190
Views
2
CrossRef citations to date
0
Altmetric
Review

Current status of developing tissue engineering vascular technologies

, , , &
Pages 433-440 | Received 16 Oct 2020, Accepted 23 Jul 2021, Published online: 24 Aug 2021

References

  • WHO. Cardiovascular diseases (CVDs) [online]. 2021. Available from: http://www.who.int/mediacentre/factsheets/fs317/en/index.html
  • Laslett LJ, Alagona P Jr, Clark BA 3rd, et al. The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol. 2012;60(25):S1–49.
  • Matsuzaki Y, Kelly J, Shoji T, et al. The evolution of tissue engineered vascular graft technologies: from preclinical trials to advancing patient care. Appl Sci. 2019;9(7):1274.
  • Olson JL, Anthony A, Yoo JJ. Tissue engineering: current strategies and future directions. Chonnam Med J. 2011;47(1):1–13.
  • Shoji T, Shinoka T. Tissue engineered vascular grafts for pediatric cardiac surgery. Transl Pediatr. 2018;7(2):188–195.
  • Dawit GS, Agung P, Kibret M, et al. Small-diameter vascular tissue engineering. Nat Rev Cardiol. 2013;10(7):410–421.
  • Vats A, Tolley NS, Polak JM, et al. Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin Otolaryngol Allied Sci. 2003;28(3):165–172.
  • Berglund JD, Galis ZS. Designer blood vessels and therapeutic revascularization. Br J Pharmacol. 2003;140(4):627–636.
  • Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17(Suppl4):467–479.
  • Asadian M, Chan KV, Norouzi M, et al. Fabrication and plasma modification of nanofibrous tissue engineering scaffolds. Nanomaterials (Basel). 2020;10(1):119.
  • Jayesh D, Darrel HR. Electrospinning process and applications of electrospun fibers. J Electrostat. 1995;35:151–160.
  • Kesari P, Xu T, Boland T. Layer-by-layer printing of cells and its application to tissue engineering. Mater Res Soc Symp Proc. 2005;845:111–117.
  • Watanabe T, Kanda K, Ishibashi-Ueda H, et al. Autologous small-caliber “biotube” vascular grafts with argatroban loading: a histomorphological examination after implantation to rabbits. J Biomed Mater Res B Appl Biomater. 2010;92(1):236–242.
  • Fujita S, Yamagishi M, Kanda K, et al. Histology and mechanics of in vivo tissue-engineered vascular graft for children. Ann Thorac Surg. 2020;110(3):1050–1054.
  • Theodore G, Papaioannou TG, Manolesou D, et al. 3D bioprinting methods and techniques: applications on artificial blood vessel fabrication. Acta Cardiol Sin. 2019;35(3):284–289.
  • Huang R, Gao X, Wang J, et al. Triple-layer vascular grafts fabricated by combined E-Jet 3D printing and electrospinning. Ann Biomed Eng. 2018 Sept;46(9):1254–1266.
  • Yeung E, Inoue T, Matsushita H, et al. In vivo implantation of 3-dimensional printed customized branched tissue engineered vascular graft in a porcine model. J Thorac Cardiovasc Surg. 2020;159(5):1971–1981.
  • Zhang F, King MW. Biodegradable polymers as the pivotal player in the design of tissue engineering scaffolds. Adv Healthc Mater. 2020;9(13):e1901358.
  • Hashi CK, Zhu Y, Yang GY, et al. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci U S A. 2007;104(29):11915–11920.
  • Allen RA, Wu W, Yao M, et al. Nerve regeneration and elastin formation within poly(glycerol sebacate)-based synthetic arterial grafts one-year post-implantation in a rat model. Biomaterials. 2014;35(1):165–173.
  • Sandusky GE Jr, Badylak SF, Morff RJ, et al. Histologic findings after in vivo placement of small intestine submucosal vascular grafts and saphenous vein grafts in the carotid artery in dogs. Am J Pathol. 1992;140(2):317–324.
  • Lepidi S, Abatangelo G, Vindigni V, et al. In vivo regeneration of small-diameter (2 mm) arteries using a polymer scaffold. FASEB J. 2006;20(1):103–105.
  • Yokota T, Ichikawa H, Matsumiya G, et al. In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding. J Thorac Cardiovasc Surg. 2008;136(4):900–907.
  • Zavan B, Vindigni V, Lepidi S, et al. Neoarteries grown in vivo using a tissue-engineered hyaluronan-based scaffold. FASEB J. 2008;22(8):2853–2861.
  • Enomoto S, Sumi M, Kajimoto K, et al. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg. 2010;51(1):155–164.
  • Hashi CK, Derugin N, Janairo RR, et al. Antithrombogenic modification of small-diameter microfibrous vascular grafts. Arterioscler Thromb Vasc Biol. 2010;30(8):1621–1627.
  • Soletti L, Nieponice A, Hong Y, et al. In vivo performance of a phospholipid-coated bioerodable elastomeric graft for small-diameter vascular applications. J Biomed Mater Res A. 2011;96(2):436–448.
  • De Valence S, Tille JC, Mugnai D, et al. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials. 2012;33(1):38–47.
  • Yao Y, Wang J, Cui Y, et al. Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomater. 2014;10(6):2739–2749.
  • Ji Q, Zhang S, Zhang J, et al. Dual functionalization of poly(ε-caprolactone) film surface through supramolecular assembly with the aim of promoting in situ endothelial progenitor cell attachment on vascular grafts. Biomacromolecules. 2013;14(11):4099–4107.
  • Fu J, Ding X, Stowell CET, et al. Slow degrading poly(glycerol sebacate) derivatives improve vascular graft remodeling in a rat carotid artery interposition model. Biomaterials. 2020;257:120251.
  • Yow KH, Ingram J, Korossis SA, et al. Tissue engineering of vascular conduits. Br J Surg. 2006 June;93(6):652–61.28. Bioactive biomaterials. JA Hubbell. Curr Opin Biotechnol, 1999; 10(2): 123–129.
  • Ito Y, Kajihara M, Imanishi Y. Materials for enhancing cell adhesion by immobilization of cell-adhesive peptide. J Biomed Mater Res. 1991;25(11):1325–1337.
  • Hibino N, Shin’oka T, Matsumura G, et al. The tissue-engineered vascular graft using bone marrow without culture. J Thorac Cardiovasc Surg. 2005;129(5):1064–1070.
  • Brothers TE, Stanley JC, Burkel WE, et al. Small-caliber polyurethane and polytetrafluoroethylene grafts: a comparative study in a canine aortoiliac model. J Biomed Mater Res. 1990;24(6):761–771.
  • Tiwari A, Salacinski H, Seifalian AM, et al. New prostheses for use in bypass grafts with special emphasis on polyurethanes. Cardiovasc Surg. 2002;10(3):191–197.
  • Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001;344(7):532–533.
  • Hibino N, McGillicuddy E, Matsumura G, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg. 2010;139(2):431–436.
  • Sugiura T, Matsumura G, Miyamoto S, et al. Tissue-engineered vascular grafts in children with congenital heart disease: intermediate term follow-up. Semin Thorac Cardiovasc Surg. 2018;30(2):175–179.
  • Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231(4736):397–400.
  • Patel MS, Miranda-Nieves D, Chen J, et al. Targeting P-selectin glycoprotein ligand-1/P-selectin interactions as a novel therapy for metabolic syndrome. Transl Res. 2017;183:1–13.
  • Qingjin C, Wanshan L, Fangchao X, et al. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater. 2021;6:2557–2568.
  • Zhuang Y, Zhang C, Cheng M, et al. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater. 2020;6(6):1791–1809.
  • Chen SG, Ugwu F, Li WC, et al. Vascular tissue engineering: advanced techniques and gene editing in stem cells for graft generation. Tissue Eng Part B Rev. 2021;27(1):14-28.
  • Lu H, Hoshiba T, Kawazoe N, et al. Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials. 2011;32(10):2489–2499.
  • Edri R, Gal I, Noor N, et al. Personalized hydrogels for engineering diverse fully autologous tissue implants. Adv Mater. 2019;31(1):e1803895.
  • Klein D. iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci. 2018;75(8):1411–1433.
  • Wang L, Hu J, Sorek CE, et al. Fabrication of tissue-engineered vascular grafts with stem cells and stem cell-derived vascular cells. Expert Opin Biol Ther. 2016;16(3):317–330.
  • Generali M, Casanova EA, Kehl D, et al. Autologous endothelialized small-caliber vascular grafts engineered from blood-derived induced pluripotent stem cells. Acta Biomater. 2019;97:333–343.
  • Qin K, Wang F, Simpson RML, et al. Hyaluronan promotes the regeneration of vascular smooth muscle with potent contractile function in rapidly biodegradable vascular grafts. Biomaterials. 2020;257:120226.
  • Luo J, Qin L, Zhao L, et al. Tissue-engineered vascular grafts with advanced mechanical strength from human iPSCs. Cell Stem Cell. 2020;26(2):251–261.
  • Lawson JH, Glickman MH, Ilzecki M, et al. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet. 2016;387(10032):2026–2034.
  • Ilanlou S, Khakbiz M, Amoabediny G, et al. Carboxymethyl kappa carrageenan-modified decellularized small-diameter vascular grafts improving thromboresistance properties. J Biomed Mater Res A. 2019;107(8):1690–1701.
  • García-Gareta E, Abduldaiem Y, Sawadkar P, et al. Decellularised scaffolds: just a framework? Current knowledge and future directions. J Tissue Eng. 2020;11:2041731420942903.
  • Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int. 2017;2017:9831534.
  • Cebotari S, Lichtenberg A, Tudorache I, et al. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation. 2006;114(1Suppl):I132–137.
  • Samir S, Alexander H, Igor T, et al. Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. Eur J Cardiothorac Surg. 2016;50(2):281–290.
  • Dietmar B, Alexander H, Mark H, et al. A European study on decellularized homografts for pulmonary valve replacement: initial results from the prospective ESPOIR trial and ESPOIR registry data. Eur J Cardiothorac Surg. 2019;56(3):503–509.
  • Dietmar B, Alexander H, Mark H, et al. Early results from a prospective, single-arm European trial on decellularized allografts for aortic valve replacement: the ARISE study and ARISE registry data. Eur J Cardiothorac Surg. 2020;58(5):1045-1053.
  • Douglas B, Kim B, Robert J, et al. Multicenter experience with 500 cardiocel implants used for the repair of congenital heart defects. Ann Thorac Surg. 2019;108(6):1883–1888.
  • Tong Z, Xu Z, Tong Y, et al. Effectiveness of distal arterial bypass with porcine decellularized vascular graft for treating diabetic lower limb ischemia. Int J Artif Organs. 2021 Aug;44(8):580-586.
  • Matsuzaki Y, Iwaki R, Reinhardt JW, et al. The effect of pore diameter on neo-tissue formation in electrospun biodegradable tissue-engineered arterial grafts in a large animal model. Acta Biomater. 2020;115:176-184.
  • Ye L, Wu X, Duan HY, et al. The in vitro and in vivo biocompatibility evaluation of heparin-poly(ε-caprolactone) conjugate for vascular tissue engineering scaffolds. J Biomed Mater Res A. 2012;100(12):3251–3258.
  • Matsuzaki Y, Miyamoto S, Miyachi H, et al. Improvement of novel small-diameter tissue engineered arterial graft with heparin conjugation. Ann Thorac Surg. 2021;111(4):1234-1241.
  • Zou J, Zhang X, Yang H, et al. Rapamycin-loaded nanoparticles for inhibition of neointimal hyperplasia in experimental vein grafts. Ann Vasc Surg. 2011;25(4):538–546.
  • Yang Y, Lei D, Zou H, et al. Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia. Acta Biomater. 2019;97:321–332.
  • Maximilian YE, Emanuela SF, Simon PH. Translational challenges in cardiovascular tissue engineering. J Cardiovasc Transl Res. 2017;10(2):139–149.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.