854
Views
0
CrossRef citations to date
0
Altmetric
Review

Biological and genetic therapies for the treatment of Duchenne muscular dystrophy

&
Pages 49-59 | Received 08 Sep 2022, Accepted 18 Nov 2022, Published online: 01 Dec 2022

References

  • Crisafulli S, Sultana J, Fontana A, et al. Global epidemiology of Duchenne muscular dystrophy: an updated systematic review and meta-analysis. Orphanet J Rare Dis. 2020;15(1):1–20. 2020 15:1.
  • Venugopal V, Pavlakis S. Duchenne muscular dystrophy. StatPearls. Treasure Island, FL: StatPearls Publishing; 2021.
  • Gardner-Medwin D. Clinical features and classification of the muscular dystrophies. Br Med Bull. 1980;36(2):109–116.
  • Ryder S, Leadley RM, Armstrong N, et al. The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet J Rare Dis. 2017 BioMed Central Ltd; 12(1). doi:10.1186/s13023-017-0631-3
  • Broomfield J, Hill M, Guglieri M, et al. Life expectancy in Duchenne Muscular Dystrophy. Neurology. 2021;97(23):e2304–e2314.
  • Adorisio R, Mencarelli E, Cantarutti N, et al. Duchenne dilated cardiomyopathy: cardiac management from prevention to advanced cardiovascular therapies. J Clin Med. 2020;9(10):1–18.
  • le Rumeur E, Winder SJ, Hubert JF. Dystrophin: more than just the sum of its parts. Biochim Biophys Acta Proteins Proteom. 2010;1804(9):1713–1722. Elsevier B.V.
  • Tennyson CN, Klamut HJ, Worton RG. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet. 1995;9(2):184–190.
  • Duan D, Goemans N, Takeda S, et al. Duchenne muscular dystrophy. Nat Rev Dis Primers. 2021;7(1):1–19. 2021 7:1.
  • Nowak KJ, Davies KE. Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment: third in molecular medicine review series. EMBO Rep. European Molecular Biology Organization. 2004;5(9):872–876.
  • Mohammed F, Elshafey A, Al-balool H, et al. Mutation spectrum analysis of Duchenne/Becker muscular dystrophy in 68 families in Kuwait: the era of personalized medicine. PLoS One. 2018;13(5).
  • Neri M, Rossi R, Trabanelli C, et al. The genetic landscape of dystrophin mutations in Italy: a nationwide study. Front Genet. 2020;0:131.
  • Gloss D, Moxley RT, Ashwal S, et al. Practice guideline update summary: corticosteroid treatment of Duchenne muscular dystrophy - report of the guideline development subcommittee of the American Academy of Neurology. Neurology. 2016;86(5):465–472.
  • Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management]. Lancet Neurol. 2018;17(3):251–267. Lancet Publishing Group.
  • Griggs RC, Moxley RT, Mendell JR, et al. Prednisone in Duchenne Dystrophy: a Randomized, Controlled Trial Defining the Time Course and Dose Response. Arch Neurol. 1991;48(4):383–388.
  • Mendell JR, Moxley RT, Griggs RC, et al. Randomized, double-blind six-month trial of prednisone in Duchenne’s muscular dystrophy. N Engl J Med. 1989;320(24):1592–1597.
  • Aartsma-Rus A, Fokkema I, Verschuuren J, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat. 2009;30(3):293–299.
  • Echevarría L, Aupy P, Goyenvalle A. Exon-skipping advances for Duchenne muscular dystrophy. Hum Mol Genet. 2018;27(R2):R163–R172.
  • Corey DR, Abrams JM. Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol. 2001;2(5):reviews1015.1.
  • Nan Y, Zhang YJ. Antisense phosphorodiamidate morpholino oligomers as novel antiviral compounds. Front Microbiol. 2018;9:750. Frontiers Media S.A.
  • Yokota T, Duddy W, Partridge T. Optimizing exon skipping therapies for DMD. Acta Myologica Pacini Editore. 2007;26(3):179–184.
  • Roshmi RR, Yokota T. Viltolarsen for the treatment of Duchenne muscular dystrophy. Drugs Today. 2019;55(10):627–639.
  • Anwar S, Yokota T. Golodirsen for Duchenne muscular dystrophy. Drugs Today. 2020;56(8):491–504.
  • Baker DE. Eteplirsen Hosp Pharm. Thousand Oaks, CA: SAGE Publications Ltd; 2017. p. 302–305.
  • Shirley M. Casimersen: first approval. Drugs. 2021;81(7):875–879.
  • Echigoya Y, Lim KRQ, Nakamura A, et al. Multiple exon skipping in the Duchenne muscular dystrophy hot spots: prospects and challenges. J Pers Med. 2018;8(4).
  • Nakamura A, Fueki N, Shiba N, et al. Deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene presents an asymptomatic phenotype, indicating a target region for multiexon skipping therapy. J Hum Genet. 2016;61(7):663–667.
  • Lim KRQ, Maruyama R, Yokota T. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther. 2017;11:533–545.
  • Frank DE, Schnell FJ, Akana C, et al. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy. Neurology. 2020;94(21):e2270–e2282.
  • Wagner KR, Kuntz NL, Koenig E, et al. Safety, tolerability, and pharmacokinetics of casimersen in patients with Duchenne D uchenne muscular dystrophy amenable to exon 45 skipping: a randomized, double‐blind, placebo‐controlled, dose‐titration trial. Muscle Nerve. 2021;64(3):285–292.
  • Clemens PR, Rao VK, Connolly AM, et al. Safety, tolerability, and efficacy of viltolarsen in boys with duchenne muscular dystrophy amenable to exon 53 skipping: a phase 2 randomized clinical trial. JAMA Neurol. 2020;77(8):982–991.
  • Lakhia R, Mishra A, Patel V. Manipulation of renal gene expression using oligonucleotides. Methods Cell Biol. 2019;154:109–120.
  • Echigoya Y, Lim KRQ, Melo D, et al. Exons 45–55 skipping using mutation-tailored cocktails of antisense morpholinos in the DMD gene. Mol Ther. 2019;27(11):2005–2017.
  • Yokota T, Lu Q, Partridge T, et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol. 2009;65(6):667.
  • Godfrey C, Desviat LR, Smedsrød B, et al. Delivery is key: lessons learnt from developing splice‐switching antisense therapies. EMBO Mol Med. 2017;9(5):545.
  • Lee JJA, Yokota T. Antisense therapy in neurology. J Pers Med. 2013;3(3):144.
  • Duan D. Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol Ther. 2018;26(10):2337–2356.
  • le GC, Servais L, Montus M, et al. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun. 2017;8(1):1–15. 2017 8:1.
  • Duan D. Micro-dystrophin gene therapy goes systemic in Duchenne muscular dystrophy patients. Hum Gene Ther. 2018;29(7):733–736.
  • A phase 3 study to evaluate the safety and efficacy of PF-06939926 for the treatment of duchenne muscular dystrophy - full text view - ClinicalTrials.gov [Internet]. [cited 2021 Dec 8].
  • Zaidman C, Proud C, McDonald C, et al. ENDEAVOR : a gene delivery study to evaluate the safety of and expression from SRP- 9001 in Duchenne muscular dystrophy. World Muscle Society Virtual Congress, 20–24 September 2021, Virtual. 2021;9001.
  • Microdystrophin gene transfer study in adolescents and children with dmd - full text view - ClinicalTrials.gov [Internet]. [cited 2021 Dec 8].
  • A randomized, double-blind, placebo-controlled study of SRP-9001 for Duchenne Muscular Dystrophy (DMD) - full text view - ClinicalTrials.gov [Internet]. [cited 2021 Dec 8].
  • FDA slaps clinical hold on solid bioscience DMD gene therapy program | BioSpace [Internet]. [cited 2021 Dec 26].
  • FDA slaps second clinical hold on solid biosciences’ DMD gene therapy due to adverse event | Biospace [Internet]. [cited 2021 Dec 26].
  • Pfizer reports patient death in early-stage Duchenne gene therapy trial, halts enrollment | FierceBiotech [Internet]. [cited 2021 Dec 26].
  • Sarepta therapeutics announces top-line results for part 1 of study 102 evaluating SRP-9001, its investigational gene therapy for the treatment of Duchenne muscular dystrophy | Sarepta Therapeutics, Inc. [Internet]. [cited 2021 Dec 8].
  • Therapeutics’ S. SRP-9001 shows sustained functional improvements in multiple studies of patients with Duchenne | Sarepta Therapeutics, Inc. [Internet]. [cited 2021 Dec 8].
  • Pfizer to Open First U.S. Sites in phase 3 trial of investigational gene therapy for ambulatory patients with Duchenne muscular dystrophy | Pfizer [Internet]. [cited 2022 Aug 18].
  • van Vliet KM, Blouin V, Brument N, et al. The role of the adeno-associated virus capsid in gene transfer. Methods Mol Biol. 2008;437:51–91.
  • Qu Y, Liu Y, Noor A, et al. Characteristics and advantages of adeno-associated virus vector-mediated gene therapy for neurodegenerative diseases. Neural Regen Res. 2019;14(6):931.
  • Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018;8:87.
  • Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122(1):23.
  • Mendell JR, Campbell K, Rodino-Klapac L, et al. Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med. 2010;363(15):1429.
  • Ronzitti G, Gross DA, Mingozzi F. Human immune responses to Adeno-Associated Virus (AAV) vectors. Front Immunol. 2020;11:670.
  • Weber T. Anti-AAV antibodies in AAV gene therapy: current challenges and possible solutions. Front Immunol. 2021;12:702.
  • Philippidis A. Fourth Boy Dies in Clinical Trial of Astellas. AT132. 2021;32:1008–1010. [cited 2022 Aug 30]. https://home.liebertpub.com/hum
  • Philippidis A. After third death, audentes’ AT132 remains on clinical hold. 2020;31:908–910. [cited 2022 Aug 30]. https://home.liebertpub.com/hum
  • Takeshima Y. Nonsense readthrough therapy for duchenne muscular dystrophy. Clin Neurol. 2014;54(12):1074–1076.
  • Shiozuka M, Matsuda R. Therapeutic readthrough strategy for suppression of nonsense mutations in Duchenne muscular dystrophy. Brain and Nerve. 2011;63(11):1253–1260.
  • Finkel RS. Readthrough strategies for suppression of nonsense mutations in Duchenne/Becker muscular dystrophy: aminoglycosides and ataluren (PTC124). J Child Neurol. 2010;25(9):1158.
  • Finkel RS. Read through strategies for suppression of nonsense mutations in Duchenne/Becker muscular dystrophy: aminoglycosides and ataluren (PTC124). J Child Neurol. 2010;25(9):1158.
  • Malik V, Rodino Klapac LR, Viollet L, et al. Aminoglycoside-induced mutation suppression (stop codon readthrough) as a therapeutic strategy for Duchenne muscular dystrophy. Ther Adv Neurol Disord. 2010;3(6):379–389.
  • Malik V, Rodino-Klapac LR, Viollet L, et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. Ann Neurol. 2010;67(6):771–780.
  • Landfeldt E, Sejersen T, Tulinius M. A mini-review and implementation model for using ataluren to treat nonsense mutation Duchenne muscular dystrophy. Acta Paediatr. 2019;108(2):224–230.
  • Finkel R, Wong B, Bushby K, et al. P3.51 results of a Phase 2b, dose-ranging study of ataluren (PTC124®) in nonsense mutation Duchenne/Becker muscular dystrophy (nmDBMD). Neuromuscul Disord. 2010;20(9–10):656–657.
  • McDonald CM, Campbell C, Torricelli RE, et al., Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017; 390(10101): 1489–1498.
  • Mullard A. EMA reconsiders “read-through” drug against Duchenne muscular dystrophy following appeal. Nat Biotechnol. 2014;32(8):706.
  • Mercuri E, Muntoni F, Osorio AN, et al. Safety and effectiveness of ataluren: comparison of results from the STRIDE registry and CINRG DMD natural history study. J Comp Eff Res. 2020;9(5):341–360.
  • Long-term outcomes of ataluren in Duchenne muscular dystrophy - full text view - ClinicalTrials.gov [Internet]. [cited 2022 Aug 18].
  • Dabrowski M, Bukowy-Bieryllo Z, Zietkiewicz E. Advances in therapeutic use of a drug-stimulated translational readthrough of premature termination codons. Mol Med. 2018;24(1):24.
  • Konstan MW, VanDevanter DR, Rowe SM, et al. Efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis not receiving chronic inhaled aminoglycosides: the international, randomized, double-blind, placebo-controlled Ataluren Confirmatory Trial in Cystic Fibrosis (ACT CF). J Cyst Fibros. 2020;19(4):595–601.
  • Xu Y, Li Z. CRISPR-Cas systems: overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J. 2020;18:2401.
  • Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1):1–13. 2018 9:1.
  • Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34(2):184–191.
  • Miyaoka Y, Berman JR, Cooper SB, et al. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep. 2016;6(1):1–12. 2016 6:1.
  • Ishibashi A, Saga K, Hisatomi Y, et al. A simple method using CRISPR-Cas9 to knock-out genes in murine cancerous cell lines. Sci Rep. 2020;10(1):1–10. 2020 10:1.
  • Mengstie MA, Wondimu BZ. Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics. 2021;15:353.
  • Erkut E, Yokota T. CRISPR therapeutics for Duchenne muscular dystrophy. Int J Mol Sci. 2022;23(3).
  • Long C, McAnally JR, Shelton JM, et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014;345(6201):1184–1188.
  • Zhu P, Wu F, Mosenson J, et al. CRISPR/Cas9-mediated genome editing corrects dystrophin mutation in skeletal muscle stem cells in a mouse model of muscle dystrophy. Mol Ther Nucleic Acids. 2017;7:31–41.
  • Min YL, Bassel-Duby R, Olson EN. CRISPR correction of Duchenne muscular dystrophy. Annu Rev Med. 2019;70(1):239–255.
  • Himič V, Davies KE. Evaluating the potential of novel genetic approaches for the treatment of Duchenne muscular dystrophy. Eur J Hum Genet. 2021;29(9):1369–1376. 2021 29:9.
  • Min YL, Chemello F, Li H, et al. Correction of three prominent mutations in mouse and human models of Duchenne muscular dystrophy by single-cut genome editing. Mol Ther. 2020;28(9):2044–2055.
  • Choi E, Koo T. CRISPR technologies for the treatment of Duchenne muscular dystrophy. Mol Ther. 2021;29(11):3179–3191.
  • Musunuru K, Chadwick AC, Mizoguchi T, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature. 2021;593(7859):429–434. 2021 593:7859.
  • Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38(7):824–844. 2020 38:7.
  • Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–157. 2019 576:7785.
  • Oh Y, Jae LW, Hur JK, et al. Expansion of the prime editing modality with Cas9 from Francisella novicida. Genome Biol. 2022;23(1):23.
  • Chemello F, Chai AC, Li H, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv. 2021;7(18). doi:10.1126/sciadv.abg4910.
  • Xu L, Zhang C, Li H, et al. Efficient precise in vivo base editing in adult dystrophic mice. Nat Commun. 2021;12(1):1–14. 2021 10:1.
  • Yuan J, Ma Y, Huang T, et al. Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase. Mol Cell. 2018;72(2):380–394.e7.
  • Katrekar D, Chen G, Meluzzi D, et al. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nat Methods. 2019;16(3):239.
  • Naeem M, Majeed S, Hoque MZ, et al. Latest developed strategies to minimize the off-target effects in CRISPR-cas-mediated genome editing. Cells. 2020;9(7):1608.
  • Zhang XH, Tee LY, Wang XG, et al. Off-target Effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4:e264.
  • Kim S, Koo T, Jee HG, et al. CRISPR RNAs trigger innate immune responses in human cells. Genome Res. 2018;28(3):367–373.
  • Aly RM. Current state of stem cell-based therapies: an overview. Stem Cell Investig. 2020;7.
  • Sienkiewicz D, Okurowska Zawada B, Paszko Patej G, et al. Duchenne muscular dystrophy: current cell therapies. Ther Adv Neurol Disord. 2015;8(4):166.
  • Sun C, Serra C, Lee G, et al. Stem cell-based therapies for Duchenne muscular dystrophy. Exp Neurol. 2020;323:113086.
  • Allogeneic human umbilical cord mesenchymal stem cells for a single male patient with Duchenne Muscular Dystrophy (DMD) - full text view - ClinicalTrials.gov [Internet]. [cited 2022 Aug 8].
  • Bone marrow-derived autologous stem cells for the treatment of Duchenne muscular dystrophy - full text view - ClinicalTrials.gov [Internet]. [cited 2022 Aug 8].
  • Świątkowska-Flis B, Zdolińska-Malinowska I, Sługocka D, et al. The use of umbilical cord‐derived mesenchymal stem cells in patients with muscular dystrophies: results from compassionate use in real‐life settings. Stem Cells Transl Med. 2021;10(10):1372.
  • Taylor M, Jefferies J, Byrne B, et al. Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology. 2019;92(8):e866.
  • HOPE-Duchenne (Halt cardiomyOPathy progrEssion in Duchenne) - full text view - ClinicalTrials.gov [Internet]. [cited 2022 Aug 8].
  • A study of CAP-1002 in ambulatory and non-ambulatory patients with Duchenne muscular dystrophy - full text view - ClinicalTrials.gov [Internet]. [cited 2022 Aug 8].
  • Taylor M, Jefferies J, Byrne B, et al. Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology. 2019;92(8):E866–E878.
  • McDonald CM, Marbán E, Hendrix S, et al. Repeated intravenous cardiosphere-derived cell therapy in late-stage Duchenne muscular dystrophy (HOPE-2): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2022;399(10329):1049–1058.
  • A study of CAP-1002 in ambulatory and non-ambulatory patients with duchenne muscular dystrophy (HOPE-3) - full text view - ClinicalTrials.gov [Internet]. [cited 2022 Aug 8].
  • Lin S, Burgunder JM. Utrophin may be a precursor of dystrophin during skeletal muscle development. Dev Brain Res. 2000;119(2):289–295.
  • Wu R, Song Y, Wu S, et al. Promising therapeutic approaches of utrophin replacing dystrophin in the treatment of Duchenne muscular dystrophy. Fundam Res. 2022;2(6):885–893.
  • Pons F, Robert A, Fabbrizio E, et al. Utrophin localization in normal and dystrophin-deficient heart. Circulation. 1994;90(1):369–374.
  • Bogdanovich S, Gardner BB, McNally EM. Abnormal Muscle Pathology and Physiology. In: Cardioskeletal Myopathies in Children and Young Adults. 2017;65–82.
  • Song Y, Morales L, Malik AS, et al. Non-immunogenic utrophin gene therapy for the treatment of muscular dystrophy animal models. Nat Med. 2019;25(10):1505–1511. 2019 25:10.
  • Tinsley J, Deconinck N, Fisher R, et al. Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med. 1998;4(12):1441–1444.
  • Muntoni F, Tejura B, Spinty S, et al. A phase 1b trial to assess the pharmacokinetics of ezutromid in pediatric duchenne muscular dystrophy patients on a balanced diet. Clin Pharmacol Drug Dev. 2019;8(7):922–933.
  • Proof of concept study to assess activity and safety of SMT C1100 (Ezutromid) in boys with Duchenne Muscular Dystrophy (DMD) - full text view - ClinicalTrials.gov [Internet]. [cited 2022 Aug 1].
  • Ricotti V, Spinty S, Roper H, et al. Safety, tolerability, and pharmacokinetics of SMT c1100, a 2-arylbenzoxazole utrophin modulator, following single-and multiple-dose administration to pediatric patients with duchenne muscular dystrophy. PLoS One. 2016;11(4).
  • Muntoni F, Maresh K, Davies K, et al. PhaseOut DMD: a Phase 2, proof of concept, clinical study of utrophin modulation with ezutromid. Neuromuscul Disord. 2017;27:S217.
  • Summit announces PhaseOut DMD did not meet primary [Internet]. [cited 2022 Aug 1].
  • Zygmunt DA, Xu R, Jia Y, et al. rAAVrh74.MCK.GALGT2 demonstrates safety and widespread muscle glycosylation after intravenous delivery in C57BL/6J mice. Mol Ther Methods Clin Dev. 2019;15:305–319.
  • Xu R, Jia Y, Zygmunt DA, et al. rAAVrh74.MCK.GALGT2 protects against loss of hemodynamic function in the aging mdx mouse heart. Mol Ther. 2019;27(3):636–649.
  • Xu R, Jia Y, Zygmunt DA, et al. rAAVrh74.MCK.GALGT2 protects against loss of hemodynamic function in the aging mdx mouse heart. Mol Ther. 2019;27(3):636–649.
  • Gene transfer clinical trial to deliver rAAVrh74.MCK.GALGT2 for Duchenne muscular dystrophy - full text view - ClinicalTrials.gov [Internet]. [cited 2022 Aug 2].
  • Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet. 2020;21(4):255–272.
  • Wei T, Cheng Q, Min YL, et al. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun. 2020;11(1):1–12. 2020 11:1.
  • Behr M, Zhou J, Xu B, et al. In vivo delivery of CRISPR-Cas9 therapeutics: progress and challenges. Acta Pharm Sin B. 2021;11(8):2150–2171.
  • Zuris JA, Thompson DB, Shu Y, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2014;33(1):73–80. 2014 33 1.
  • Lee K, Conboy M, Park HM, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1(11):889–901. 2017 1:11.
  • Finkel RS, Flanigan KM, Wong B, et al. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLoS One. 2013;8(12).
  • Echigoya Y, Lim KRQ, Melo D, et al. Exons 45-55 skipping using mutation-tailored cocktails of antisense morpholinos in the DMD gene. Mol Ther. 2019;27(11):2005–2017.
  • Aoki Y, Yokota T, Nagata T, et al. Bodywide skipping of exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci U S A. 2012;109(34):13763–13768.
  • Lim KRQ, Woo S, Melo D, et al. Development of DG9 peptide-conjugated single- and multi-exon skipping therapies for the treatment of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2022;119(9):e2112546119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.