412
Views
11
CrossRef citations to date
0
Altmetric
Drug Profile

Antimicrobial treatment with the fixed-dose antibiotic combination RHB-104 for Mycobacterium avium subspecies paratuberculosis in Crohn’s disease: pharmacological and clinical implications

ORCID Icon, , , , , , , , ORCID Icon, , , ORCID Icon, & show all
Pages 79-88 | Received 30 Jan 2018, Accepted 17 Dec 2018, Published online: 02 Jan 2019

References

  • Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46–54e42. quiz e30
  • Torres J, Mehandru S, Colombel JF, et al. Crohn’s disease. Lancet. 2017;389:1741–1755.
  • Ng SC, Tang W, Ching JY, et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn’s and colitis epidemiology study. Gastroenterology. 2013;145:158–65 e2.
  • Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380:1590–1605.
  • Garcia Rodriguez LA, Ruigomez A, Panes J. Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterology. 2006;130:1588–1594.
  • Joossens M, Huys G, Cnockaert M, et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut. 2011;60:631–637.
  • Darfeuille-Michaud A, Boudeau J, Bulois P, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127:412–421.
  • Lee JS, Shin SJ, Collins MT, et al. Mycobacterium avium subsp. paratuberculosis fibronectin attachment protein activates dendritic cells and induces a Th1 polarization. Infect Immun. 2009;77:2979–2988.
  • Di Sabatino A, Paccagnini D, Vidali F, et al. Detection of Mycobacterium avium subsp. paratuberculosis (MAP)-specific IS900 DNA and antibodies against MAP peptides and lysate in the blood of Crohn’s disease patients. Inflamm Bowel Dis. 2011;17:1254–1255.
  • Lee A, Griffiths TA, Parab RS, et al. Association of Mycobacterium avium subspecies paratuberculosis with Crohn disease in pediatric patients. J Pediatr Gastroenterol Nutr. 2011;52:170–174.
  • Baumgart DC, Bernstein CN, Abbas Z, et al. IBD around the world: comparing the epidemiology, diagnosis, and treatment: proceedings of the world digestive health day 2010--inflammatory bowel disease task force meeting. Inflamm Bowel Dis. 2011;17:639–644.
  • Oken HA, Saleeb PG, Redfield RR, et al. Is Mycobacterium avium paratuberculosis the trigger in the Crohn’s disease spectrum? Open Forum Infect Dis. 2017;4:ofx104.
  • Selby W, Pavli P, Crotty B, et al. Two-year combination antibiotic therapy with clarithromycin, rifabutin, and clofazimine for Crohn’s disease. Gastroenterology. 2007;132:2313–2319.
  • Feller M, Huwiler K, Stephan R, et al. Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: a systematic review and meta-analysis. Lancet Infect Dis. 2007;7:607–613.
  • Gomollón F, Dignass A, Annese V, et al. 3rd European Evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: part 1: diagnosis and medical management. J Crohn’s Colitis. 2017;11:3–25.
  • Borgaonkar MR, MacIntosh DG, Fardy JM. A meta-analysis of antimycobacterial therapy for Crohn’s disease. Am J Gastroenterol. 2000;95:725–729.
  • Lichtenstein GR, Loftus EV, Isaacs KL, et al. ACG clinical guideline: management of Crohn’s disease in adults. Am J Gastroenterol. 2018;113:481–517.
  • Feller M, Huwiler K, Schoepfer A, et al. Long-term antibiotic treatment for Crohn’s disease: systematic review and meta-analysis of placebocontrolled trials. Clin Infect Dis. 2010;50:473–480.
  • Bodini G, Giannini EG, De Maria C, et al. Anti-TNF therapy is able to stabilize bowel damage progression in patients with Crohn’s disease. A study performed using the Lemann index. Dig Liver Dis. 2017;49:175–180.
  • Savarino E, Bodini G, Dulbecco P, et al. Adalimumab is more effective than azathioprine and mesalamine at preventing postoperative recurrence of Crohn’s disease: a randomized controlled trial. Am J Gastroenterol. 2013;108:1731–1742.
  • Gisbert JP, Panes J. Loss of response and requirement of infliximab dose intensification in Crohn’s disease: a review. Am J Gastroenterol. 2009;104:760–767.
  • Thorel MF, Krichevsky M, Levy-Frebault VV. Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Mycobacterium avium subsp. avium subsp. nov., Mycobacterium avium subsp. paratuberculosis subsp. nov., and Mycobacterium avium subsp. silvaticum subsp. nov. Int J Syst Bacteriol. 1990;40:254–260.
  • Naser SA, Sagramsingh SR, Naser AS, et al. Mycobacterium avium subspecies paratuberculosis causes Crohn’s disease in some inflammatory bowel disease patients. World J Gastroenterol. 2014;20:7403–7415.
  • Salem M, Heydel C, El-Sayed A, et al. Mycobacterium avium subspecies paratuberculosis: an insidious problem for the ruminant industry. Trop Anim Health Prod. 2013;45:351–366.
  • Beumer A, King D, Donohue M. Detection of Mycobacterium avium subsp. paratuberculosis in drinking water and biofilms by quantitative PCR. App Environ Microbiol. 2010;76:7367–7370.
  • National Advisory Committee on Microbiological Criteria for Foods. Assessment of food as a source of exposure to Mycobacterium avium subspecies paratuberculosis (MAP). J Food Protect. 2010;73:1357–1397.
  • Wynne JW, Bull TJ, Seemann T, et al. Exploring the zoonotic potential of Mycobacterium avium subspecies paratuberculosis through comparative genomics. PLoS One. 2011;6(7):e22171.
  • Koets AP, Eda S, Sreevatsan S. The within host dynamics of Mycobacterium avium ssp. paratuberculosis infection in cattle: where time and place matter. Vet Res. 2015;46:61.
  • Sechi LA, Dow CT. Mycobacterium avium ss. paratuberculosis zoonosis - the hundred year war - beyond Crohn’s disease. Front Immunol. 2015 Mar 4;6:96.
  • Cossu D, Masala S, Sechi LA. A Sardinian map for multiple sclerosis. Future Microbiol. 2013 Feb; 8(2):223–232. Review.
  • Whitlock RH, Wells SJ, Sweeney RW, et al. ELISA and fecal culture for paratuberculosis (Johne’s disease): sensitivity and specificity of each method. Vet Microbiol. 2000;77:387–398.
  • Weber MF, Verhoeff J, van Schaik G, et al. Evaluation of Ziehl-Neelsen stained faecal smear and ELISA as tools for surveillance of clinical paratuberculosis in cattle in the Netherlands. Prev Vet Med. 2009;92:256–266.
  • Jungersen G, Mikkelsen H, Grell SN. Use of the johnin PPD interferon-gamma assay in control of bovine paratuberculosis. Vet Immunol Immunopathol. 2012;148:48–54.
  • Sechi LA, Scanu AM, Molicotti P, et al. Detection and isolation of Mycobacterium avium subspecies paratuberculosis from intestinal mucosal biopsies of patients with and without Crohn’s disease in Sardinia. Am J Gastroenterol. 2005;100:1529–1536.
  • Borody TJ, Leis S, Warren EF, et al. Treatment of severe Crohn’s disease using antimycobacterial triple therapy--approaching a cure? Dig Liver Dis. 2002;34:29–38.
  • van der Paardt AF, Wilffert B, Akkerman OW, et al. Evaluation of macrolides for possible use against multidrug-resistant mycobacterium tuberculosis. Eur Respir J. 2015;46:444–455.
  • Retsema J, Fu W. Macrolides: structures and microbial targets. Int J Antimicrob Agents. 2001;18(Suppl 1):S3–S10.
  • Buriankova K, Doucet-Populaire F, Dorson O, et al. Molecular basis of intrinsic macrolide resistance in the mycobacterium tuberculosis complex. Antimicrob Agents Chemother. 2004;48:143–150.
  • Pfister P, Jenni S, Poehlsgaard J, et al. The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059. J Mol Biol. 2004;342:1569–1581.
  • Doucet-Populaire F, Truffot-Pernot C, Grosset J, et al. Acquired resistance in Mycobacterium avium complex strains isolated from AIDS patients and beige mice during treatment with clarithromycin. J Antimicrob Chemother. 1995;36:129–136.
  • Nash KA, Inderlied CB. Genetic basis of macrolide resistance in Mycobacterium avium isolated from patients with disseminated disease. Antimicrob Agents Chemother. 1995;39:2625–2630.
  • Fernandes PB, Hardy DJ, McDaniel D, et al. In vitro and in vivo activities of clarithromycin against Mycobacterium avium. Antimicrob Agents Chemother. 1989;33:1531–1534.
  • Rastogi N, Frehel C, Ryter A, et al. Multiple drug resistance in Mycobacterium avium: is the wall architecture responsible for exclusion of antimicrobial agents? Antimicrob Agents Chemother. 1981;20:666–677.
  • Rastogi N, Goh KS, Labrousse V. Activity of clarithromycin compared with those of other drugs against Mycobacterium paratuberculosis and further enhancement of its extracellular and intracellular activities by ethambutol. Antimicrob Agents Chemother. 1992;36:2843–2846.
  • Alcedo KP, Thanigachalam S, Naser SA. RHB-104 triple antibiotics combination in culture is bactericidal and should be effective for treatment of Crohn’s disease associated with Mycobacterium paratuberculosis. Gut Pathog. 2016;8:32.
  • Brown-Elliott BA, Nash KA, Wallace RJ Jr. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev. 2012;25:545–582.
  • Graham DY, Al-Assi MT, Robinson M. Prolonged remission in Crohn’s disease following therapy for mycobacterium paratuberculosis infection. Gastroenterology. 1995;108:A826.
  • Leiper K, Martin K, Ellis A, et al. Clinical trial: randomized study of clarithromycin versus placebo in active Crohn’s disease. Aliment Pharmacol Ther. 2008;27:1233–1239.
  • Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367–416.
  • Barry VC, Belton JG, Conalty ML, et al. A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature. 1957;179:1013–1015.
  • Cholo MC, Steel HC, Fourie PB, et al. Clofazimine: current status and future prospects. J Antimicrob Chemother. 2012;67:290–298.
  • Funk RS, Krise JP. Cationic amphiphilic drugs cause a marked expansion of apparent lysosomal volume: implications for an intracellular distribution-based drug interaction. Mol Pharm. 2012;9:1384–1395.
  • Cariello PF, Kwak EJ, Abdel-Massih RC, et al. Safety and tolerability of clofazimine as salvage therapy for atypical mycobacterial infection in solid organ transplant recipients. Transpl Infect Dis. 2015;17:111–118.
  • Cholo MC, Mothiba MT, Fourie B, et al. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother. 2017;72:338–353.
  • Ferro BE, Meletiadis J, Wattenberg M, et al. Clofazimine prevents the regrowth of mycobacterium abscessus and Mycobacterium avium type strains exposed to amikacin and clarithromycin. Antimicrob Agents Chemother. 2016;60:1097–1105.
  • Mothiba MT, Anderson R, Fourie B, et al. Effects of clofazimine on planktonic and biofilm growth of mycobacterium tuberculosis and mycobacterium smegmatis. J Glob Antimicrob Resist. 2015;3:13–18.
  • van Ingen J, Totten SE, Helstrom NK, et al. In vitro synergy between clofazimine and amikacin in treatment of nontuberculous mycobacterial disease. Antimicrob Agents Chemother. 2012;56:6324–6327.
  • Van Rensburg CE, Joone GK, O’Sullivan JF, et al. Antimicrobial activities of clofazimine and B669 are mediated by lysophospholipids. Antimicrob Agents Chemother. 1992;36:2729–2735.
  • Yano T, Kassovska-Bratinova S, Teh JS, et al. Reduction of clofazimine by mycobacterial type 2 NADH: quinoneoxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem. 2011;286:10276–10287.
  • Reddy VM, O’Sullivan JF, Gangadharam PR. Antimycobacterial activities of riminophenazines. J Antimicrob Chemother. 1999;43:615–623.
  • Feng X, Zhu W, Schurig-Briccio LA, et al. Antiinfectives targeting enzymes and the proton motive force. Proc Natl Acad Sci U S A. 2015;112:E7073–82.
  • Dey T, Brigden G, Cox H, et al. Outcomes of clofazimine for the treatment of drug-resistant tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother. 2013;68:284–293.
  • Field SK, Cowie RL. Treatment of Mycobacterium avium-intracellulare complex lung disease with a macrolide, ethambutol, and clofazimine. Chest. 2003;124:1482–1486.
  • Afdhal NH, Long A, Lennon J, et al. Controlled trial of antimycobacterial therapy in Crohn’s disease. Clofazimine versus placebo. Dig Dis Sci. 1991;36:449–453.
  • van Ingen J, Egelund EF, Levin A, et al. The pharmacokinetics and pharmacodynamics of pulmonary Mycobacterium avium complex disease treatment. Am J Respir Crit Care Med. 2012;186:559–565.
  • Crabol Y, Catherinot E, Veziris N, et al. Rifabutin: where do we stand in 2016? J Antimicrob Chemother. 2016;71:1759–1771.
  • Levin ME, Hatfull GF. Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance. Mol Microbiol. 1993;8:277–285.
  • Zhang Y, Yew WW. Mechanisms of drug resistance in mycobacterium tuberculosis. Int J Tuberc Lung Dis. 2009;13:1320–1330.
  • Telenti A, Imboden P, Marchesi F, et al. Detection of rifampicin-resistance mutations in mycobacterium tuberculosis. Lancet. 1993;341:647–650.
  • Kongpetchsatit O, Phatihattakorn W, Mahakunkijcharoen Y, et al. Mutation in the rpoB gene of the rifampicin resistant M. avium complex strains from Thailand. Southeast Asian J Trop Med Public Health. 2006;37(Suppl 3):165–173.
  • Klein JL, Brown TJ, French GL. Rifampin resistance in mycobacterium kansasii is associated with rpoB mutations. Antimicrob Agents Chemother. 2001;45:3056–3058.
  • van Ingen J, van der Laan T, Dekhuijzen R, et al. In vitro drug susceptibility of 2275 clinical non-tuberculous mycobacterium isolates of 49 species in The Netherlands. Int J Antimicrob Agents. 2010;35:169–173.
  • Heifets LB, Iseman MD, Lindholm-Levy PJ. Determination of MICs of conventional and experimental drugs in liquid medium by the radiometric method against Mycobacterium avium complex. Drugs Exp Clin Res. 1987;13:529–538.
  • Dhople AM, Williams SL. The activity of rifabutin against Mycobacterium leprae in armadillos. Int J Antimicrob Agents. 1997;9:169–173.
  • Schon T, Chryssanthou E. Minimum inhibitory concentration distributions for Mycobacterium avium complex-towards evidence-based susceptibility breakpoints. Int J Infect Dis. 2017;55:122–124.
  • Zanetti S, Molicotti P, Cannas S, et al. Ahmed N and Sechi LA. “In vitro” activities of antimycobacterial agents against Mycobacterium avium subsp. paratuberculosis linked to Crohn’s disease and paratuberculosis. Ann Clin Microbiol Antimicrob. 2006 Nov 15;5:27.
  • Dhople AM, Ibanez MA. In-vitro activity of three new fluoroquinolones and synergy with ansamycins against Mycobacterium leprae. J Antimicrob Chemother. 1993;32:445–451.
  • May T, Brel F, Beuscart C, et al. Comparison of combination therapy regimens for treatment of human immunodeficiency virus-infected patients with disseminated bacteremia due to Mycobacterium avium. ANRS Trial 033 curavium group. Agence Nationale de Recherche sur le Sida. Clin Infect Dis. 1997;25:621–629.
  • Gordin FM, Sullam PM, Shafran SD, et al. A randomized, placebo-controlled study of rifabutin added to a regimen of clarithromycin and ethambutol for treatment of disseminated infection with Mycobacterium avium complex. Clin Infect Dis. 1999;28:1080–1085.
  • Griffith DE, Brown-Elliott BA, Langsjoen B, et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2006;174:928–934.
  • Krishnan YK, Manning EJB, Collins MT. Comparison of three methods for susceptibility testing of Mycobacterium avium subsp. paratuberculosis to 11 antimicrobial drugs. J Antimicrob Chemother. 2009;4:310–316.
  • Krishnan MY, Manning EJB, Collins MT. Effects of interactions of antibacterial drugs with each other and with 6-mercaptopurine on in vitro growth of Mycobacterium avium subspecies paratuberculosis. J Antimicrob Chemother. 2009;64:1018–1023.
  • Behr MA, Hanley J. Antimycobacterial therapy for Crohn’s disease: a reanalysis. Lancet Infect Dis. 2008;8:344.
  • Kuenstner JT. The Australian antibiotic trial in Crohn’s disease: alternative conclusions from the same study. Gastroenterology. 2007;133:1742–1743.
  • Qasem A, Safavikhasraghi M, Naser SA. A single capsule formulation of RHB-104 demonstrates higher anti-microbial growth potency for effective treatment of Crohn’s disease associated with Mycobacterium avium subspecies paratuberculosis. Gut Pathog. 2016;8:45.
  • https://ir.redhillbio.com/news-releases/news-release-details/redhill-biopharma-elaborates-its-announced-positive-top-line?fbclid=IwAR2k397OF4VusXkvYS5553GPfvURrmZzpqmAKoFp5IIRZbJtpkgBe9Ii1xM

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.