J Clin Invest. 2018 Aug 27:97911. DOI:10.1172/JCI97911
  • Wang Y, Tian Z, Thirumalai D, et al. Neonatal Fc receptor (FcRn): a novel target for therapeutic antibodies and antibody engineering. J Drug Target. 2014;22:269–278.
  • Argenx reports interim data from first cohort of Phase 2 proof-of-concept clinical trial of efgartigimod for the treatment of pemphigus vulgaris. https://www.argenx.com/en-GB/news-internal/argenx-reports-interim-data-from-first-cohort-of-phase-2-proof-of-concept-clinical-trial-of-efgartigimod-for-the-treatment-of-pemphigus-vulgaris/30190/
  • Kiessling P, Lledo-Garcia R, Watanabe S, et al. The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: a randomized phase 1 study. Sci Transl Med. 2017;9:414.
  • Ujiie H. IgE autoantibodies in bullous pemphigoid: supporting role, or leading player? J Dermatol Sci. 2015;78:5–10.
  • Saniklidou AH, Tighe PJ, Fairclough LC, et al. IgE autoantibodies and their association with the disease activity and phenotype in bullous pemphigoid: a systematic review. Arch Dermatol Res. 2018;310:11–28.
  • Kawakami T, Blank U. From IgE to omalizumab. J Immunol. 2016;197:4187–4192.
  • Yu KK, Crew AB, Messingham KA, et al. Omalizumab therapy for bullous pemphigoid. J Am Acad Dermatol. 2014;71:468–474.
  • Balakirski G, Alkhateeb A, Merk HF, et al. Successful treatment of bullous pemphigoid with omalizumab as corticosteroid-sparing agent: report of two cases and review of literature. J Eur Acad Dermatol Venereol. 2016;30:1778–1782.
  • Menzinger S, Kaya G, Schmidt E, et al. Biological and clinical response to omalizumab in a patient with bullous pemphigoid. Acta Derm Venereol. 2018;98:284–286.
  • Fang H, Zhang Y, Li N, et al. The autoimmune skin disease bullous pemphigoid: the role of mast cells in autoantibody-induced tissue injury. Front Immunol. 2018;9:407.
  • Fairley JA, Burnett CT, Fu CL, et al. A pathogenic role for IgE in autoimmunity: bullous pemphigoid IgE reproduces the early phase of lesion development in human skin grafted to nu/nu mice. J Invest Dermatol. 2007;127:2605–2611.
  • Liu Y, Li L, Xia Y. BP180 is critical in the autoimmunity of bullous pemphigoid. Front Immunol. 2017;8:1752.
  • de Graauw E, Sitaru C, Horn M, et al. Evidence for a role of eosinophils in blister formation in bullous pemphigoid. Exp Dermatol. 2016;25:50–55.
  • Langenhan J, Dworschak J, Saschenbrecker S, et al. Specific immunoadsorption of pathogenic autoantibodies in pemphigus requires the entire ectodomains of desmogleins. Exp Dermatol. 2014;23:253–259.
  • Hofrichter M, Dworschak J, Emtenani S, et al. Immunoadsorption of desmoglein-3-specific IgG abolishes the blister-inducing capacity of pemphigus vulgaris IgG in neonatal mice. Front Immunol. 2018;9:1935.
  • Amagai M, Ikeda S, Shimizu H, et al. A randomized double-blind trial of intravenous immunoglobulin for pemphigus. J Am Acad Dermatol. 2009;60:595–603.
  • Hoffmann JHO, Enk AH. High-dose intravenous immunoglobulins for the treatment of dermatological autoimmune diseases. J Dtsch Dermatol Ges. 2017;15:1211–1226.
  • Panelius J, Meri S. Complement system in dermatological diseases - fire under the skin. Front Med. 2015;2:3.
  • Dainichi T, Chow Z, Kabashima K. IgG4, complement, and the mechanisms of blister formation in pemphigus and bullous pemphigoid. J Dermatol Sci. 2017;88:265–270.
  • Lessey E, Li N, Diaz L, et al. Complement and cutaneous autoimmune blistering diseases. Immunol Res. 2008;41:223–232.
  • Iwata H, Kitajima Y. Bullous pemphigoid: role of complement and mechanisms for blister formation within the lamina lucida. Exp Dermatol. 2013;22:381–385.
  • Thurman JM, Le Quintrec M. Targeting the complement cascade: novel treatments coming down the pike. Kidney Int. 2016;90:746–752.
  • Sicre de Fontbrune F, Peffault de Latour R. Ten years of clinical experience with eculizumab in patients with paroxysmal nocturnal hemoglobinuria. Semin Hematol. 2018;55:124–129.
  • Vigna E, Petrungaro A, Perri A, et al. Efficacy of eculizumab in severe ADAMTS13-deficient thrombotic thrombocytopenic purpura (TTP) refractory to standard therapies. Transfus Apher Sci. 2018;57:247–249.
  • Mühlbacher J, Jilma B, Wahrmann M, et al. Blockade of HLA antibody-triggered classical complement activation in sera from subjects dosed with the anti-C1s monoclonal antibody TNT009—results from a randomized first-in-human phase 1 trial. Transplantation. 2017;101:2410–2418.
  • Kasprick AH, Holtsche MM, Rose EL, et al. The anti-C1s antibody TNT003 prevents complement activation in the skin induced by bullous pemphigoid autoantibodies. J Invest Dermatol. 2018;138:458–461.
  • Natsuga K, Nishie W, Shinkuma S, et al. Antibodies to pathogenic epitopes on type XVII collagen cause skin fragility in a complement-dependent and -independent manner. J Immunol. 2012;188:5792–5799.
  • Nishie W. Update on the pathogenesis of bullous pemphigoid: an autoantibody-mediated blistering disease targeting collagen XVII. J Dermatol Sci. 2014;73:179–186.
  • Ujiie H, Sasaoka T, Izumi K, et al. Bullous pemphigoid autoantibodies directly induce blister formation without complement activation. J Immunol. 2014;193:4415–4428.
  • Iwata H, Ujiie H. Complement‐independent blistering mechanisms in bullous pemphigoid. Exp Dermatol. 2017;12:1235–1239.
  • Zhang Y, Hwang BJ, Liu Z, et al. BP180 dysfunction triggers spontaneous skin inflammation in mice. Proc Natl Acad Sci U S A. 2018;19(115):6434–6439.
  • Feliciani C, Toto P, Amerio P, et al. In vitro and in vivo expression of interleukin-1alpha and tumor necrosis factor-alpha mRNA in pemphigus vulgaris: interleukin-1alpha and tumor necrosis factor-alpha are involved in acantholysis. J Invest Dermatol. 2000 Jan;114(1):71–77.
  • Ragab N, Abdallah M, El-Gohary E, et al. Stress and serum TNF-alpha levels may predict disease outcome in patients with pemphigus: a preliminary study. Cutis. 2011;87:189–194.
  • Chiapa-Labastida M, Zentella-Dehesa A, León-Dorantes G, et al. Pemphigus vulgaris: accumulation of apoptotic cells in dermis and epidermis possibly relates to pathophysiology through TNF-alpha production by phagocytes. Eur J Dermatol. 2011;21:874–888.
  • Scott LJ. Etanercept: a review of its use in autoimmune inflammatory diseases. Drugs. 2014;74:1379–1410.
  • Fiorentino DF, Garcia MS, Rehmus W, et al. A pilot study of etanercept treatment for pemphigus vulgaris. Arch Dermatol. 2011;147:117–118.
  • Cornillie F. Ten years of infliximab (remicade) in clinical practice: the story from bench to bedside. Eur J Pharmacol. 2009;623:S1–4.
  • Yoo DH, Oh C, Hong S, et al. Analysis of clinical trials of biosimilar infliximab (CT-P13) and comparison against historical clinical studies with the infliximab reference medicinal product. Expert Rev Clin Immunol. 2015;11:S15–24.
  • Hall RP3, Fairley J, Woodley D, et al. A multicentre randomized trial of the treatment of patients with pemphigus vulgaris with infliximab and prednisone compared with prednisone alone. Br J Dermatol. 2015;172:760–768.
  • Bordignon M, Belloni-Fortina A, Pigozzi B, et al. Bullous pemphigoid during long-term TNF-alpha blocker therapy. Dermatology. 2009;219:357–358.
  • Boussemart L, Jacobelli S, Batteux F, et al. Autoimmune bullous skin diseases occurring under anti-tumor necrosis factor therapy: two case reports. Dermatology. 2010;221:201–215.
  • Wessman LL, Blixt EK, Wetter DA, et al. Adalimumab-associated bullous pemphigoid in a patient with ulcerative colitis. JAAD Case Rep. 2017;3:339–341.
  • Arakawa M, Dainichi T, Yasumoto S, et al. Lesional Th17 cells in pemphigus vulgaris and pemphigus foliaceus. J Dermatol Sci. 2009;53:228–231.
  • Giordano CN, Sinha AA. Cytokine networks in pemphigus vulgaris: an integrated viewpoint. Autoimmunity. 2012;45:427–439.
  • Timoteo RP, Da Silva MV, Miguel CB, et al. Th1/Th17-related cytokines and chemokines and their implications in the pathogenesis of pemphigus vulgaris. Mediators Inflamm. 2017;2017:7151285.
  • Ryan C, Thrash B, Warren RB, et al. The use of ustekinumab in autoimmune disease. Expert Opin Biol Ther. 2010;10:587–604.
  • Benson JM, David Peritt D, Scallon BJ, et al. Discovery and mechanism of ustekinumab A human monoclonal antibody targeting interleukin-12 and interleukin-23 for treatment of immune-mediated disorders. MAbs. 2011;3:535–545.
  • Tirado-Sánchez A, Ponce-Olivera RM, Vazquez-González D, et al. Th-17 and the lack of efficacy of ustekinumab in pemphigus vulgaris. Dermatol Online J. 2013;19:15.
  • Vincent FB, Saulep-Easton D, Figgett WA, et al. The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev. 2013;24:203–215.
  • Samy E, Wax S, Huard B, et al. Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases. Int Rev Immunol. 2017;36:3–19.
  • Richez C, Truchetet ME, Schaeverbeke T, et al. Atacicept as an investigated therapy for rheumatoid arthritis. Expert Opin Investig Drugs. 2014;23:1285–1294.
  • Trentin F, Gatto M, Zen M, et al. Effectiveness, tolerability, and safety of belimumab in patients with refractory SLE: a review of observational clinical-practice-based studies. Clin Rev Allergy Immunol. 2018;54:331–343.
  • Asashima N, Fujimoto M, Watanabe R, et al. Serum levels of BAFF are increased in bullous pemphigoid but not in pemphigus vulgaris. Br J Dermatol. 2006;155:330–336.
  • Nagel A, Podstawa E, Eickmann M, et al. Rituximab mediates a strong elevation of B-cell-activating factor associated with increased pathogen-specific IgG but not autoantibodies in pemphigus vulgaris. J Invest Dermatol. 2009;129:2202–2210.
  • Sadeghi H, Lockmann A, Hund AC, et al. Caspase-1-independent IL-1 release mediates blister formation in autoantibody-induced tissue injury through modulation of endothelial adhesion molecules.J. Immunol. 2015;194:3656–3663.
  • Hirose M, Kasprick A, Beltsiou F, et al. Reduced skin blistering in experimental epidermolysis bullosa acquisita after anti-TNF treatment. Mol Med. 2017;22:918–926.
  • Samavedam UK, Iwata H, Müller S, et al. GM-CSF modulates autoantibody production and skin blistering in experimental epidermolysis bullosa acquisita. J Immunol. 2014;192:559–571.
  • Ludwig R. Immune mechanism-targeted treatment of experimental epidermolysis bullosa acquisita. Expert Rev Clin Immunol. 2015;11:1365–1378.
  • Ludwig R. Clinical presentation, pathogenesis, diagnosis, and treatment of epidermolysis bullosa acquisita. ISRN Dermatol. 2013;2013:812029.
  • Amber KT, Valdebran M, Kridin K, et al. The role of eosinophils in bullous pemphigoid: a developing model of eosinophil pathogenicity in mucocutaneous disease. Front Med. 2018;5:201.
  • de Graauw E, Sitaru C, Horn M, et al. Evidence for a role of eosinophils in blister formation in bullous pemphigoid. Allergy. 2017;72:1105–1113.
  • https://globenewswire.com/news-release/2018/10/29/1638152/0/en/New-Clinical-Data-Support-Bertilimumab-Activity-in-Bullous-Pemphigoid.html
  • Roufosse F. Targeting the interleukin-5 pathway for treatment of eosinophilic conditions other than asthma. Front Med. 2018;5:49.
  • Simon D, Wardlaw A, Rothenberg ME. Organ-specific eosinophilic disorders of the skin, lung, and gastrointestinal tract . J Allergy Clin Immunol. 2010;126:3–13.
  • https://clinicaltrials.gov/ct2/show/NCT01705795
  • https://adisinsight.springer.com/trials/700291228
  • Chakievska L, Holtsche MM, Künstner A. IL-17A is functionally relevant and a potential therapeutic target in bullous pemphigoid. J Autoimmun. 2018 Sep 12;S0896–8411(18):30404–30409. Epub ahead of print.
  • Le Jan S, Plée J, Vallerand D, et al. Innate immune cell-produced IL-17 sustains inflammation in bullous pemphigoid. J Invest Dermatol. 2014;134:2908–2917.
  • Kurschus FC, Moos S. IL-17 for therapy. J Dermatol Sci. 2017;87:221–227.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.