1,272
Views
21
CrossRef citations to date
0
Altmetric
Review

Development of new agents for peripheral T-cell lymphoma

, ORCID Icon &
Pages 197-209 | Received 10 Sep 2018, Accepted 17 Jan 2019, Published online: 29 Jan 2019

References

  • Swerdlow SH, Campo E, Harris NE, editors, et al. World Health Organization classification of tumours of haematopoietic and lymphoid tissues. Lyon (France): IARC; 2016.
  • Vose J, Armitage J, Weisenburger D. International T-cell lymphoma project. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26:4124–4130.
  • Savage KJ, Chhanabhai M, Gascoyne RD, et al. Characterization of peripheral T-cell lymphomas in a single North American institution by the WHO classification. Ann Oncol. 2004;15:1467–1475.
  • Chihara D, Fanale MA, Miranda RN, et al. The survival outcome of patients with relapsed/refractory peripheral T-cell lymphoma-not otherwise specified and angioimmunoblastic T-cell lymphoma. Br J Haematol. 2017;176:750–758.
  • Mak V, Hamm J, Chhanabhai M, et al. Survival of patients with peripheral T-cell lymphoma after first relapse or progression: spectrum of disease and rare long-term survivors. J Clin Oncol. 2013;31:1970–1976.
  • Kim SW, Yoon SS, Suzuki R, et al. Comparison of outcomes between autologous and allogeneic hematopoietic stem cell transplantation for peripheral T-cell lymphomas with central review of pathology. Leukemia. 2013;27:1394–1397.
  • O’Connor OA, Amengual J, Colbourn D, et al. Pralatrexate: a comprehensive update on pharmacology, clinical activity and strategies to optimize use. Leuk Lymphoma. 2017;58:2548–2557.
  • Horwitz SM, Kim YH, Foss F, et al. Identification of an active, well-tolerated dose of pralatrexate in patients with relapsed or refractory cutaneous T-cell lymphoma. Blood. 2012;119:4115–4122.
  • O’Connor OA, Horwitz S, Hamlin P, et al. Phase II-I-II study of two different doses and schedules of pralatrexate, a high-affinity substrate for the reduced folate carrier, in patients with relapsed or refractory lymphoma reveals marked activity in T-cell malignancies. J Clin Oncol. 2009;27:4357–4364.
  • Krug LM, Ng KK, Kris MG, et al. Phase I and pharmacokinetic study of 10-propargyl-10-deazaaminopterin, a new antifolate. Clin Cancer Res. 2000;6:3493–3498.
  • Krug LM, Azzoli CG, Kris MG, et al. 10-Propargyl-10-deazaaminopterin: an antifolate with activity in patients with previously treated non-small cell lung cancer. Clin Cancer Res. 2003;9:2072–2078.
  • Mould DR, Sweeney K, Duffull SB, et al. A population pharmacokinetic and pharmacodynamics evaluation of pralatrexate in patients with relapsed or refractory non-Hodgkin’s or Hodgkin’s lymphoma. Clin Pharmacol Ther. 2009;86:190–196.
  • O’Connor OA, Pro B, Pinter-Brown L, et al. Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: results from the pivotal PROPEL study. J Clin Oncol. 2011;29:1182–1189.
  • Advani RH, Ansell SM, Lechowicz MJ, et al. A phase II study of cyclophosphamide, etoposide, vincristine and prednisone (CEOP) alternating with pralatrexate (P) as front line therapy for patients with peripheral T-cell lymphoma (PTCL): final results from the T-cell consortium trial. Br J Haematol. 2016;172:535–544.
  • Shustov AR, Johnson PB, Barta SK, et al. Pralatrexate in combination with cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) in previously untreated patients with peripheral T-cell lymphoma (PTCL): a phase 1 dose-escalation study. ASH annual meeting; 2017 Dec 9–12; Atlanta. [Abstract 818].
  • Ueda H, Manda T, Matsumoto S, et al. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum no. 968. III. Antitumor activities on experimental tumors in mice. J Antibiot (Tokyo). 1994;47:315–323.
  • Nakajima H, Kim YB, Terano H, et al. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res. 1998;241:126–133.
  • Marshall JL, Rizvi N, Kauh J, et al. A phase I trial of depsipeptide (FR901228) in patients with advanced cancer. J Exp Ther Oncol. 2002;2:325–332.
  • Sandor V, Bakke S, Robey RW, et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res. 2002;8:718–728.
  • Piekarz RL, Frye R, Turner M, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27:5410–5417.
  • Piekarz RL, Frye R, Prince HM, et al. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood. 2011;117:5827–5834.
  • Coiffier B, Pro B, Prince HM, et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 2012;30:631–636.
  • Coiffier B, Pro B, Prince HM, et al. Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: pivotal study update demonstrates durable responses. J Hematol Oncol. 2014;7:11.
  • Whittaker SJ, Demierre MF, Kim EJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28:4485–4491.
  • Dupuis J, Morschhauser F, Ghesquières H, et al. Combination of romidepsin with cyclophosphamide, doxorubicin, vincristine and prednisone in previously untreated patients with peripheral T-cell lymphoma (PTCL): a non-randomised, phase 1b/2 study. Lancet Haematol. 2015;2:e160–165.
  • O’Connor OA, Horwitz S, Masszi T, et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 2015;33:2492–2499.
  • Pro B, Advani R, Brice P, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30:2190–2196.
  • Pro B, Advani R, Brice P, et al. Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood. 2017;130:2709–2717.
  • Horwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood. 2014;123:3095–3100.
  • Fanale MA, Horwitz SM, Forero-Torres A, et al. Brentuximab vedotin in the front-line treatment of patients with CD30+peripheral T-cell lymphomas: results of a phase I study. J Clin Oncol. 2014;32:3137–3143.
  • Fanale MA, Horwitz SM, Forero-Torres A, et al. Five-year outcomes for frontline brentuximab vedotin with CHP for CD30-expressing peripheral T-cell lymphomas. Blood. 2018;131:2120–2124.
  • Horwitz S, O’Connor OA, Pro B, et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet. 2018. DOI:10.1016/S0140-6736(18)32984-2
  • Prince HM, Kim YH, Horwitz SM, et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. Lancet. 2017;390:555–566.
  • Shi Y, Dong M, Hong X, et al. Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma. Ann Oncol. 2015;26:1766–1771.
  • Onizuka M, Ando K, Yoshimitsu M, et al. Oral HDAC inhibitor HBI8000 in Japanese patients with non-Hodgkin lymphoma (NHL): phase I safety and efficacy results. ASH annual meeting; 2016 Dec 3–6; San Diego. [Abstract 1827].
  • Makita S, Tobinai K. Mogamulizumab for the treatment of T-cell lymphoma. Expert Opin Biol Ther. 2017;17:1145–1153.
  • Makita S, Tobinai K. Disease-oriented treatment of T-cell lymphoma. Hematol Oncol. 2017;35(Suppl 1):54–59.
  • Ishida T, Joh T, Uike N, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol. 2012;30:837–842.
  • Ishida T, Jo T, Takemoto S, et al. Dose-intensified chemotherapy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T-cell leukaemia-lymphoma: a randomized phase II study. Br J Haematol. 2015;169:672–682.
  • Ogura M, Ishida T, Hatake K, et al. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-CC chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J Clin Oncol. 2014;32:1157–1163.
  • Zinzani PL, Karlin L, Radford J, et al. European phase II study of mogamulizumab, an anti-CCR4 monoclonal antibody, in relapsed/refractory peripheral T-cell lymphoma. Haematologica. 2016;101:e407–410.
  • Kim YH, Bagot M, Pinter-Brown L, et al. Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2018;19:1192–1204.
  • Giblett ER, Ammann AJ, Wara DW, et al. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975;1:1010–1013.
  • Dummer R, Duvic M, Scarisbrick J, et al. Final results of a multicenter phase II study of the purine nucleoside phosphorylase (PNP) inhibitor forodesine in patients with advanced cutaneous T-cell lymphomas (CTCL) (Mycosis fungoides and Sézary syndrome). Ann Oncol. 2014;25:1807–1812.
  • Makita S, Maeshima AM, Maruyama D, et al. Forodesine in the treatment of relapsed/refractory peripheral T-cell lymphoma: an evidence-based review. Onco Targets Ther. 2018;11:2287–2293.
  • Ogura M, Tsukasaki K, Nagai H, et al. Phase I study of BCX1777 (forodesine) in patients with relapsed or refractory peripheral T/natural killer-cell malignancies. Cancer Sci. 2012;103:1290–1295.
  • Maruyama D, Tsukasaki K, Uchida T, et al. Multicenter phase 1/2 study of forodesine in patients with relapsed peripheral T cell lymphoma. Ann Hematol. 2018. DOI:10.1007/s00277-018-3418-2
  • Vire E, Brenner C, Deplus R, et al. The polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439:871–874.
  • Makita S, Tobinai K. Targeting EZH2 with tazemetostat. Lancet Oncol. 2018;19:586–587.
  • Maruyama D, Tobinai K, Makita S, et al. First-in-human study of the EZH1/2 dual inhibitor DS-3201b in patients with relapsed or refractory non-Hodgkin lymphomas – preliminary results. ASH annual meeting; 2017 Dec 9–12; Atlanta. [Abstract 4070].
  • Manfredi MG, Ecsedy JA, Chakravarty A, et al. Characterization of alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin Cancer Res. 2011;17:7614–7624.
  • Palani S, Patel M, Huck J, et al. Preclinical pharmacokinetic/pharmacodynamic/efficacy relationships for alisertib, an investigational small-molecule inhibitor of aurora A kinase. Cancer Chemother Pharmacol. 2013;72:1255–1264.
  • Friedberg JW, Mahadevan D, Cebula E, et al. Phase I study of alisertib, a selective aurora A kinase inhibitor, in relapsed and refractory aggressive B- and T-cell non-Hodgkin lymphomas. J Clin Oncol. 2014;32:44–50.
  • Barr PM, Li H, Spier C, et al. Phase II intergroup trial of alisertib in relapsed and refractory peripheral T-cell lymphoma and transformed mycosis fungoides: SWOG 1108. J Clin Oncol. 2015;33:2399–2404.
  • O’Connor OA, Ozcan M, Jacobsen ED, et al. First multicenter, randomized phase 3 study in patients (pts) with relapsed refractory (R/R) peripheral T-cell lymphoma (PTCL): alisertib (MLN8237) versus investigators choice (Lumiere trial; NCT01482962). ASH annual meeting; 2015; Orlando. [Abstract 341].
  • Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8:627–644.
  • Gopal AK, Kahl BS, deVos S, et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370:1008–1018.
  • Faia K, White K, Murphy E, et al. The phosphoinositide-3 kinase (PI3K)-δ,γ inhibitor, duvelisib shows preclinical synergy with multiple targeted therapies in hematologic malignancies. PLoS One. 2018;13:e0200725.
  • Flinn IW, O’Brien S, Kahl B, et al. Duvelisib, a novel oral dual inhibitor of PI3K-δ, γ, is clinically active in advanced hematologic malignancies. Blood. 2018;131:877–887.
  • Horwitz SM, Koch R, Porcu P, et al. Activity of the PI3K-δ, γ inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma. Blood. 2018;131:888–898.
  • Oki Y, Huen A, Barde PJ, et al. A dose escalation study of RP6530, a novel dual PI3K δ/γ inhibitor, in patients with relapsed/refractory T-cell lymphoma. ASH annual meeting; 2016 Dec 3–6; San Diego. [Abstract 3004].
  • Oki Y, Zain J, Haverkos BM, et al. Safety and anti-tumor activity of RP6530, dual PI3K δ/γ inhibitor, in relapsed/refractory T-cell lymphoma: updated results from the dose expansion cohort of an on-going phase I/Ib study. ASH annual meeting; 2017 Dec 9–12; Atlanta. [Abstract 2791].
  • Waldmann TA, Chen J. Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: implications for immunotherapy. Annu Rev Immunol. 2017;35:533–550.
  • Küçük C, Jiang B, Hu X, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun. 2015;6:6025.
  • Moskowitz AJ, Jacobsen E, Ruan J, et al. Durable responses observed with JAK inhibition in T-cell lymphomas. ASH annual meeting; 2018 Dec 1–4; San Diego. [Abstract 2922].
  • Feldman AL, Sun DX, Law ME, et al. Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas. Leukemia. 2008;22:1139–1143.
  • Dierks C, Adrian F, Fisch P, et al. The ITK-SYK fusion oncogene induces a T-cell lymphoproliferative disease in mice mimicking human disease. Cancer Res. 2010;70:6193–6204.
  • Horwitz SM, Feldman TA, Hess BT, et al. The novel SYK/JAK inhibitor cerdulatinib demonstrates good tolerability and clinical response in a phase 2a study in relapsed/refractory peripheral T-cell lymphoma and cutaneous T-cell lymphoma. ASH annual meeting; 2018 Dec 1–4 ; San Diego. [Abstract 1001].
  • Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–484.
  • Vega F, Medeiros LJ, Leventaki V, et al. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res. 2006;66:6589–6597.
  • Witzig TE, Reeder C, Han JJ, et al. The mTORC1 inhibitor everolimus has antitumor activity in vitro and produces tumor responses in patients with relapsed T-cell lymphoma. Blood. 2015;126:328–335.
  • Kim SJ, Shin DY, Kim JS, et al. A phase II study of everolimus (RAD001), an mTOR inhibitor plus CHOP for newly diagnosed peripheral T-cell lymphomas. Ann Oncol. 2016;27:712–718.
  • Morschhauser F, Fowler NH, Feugier P, et al. Rituximab plus lenalidomide in advanced untreated follicular lymphoma. N Engl J Med. 2018;379:934–947.
  • Ishida T, Fujiwara H, Nosaka K, et al. Multicenter phase II study of lenalidomide in relapsed or recurrent adult T-cell leukemia/lymphoma: ATLL-002. J Clin Oncol. 2016;34:4086–4093.
  • Morschhauser F, Fitoussi O, Haioun C, et al. A phase 2, multicentre, single-arm, open-label study to evaluate the safety and efficacy of single-agent lenalidomide (Revlimid) in subjects with relapsed or refractory peripheral T-cell non-Hodgkin lymphoma: the EXPECT trial. Eur J Cancer. 2013;49:2869–2876.
  • Northwestern University. Romidepsin and lenalidomide in treating patients with previously untreated peripheral T-cell lymphoma. ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). NLM Identifier: NCT02232516. [cited 2019 Jan 15]. Available from: https://clinicaltrials.gov/ct2/show/NCT02232516.
  • Couronné L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med. 2012;366:95–96.
  • Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46:171–175.
  • Lemonnier F, Dupuis J, Sujobert P, et al. Treatment with 5-azacytidine induces a sustained response in patients with angioimmunoblastic T-cell lymphoma. Blood. 2018;132:2305–2309.
  • The Lymphoma Academic Research Organization. Efficacy and safety of oral azacitidine compared to investigator’s choice therapy in patients with relapsed refractory AITL. ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). [cited 2019 Jan 15]. NLM Identifier: NCT03593018. Available from: https://clinicaltrials.gov/ct2/show/NCT03593018.
  • Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34:2698–2704.
  • Barta SK, Zain JM, Smith SM, et al. Phase II study of the PD1-inhibitor pembrolizumab for the treatment of relapsed or refractory mature t-cell lymphoma. J Clin Oncol. 2018;36(15suppl):7568. [Abstract].
  • Makita S, Yoshimura K, Tobinai K. Clinical development of anti-CD19 chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma. Cancer Sci. 2017;108:1109–1118.
  • Raikar SS, Fleischer LC, Moot R, et al. Development of chimeric antigen receptors targeting T-cell malignancies using two structurally different anti-CD5 antigen binding domains in NK and CRISPR-edited T cell lines. Oncoimmunology. 2017;7:e1407898.
  • Maciocia PM, Wawrzyniecka P, Philip B, et al. Targeting T-cell receptor β-constant domain for immunotherapy of T-cell malignancies. ASH Annual meeting; 2016 Dec 3–6; San Diego. [Abstract 811].
  • Jain S, Jirau-Serrano X, Zullo KM, et al. Preclinical pharmacologic evaluation of pralatrexate and romidepsin confirms potent synergy of the combination in a murine model of human T-cell lymphoma. Clin Cancer Res. 2015;21:2096–2106.
  • Amengual JE, Lichtenstein R, Lue J, et al. A phase 1 study of romidepsin and pralatrexate reveals marked activity in relapsed and refractory T-cell lymphoma. Blood. 2018;131:397–407.
  • Columbia University. Pralatrexate + romidepsin in relapsed/refractory lymphoid malignancies (PDX+Romi). ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). NLM Identifier: NCT01947140. [cited 2019 Jan 15]. Available from: https://clinicaltrials.gov/ct2/show/NCT01947140.
  • Kalac M, Scotto L, Marchi E, et al. HDAC inhibitors and decitabine are highly synergistic and associated with unique gene-expression and epigenetic profiles in models of DLBCL. Blood. 2011;118:5506–5516.
  • Rozati S, Cheng PF, Widmer DS, et al. Romidepsin and azacitidine synergize in their epigenetic modulatory effects to induce apoptosis in CTCL. Clin Cancer Res. 2016;22:2020–2031.
  • Marchi E, Zullo KM, Amengual JE, et al. The combination of hypomethylating agents and histone deacetylase inhibitors produce marked synergy in preclinical models of T-cell lymphoma. Br J Haematol. 2015;171:215–226.
  • Falchi L, Lue JK, Amengual JE, et al. A phase 1/2 study of oral 5-azacitidine and romidepsin in patients with lymphoid malignancies reveals promising activity in heavily pretreated peripheral T-cell lymphoma (PTCL). ASH annual meeting; 2017 Dec 9–12; Atlanta. [Abstract 1515].
  • Falchi L, Lue JK, Montanari F, et al. Combined hypomethylating agents (HMA) and histone deacetylase inhibitors (HDACi) exhibit compelling activity in patients with peripheral T-cell lymphoma (PTCL) with high complete response rates in angioimmunoblastic T-cell lymphoma (AITL). ASH annual meeting; 2018 Dec 1–4; San Diego. [Abstract 1002].
  • Columbia University. Romidepsin plus oral 5-azacitidine in relapsed/refractory lymphoid malignancies. ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). NLM Identifier: NCT01998035. [cited 2019 Jan 15]. Available from: https://clinicaltrials.gov/ct2/show/NCT01998035
  • Park JH, Jong HS, Kim SG, et al. Inhibitors of histone deacetylases induce tumor-selective cytotoxicity through modulating aurora-A kinase. J Mol Med (Berl). 2008;86:117–128.
  • Fanale MA, Hagemeister FB, Fayad L, et al. A phase I trial of alisertib plus romidepsin for relapsed/refractory aggressive B- and T-cell lymphomas. Blood. 2014;124:1744. [Abstract].
  • Strati P, Oki Y, Fayad LE, et al. A phase 1 trial of alisertib and romidepsin for relapsed/refractory aggressive B-cell and T-cell lymphomas. Blood. 2017;130:4074. [Abstract].
  • National Cancer Institute; University of Texas MD Anderson Cancer Center. Alisertib and romidepsin in treating patients with relapsed or refractory B-cell or T-cell lymphomas. ClinicalTrials.gov. Bethesda (MD): National Library of Medicine (US). NLM Identifier: NCT01897012. [cited 2019 Jan 15]. Available from: https://clinicaltrials.gov/ct2/show/NCT01897012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.