1,562
Views
59
CrossRef citations to date
0
Altmetric
Review

B cell maturation antigen (BCMA)-based immunotherapy for multiple myeloma

&
Pages 1143-1156 | Received 07 May 2019, Accepted 04 Jul 2019, Published online: 11 Jul 2019

References

  • Kumar SK, Rajkumar V, Kyle RA, et al. Multiple myeloma. Nat Rev Dis Primers. 2017 Jul;20(3):17046.
  • Tai YT, Anderson KC. Antibody-based therapies in multiple myeloma. Bone Marrow Res. 2011;2011:924058.
  • de Weers M, Tai YT, van der Veer MS, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011 Feb 1;186(3):1840–1848.
  • Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015 Sep 24;373(13):1207–1219.
  • Tai YT, Dillon M, Song W, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008 Aug 15;112(4):1329–1337.
  • Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015 Aug 13;373(7):621–631.
  • Mateos MV, Dimopoulos MA, Cavo M, et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N Engl J Med. 2018 Feb 8;378(6):518–528.
  • Facon T, Kumar SK, Plesner T, et al. Phase 3 randomized study of daratumumab plus lenalidomide and dexamethasone (D-Rd) versus lenalidomide and dexamethasone (Rd) in patients with Newly Diagnosed Multiple Myeloma (NDMM) Ineligible for transplant (MAIA). Blood. 2018;132:LBA–2.
  • Anderson KC. Promise of immune therapies in multiple myeloma. J Oncol Pract. 2018 Jul;14(7):411–413.
  • Krejcik J, Casneuf T, Nijhof IS, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 2016 Jul 21;128(3):384–394.
  • Nahi H, Chrobok M, Gran C, et al. Infectious complications and NK cell depletion following daratumumab treatment of multiple myeloma. PloS One. 2019;14(2):e0211927.
  • Carpenter RO, Evbuomwan MO, Pittaluga S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res. 2013 Apr 15;19(8):2048–2060.
  • Tai YT, Mayes PA, Acharya C, et al. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood. 2014 May 15;123(20):3128–3138.
  • Tai YT, Anderson KC. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy. 2015;7(11):1187–1199.
  • Lee L, Bounds D, Paterson J, et al. Evaluation of B cell maturation antigen as a target for antibody drug conjugate mediated cytotoxicity in multiple myeloma. Br J Haematol. 2016 Sep;174(6):911–922.
  • Huang HW, Chen CH, Lin CH, et al. B-cell maturation antigen is modified by a single N-glycan chain that modulates ligand binding and surface retention. Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):10928–10933.
  • Gras MP, Laabi Y, Linares-Cruz G, et al. BCMAp: an integral membrane protein in the Golgi apparatus of human mature B lymphocytes. Int Immunol. 1995 Jul;7(7):1093–1106.
  • Avery DT, Kalled SL, Ellyard JI, et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J Clin Invest. 2003 Jul;112(2):286–297.
  • O’Connor BP, Raman VS, Erickson LD, et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med. 2004 Jan 05;199(1):91–98.
  • Chiu A, Xu W, He B, et al. Hodgkin lymphoma cells express TACI and BCMA receptors and generate survival and proliferation signals in response to BAFF and APRIL. Blood. 2007 Jan 15;109(2):729–739.
  • Tai YT, Acharya C, An G, et al. APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood. 2016 Jun 23;127(25):3225–3236.
  • Seckinger A, Delgado JA, Moser S, et al. Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell. 2017 Mar 13;31(3):396–410.
  • Xu S, Lam KP. B-cell maturation protein, which binds the tumor necrosis factor family members BAFF and APRIL, is dispensable for humoral immune responses. Mol Cell Biol. 2001 Jun;21(12):4067–4074.
  • Tai YT, Li XF, Breitkreutz I, et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2006 Jul 01;66(13):6675–6682.
  • Shaffer AL, Emre NC, Lamy L, et al. IRF4 addiction in multiple myeloma. Nature. 2008 Jul 10;454(7201):226–231.
  • Claudio JO, Masih-Khan E, Tang H, et al. A molecular compendium of genes expressed in multiple myeloma. Blood. 2002 Sep 15;100(6):2175–2186.
  • Moreaux J, Legouffe E, Jourdan E, et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood. 2004 Apr 15;103(8):3148–3157.
  • Moreaux J, Cremer FW, Reme T, et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood. 2005 Aug 01;106(3):1021–1030.
  • Novak AJ, Darce JR, Arendt BK, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 2004 Jan 15;103(2):689–694.
  • Laurent SA, Hoffmann FS, Kuhn PH, et al. gamma-Secretase directly sheds the survival receptor BCMA from plasma cells. Nat Commun. 2015 Jun;6(1):7333.
  • Schuh E, Musumeci A, Thaler FS, et al. Human plasmacytoid dendritic cells display and shed B cell maturation antigen upon TLR engagement. J Immunol. 2017 Apr 15;198(8):3081–3088.
  • Sanchez E, Gillespie A, Tang G, et al. Soluble B-cell maturation antigen mediates tumor-induced immune deficiency in multiple myeloma. Clin Cancer Res. 2016 Jul 1;22(13):3383–3397.
  • Sanchez E, Li M, Kitto A, et al. Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br J Haematol. 2012 Sep;158(6):727–738.
  • Ghermezi M, Li M, Vardanyan S, et al. Serum B-cell maturation antigen: a novel biomarker to predict outcomes for multiple myeloma patients. Haematologica. 2017 Apr;102(4):785–795.
  • Benson MJ, Dillon SR, Castigli E, et al. Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J Immunol. 2008 Mar 15;180(6):3655–3659.
  • Day ES, Cachero TG, Qian F, et al. Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFFR/BR3 and BCMA. Biochemistry. 2005 Feb 15;44(6):1919–1931.
  • Belnoue E, Pihlgren M, McGaha TL, et al. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood. 2008 Mar 01;111(5):2755–2764.
  • Huard B, McKee T, Bosshard C, et al. APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. J Clin Invest. 2008 Aug;118(8):2887–2895.
  • Guadagnoli M, Kimberley FC, Phan U, et al. Development and characterization of APRIL antagonistic monoclonal antibodies for treatment of B-cell lymphomas. Blood. 2011 Jun 23;117(25):6856–6865.
  • Matthes T, Dunand-Sauthier I, Santiago-Raber ML, et al. Production of the plasma-cell survival factor a proliferation-inducing ligand (APRIL) peaks in myeloid precursor cells from human bone marrow. Blood. 2011 Aug 18;118(7):1838–1844.
  • An G, Acharya C, Feng X, et al. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood. 2016 Sep 22;128(12):1590–1603.
  • Tai YT, Cho SF, Anderson KC. Osteoclast immunosuppressive effects in multiple myeloma: role of programmed cell death ligand 1. Front Immunol. 2018;9:1822.
  • Mahtouk K, Hose D, De Vos J, et al. Input of DNA microarrays to identify novel mechanisms in multiple myeloma biology and therapeutic applications. Clin Cancer Res. 2007 Dec 15;13(24):7289–7295.
  • Tai YT, Chang BY, Kong SY, et al. Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood. 2012 Aug 30;120(9):1877–1887.
  • Zheng Y, Cai Z, Wang S, et al. Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis. Blood. 2009 Oct 22;114(17):3625–3628.
  • Matthes T, McKee T, Dunand-Sauthier I, et al. Myelopoiesis dysregulation associated to sustained APRIL production in multiple myeloma-infiltrated bone marrow. Leukemia. 2015 Sep;29(9):1901–1908.
  • Hendriks J, Planelles L, de Jong-Odding J, et al. Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ. 2005 Jun;12(6):637–648.
  • Moreaux J, Sprynski AC, Dillon SR, et al. APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop. Eur J Haematol. 2009 Aug;83(2):119–129.
  • Bolkun L, Lemancewicz D, Jablonska E, et al. BAFF and APRIL as TNF superfamily molecules and angiogenesis parallel progression of human multiple myeloma. Ann Hematol. 2014 Apr;93(4):635–644.
  • Cho SF, Anderson KC, Tai YT. Targeting B cell maturation antigen (BCMA) in multiple myeloma: potential uses of BCMA-based immunotherapy. Front Immunol. 2018;9:1821.
  • Bellucci R, Alyea EP, Chiaretti S, et al. Graft-versus-tumor response in patients with multiple myeloma is associated with antibody response to BCMA, a plasma-cell membrane receptor. Blood. 2005 May 15;105(10):3945–3950.
  • Prota AE, Bargsten K, Diaz JF, et al. A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13817–13821.
  • Tai YT, Li XF, Catley L, et al. Immunomodulatory drug lenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res. 2005 Dec 15;65(24):11712–11720.
  • Jiang H, Acharya C, An G, et al. SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia. 2016 Feb;30(2):399–408.
  • Trudel S, Lendvai N, Popat R, et al. Targeting B-cell maturation antigen with GSK2857916 antibody-drug conjugate in relapsed or refractory multiple myeloma (BMA117159): a dose escalation and expansion phase 1 trial. Lancet Oncol. 2018 Dec;19(12):1641–1653.
  • Eaton JS, Miller PE, Mannis MJ, et al. Ocular adverse events associated with antibody-drug conjugates in human clinical trials. J Ocul Pharmacol Ther. 2015 Dec;31(10):589–604.
  • Gravanis I, Tzogani K, van Hennik P, et al. The European medicines agency review of brentuximab vedotin (Adcetris) for the treatment of adult patients with relapsed or refractory CD30+ hodgkin lymphoma or systemic anaplastic large cell lymphoma: summary of the scientific assessment of the committee for medicinal products for human use. Oncologist. 2016 Jan;21(1):102–109.
  • Kinneer K, Meekin J, Tiberghien AC, et al. SLC46A3 as a potential predictive biomarker for antibody-drug conjugates bearing noncleavable linked maytansinoid and pyrrolobenzodiazepine warheads. Clin Cancer Res. 2018 Dec 15;24(24):6570–6582.
  • Kinneer K, Flynn M, Thomas SB, et al. Preclinical assessment of an antibody-PBD conjugate that targets BCMA on multiple myeloma and myeloma progenitor cells. Leukemia. 2018 Oct12;33:766.
  • Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017 Feb 9;168(4):724–740.
  • June CH, O’Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer. Science. 2018 Mar 23;359(6382):1361–1365.
  • Sadelain M. CD19 CAR T cells. Cell. 2017 Dec 14;171(7):1471.
  • Ali SA, Shi V, Maric I, et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016 Sep 29;128(13):1688–1700.
  • Brudno JN, Maric I, Hartman SD, et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol. 2018 Aug 1;36(22):2267–2280.
  • Sadelain M. CAR therapy: the CD19 paradigm. J Clin Invest. 2015 Sep;125(9):3392–3400.
  • Friedman KM, Garrett TE, Evans JW, et al. Effective targeting of multiple B-cell maturation antigen-expressing hematological malignances by anti-B-cell maturation antigen chimeric antigen receptor T cells. Hum Gene Ther. 2018 May;29(5):585–601.
  • Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 2019;34:45–55.
  • Raje NS, Berdeja JG, Lin Y, et al. bb2121 anti-BCMA CAR T-cell therapy in patients with relapsed/refractory multiple myeloma: updated results from a multicenter phase I study. J Clin Oncol. 2018;36(15_suppl):8007.
  • Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell Therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019 May 2;380(18):1726–1737.
  • Zhao WH, Liu J, Wang BY, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol. 2018 Dec 20;11(1):141.
  • Xu J, Chen LJ, Yang SS, et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci U S A. 2019 May 7;116(19):9543–9551.
  • Fan F, Zhao W, Liu J, et al. Durable remissions with BCMA-specific chimeric antigen receptor (CAR)-modified T cells in patients with refractory/relapsed multiple myeloma. J Clin Oncol. 2017;35(18_suppl):LBA3001–LBA3001.
  • Janssen JJ. Announces initiation of phase 1b/2 clinical development program evaluating JNJ-68284528 CAR-T cells for the treatment of multiple myeloma. 2018. Available from: https://www.janssen.com/janssen-announces-initiation-phase-1b2-clinical-development-program-evaluating-jnj-68284528-car-t
  • Bu DX, Singh R, Choi EE, et al. Pre-clinical validation of B cell maturation antigen (BCMA) as a target for T cell immunotherapy of multiple myeloma. Oncotarget. 2018 May 25;9(40):25764–25780.
  • Cohen AD, Garfall AL, Stadtmauer EA, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest. 2019 Mar;21:130.
  • Shah N, Alsina M, Siegel DSD, et al. Initial results from a phase 1 clinical study of bb21217, a Next-Generation Anti Bcma CAR T therapy. Blood. 2018;132:532.
  • Mailankody S, Htut M, Lee KP, et al. JCARH125, anti-BCMA CAR T-cell therapy for relapsed/REFRACTORY MULTIPLE Myeloma: initial proof of concept results from a phase 1/2 multicenter study (EVOLVE). Blood. 2018;2018(132):957.
  • Gregory T, Cohen AD, Costello CL, et al. Efficacy and safety of P-Bcma-101 CAR-T cells in patients with Relapsed/Refractory (r/r) Multiple Myeloma (MM). Blood. 2018;132:1012.
  • Lin L, Xing L, Acharya C,M, et al. CD8+ anti-Bcma mRNA CAR T-cells effectively kill human multiple myeloma cells in vitro and in vivo. Annual Meeting and Exposition of American Society of Hematology, Washington DC; 2017: Abstract 3067.
  • Lee L, Draper B, Chaplin N, et al. An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma. Blood. 2018 Feb 15;131(7):746–758.
  • Hipp S, Tai YT, Blanset D, et al. A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. Leukemia. 2017 Aug;31(8):1743–1751.
  • Topp MS, Duell J, Zugmaier G, et al. Treatment with AMG 420, an Anti-B-Cell Maturation Antigen (BCMA) Bispecific T-Cell Engager (BiTE®) Antibody Construct, Induces Minimal Residual Disease (MRD) Negative Complete Responses in Relapsed and/or Refractory (R/R) Multiple Myeloma (MM) Patients: results of a First-in-Human (FIH) Phase I dose escalation study. Blood. 2018;132:1010.
  • Goyos A, Li CM, Deegen P, et al. Cynomolgus monkey plasma cell gene signature to quantify the in vivo activity of a half-life extended anti-BCMA BiTE® for the treatment of multiple myeloma. Cancer Res. 2018;78(13 Suppl):LB–299.
  • Cho SF, Lin L, Xing L, et al. Anti-BCMA BiTE® AMG 701 potently induces specific T Cell Lysis of Human Multiple Myeloma (MM) Cells and Immunomodulation in the bone marrow microenvironment. Blood Cancer J. 2018;132:592.
  • Buelow B, Pham D, Choudhry P, et al. Cell engagement without cytokine storm: a novel Bcma x CD3 antibody killing myeloma cells with minimal cytokine secretion. Blood. 2017;130:501.
  • Foureau DM, Bhutani M, Robinson M, et al. Ex vivo assessment of Tnb-383B, a Bcma-bispecific antibody, against primary tumor and endogenous T cells from relapsing multiple myeloma patients. Blood. 2018;132:1940.
  • Tai YT, Dulos J, Guelen L, et al. APRIL is significantly elevated at all stages of Multiple Myeloma (MM) and interferes with Anti-Bcma monoclonal antibody-mediated cytolysis, supporting the clinical evaluation of Bion-1301 as a novel therapeutic approach in MM. Blood. 2018;132:3209.
  • Tai YT, Lin L, Xing L, et al. APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications. Leukemia. 2019 Feb;33(2):426–438.
  • Hari P, Raptis A, Berenson J, et al. Phase 1/2 safety and pharmacokinetics of BION-1301 targeting APRIL, a proliferation-inducing ligand, in adults with relapsed or refractory multiple myeloma. AACR annual meeting, Atlanta GA; 2019: Abstract CT107.
  • Bae J, Samur M, Richardson P, et al. Selective targeting of multiple myeloma by B cell maturation antigen (BCMA)-specific central memory CD8(+) cytotoxic T lymphocytes: immunotherapeutic application in vaccination and adoptive immunotherapy. Leukemia. 2019 Mar 12.
  • Bae J, Tai YT, Anderson KC, et al. Novel epitope evoking CD138 antigen-specific cytotoxic T lymphocytes targeting multiple myeloma and other plasma cell disorders. Br J Haematol. 2011 Nov;155(3):349–361.
  • Bae J, Hideshima T, Tai YT, et al. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia. 2018 Sep;32(9):1932–1947.
  • Bae J, Hideshima T, Tai YT, et al. Development of fargeted multiple myeloma cancer vaccine and antigen-specific T-cell immunotherapy using novel Immunogenic-engineered heteroclitic BCMA peptides. Cancer Immunol Res. 2019;7(2Suppl): Abstract nr B100.
  • Mathur R, Barnett B,E, Hermanson D, et al. B-Cell Maturation Antigen (BCMA)-Specific, centyrinTM-Based, PiggyBacTM-Transposed CAR-T memory stem cells are effective against p53-/- and patient-derived multiple myeloma tumors. Annual Meeting and Exposition of American Society of Hematology, Washington DC; 2017: Abstract 3068.
  • Roybal KT, Lim WA. Synthetic immunology: hacking immune cells to expand their therapeutic capabilities. Annu Rev Immunol. 2017 Apr;26(35):229–253.
  • Zweegman S, Engelhardt M, Larocca A, et al. Elderly patients with multiple myeloma: towards a frailty approach? Curr Opin Oncol. 2017 Sep;29(5):315–321.
  • Maus MV, June CH. Making better chimeric antigen receptors for adoptive T-cell therapy. Clin Cancer Res. 2016 Apr 15;22(8):1875–1884.
  • Sommer C, Boldajipour B, Valton J, et al. ALLO-715, an allogeneic BCMA CAR T therapy possessing an Off-Switch for the treatment of multiple myeloma. Blood. 2018;132:591.
  • Chen H, Li M, Xu N, et al. Serum B-cell maturation antigen (BCMA) reduces binding of anti-BCMA antibody to multiple myeloma cells. Leuk Res. 2019;81:62–66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.