283
Views
1
CrossRef citations to date
0
Altmetric
Review

Microbiome therapeutics for the treatment of recurrent Clostridioides difficile infection

&
Pages 89-101 | Received 06 Aug 2022, Accepted 30 Nov 2022, Published online: 19 Dec 2022

References

  • Lessa FC, Mu Y, Bamberg WM, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372(9):825–834. PubMed PMID: 25714160.
  • Zimlichman E, Henderson D, Tamir O, et al. Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med. 2013;173(22):2039–2046. PubMed PMID: 23999949.
  • Zhang S, Palazuelos-munoz S, Balsells EM, et al. Cost of hospital management of Clostridium difficile infection in United states-a meta-analysis and modelling study. BMC Infect Dis.2016;16(1):447; Epub 20160825. Epub 20160825;
  • Young VB. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ. 2017;356:j831. PubMed PMID: 28298355.
  • Ooijevaar RE, van Beurden YH, Terveer EM, et al. Update of treatment algorithms for Clostridium difficileinfection. Clin Microbiol Infect. 2018;24(5):452–462. Epub 20180106. Epub 20180106
  • Dieterle MG, Rao K, Young VB. Novel therapies and preventative strategies for primary and recurrent Clostridium difficile infections.Ann N Y Acad Sci.2019;1435(1):110–138; Epub 2018/09/22. Epub 2018/09/22;
  • McDonald LC, Gerding DN, Johnson S, et al. Clinical practice guidelines for cCostridium difficile infection in adults and children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1–e48. PubMed PMID: 29462280; PubMed Central PMCID: PMC6018983.
  • Morvan C, Folgosa F, Kint N, et al. Responses of Clostridia to oxygen: from detoxification to adaptive strategies. Environ Microbiol.2021;23(8):4112–4125; Epub 20210717. Epub 20210717;
  • Seekatz AM, Young VB. Clostridium difficile and the microbiota. J Clin Invest. 2014;124(10):4182–4189; Epub 20140718. Epub 20140718;
  • Theriot CM, Young VB. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu Rev Microbiol. 2015;69(1):445–461. PubMed PMID: 26488281.
  • Chilton CH, Crowther GS, Ashwin H, et al. Association of fidaxomicin with C. difficile spores: effects of persistence on subsequent spore recovery, outgrowth and toxin production.PLoS One.2016;11(8):e0161200; Epub 20160824. Epub 20160824
  • Edwards AN, Karim ST, Pascual RA, et al. Chemical and stress resistances of Clostridium difficile spores and vegetative cells. Front Microbiol. 2016;7:1698. Epub 20161026. Epub 20161026.
  • Peterfreund GL, Vandivier LE, Sinha R, et al. Succession in the gut microbiome following antibiotic and antibody therapies for Clostridium difficile. PLoS One. 2012;7(10):e46966. Epub 20121010. Epub 20121010
  • Kordus SL, Thomas AK, Lacy DB. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics.Nat Rev Microbiol. 2022;20(5):285–298; Epub 20211126. Epub 20211126.
  • Majumdar A, Govind R. Regulation of Clostridioides difficile toxin production. Curr Opin Microbiol. 2022;65:95–100. Epub 20211112. Epub 20211112.
  • Chandra H, Sorg JA, Hassett DJ, et al. Regulatory transcription factors of Clostridioides difficile pathogenesis with a focus on toxin regulation. Crit Rev Microbiol. 2022:1–16. Epub 20220407. Epub 20220407.
  • Reineke J, Tenzer S, Rupnik M, et al. Autocatalytic cleavage of Clostridium difficile toxin B. Nature. 2007;446(7134):415–419. Epub 20070304. Epub 20070304
  • Mileto SJ, Jardé T, Childress KO, et al. Clostridioides difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease. Proc Natl Acad Sci U S A. 2020;117(14):8064–8073. Epub 20200320. Epub 20200320
  • Hecht G, Pothoulakis C, LaMont JT, et al. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest. 1988;82(5):1516–1524. PubMed PMID: 3141478; PubMed Central PMCID: PMC442717.
  • Nusrat A, von Eichel-Streiber C, Turner JR, et al. Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect Immun. 2001;69(3):1329–1336. PubMed PMID: 11179295; PubMed Central PMCID: PMC98024.
  • Dieterle MG, Young VB. Reducing recurrence of C.difficile infection. Cell. 2017;169(3):375. PubMed PMID: 28431238.
  • Barron MR, Young VB. Viewing bacterial colonization through the lens of systems biology. mSystems. 2022;7(2):e0138321; Epub 2022/04/01. Epub 2022/04/01
  • Britton RA, Young VB. Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends Microbiol. 2012;20(7):313–319; Epub 20120515. Epub 20120515;
  • Tam J, Icho S, Utama E, et al. Intestinal bile acids directly modulate the structure and function of C. difficile TcdB toxin. Proc Natl Acad Sci U S A. 2020;117(12):6792–6800. Epub 2020/03/11. PubMed PMID: 32152097; PubMed Central PMCID: PMC7104382
  • Thanissery R, Winston JA, Theriot CM. Inhibition of spore germination, growth, and toxin activity of clinically relevant C.difficile strains by gut microbiota derived secondary bile acids. Anaerobe. 2017;45:86–100. Epub 20170306. Epub 20170306.
  • Buffie CG, Bucci V, Stein RR, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517(7533):205–208. PubMed PMID: 25337874; PubMed Central PMCID: 4354891.
  • Theriot CM, Bowman AA, Young VB. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for cCostridium difficile spore germination and outgrowth in the large intestine. mSphere. 2016;1(1). Epub 20160106. Epub 20160106
  • Wilson KH. Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J Clin Microbiol. 1983;18(4):1017–1019. PubMed PMID: 6630458; PubMed Central PMCID: PMC270959.
  • Sorg JA, Sonenshein AL.Bile salts and glycine as cogerminants for Clostridium difficile spores.J Bacteriol.2008;190(7):2505–2512; Epub 20080201. Epub 20080201
  • Ridlon JM, Harris SC, Bhowmik S, et al. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016;7(1):22–39. PubMed PMID: 26939849; PubMed Central PMCID: PMC4856454.
  • Allegretti JR, Kearney S, Li N, et al. Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles. Aliment Pharmacol Ther. 2016;43(11):1142–1153. Epub 20160418. Epub 20160418
  • Weingarden AR, Chen C, Bobr A, et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am J Physiol Gastrointest Liver Physiol. 2014;306(4):G310–9. Epub 20131127. Epub 20131127
  • Wong JM, de Souza R, Kendall CW, et al. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40(3):235–243. PubMed PMID: 16633129.
  • Louis P, Flint HJ, Ridlon JM, et al. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8; Epub 20090213. Epub 20090213
  • Ferreyra JA, Wu KJ, Hryckowian AJ, et al. Gut microbiota-produced succinate promotes C.difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe. 2014;16(6):770–777. PubMed PMID: 25498344; PubMed Central PMCID: PMC4859344.
  • Antharam VC, Li EC, Ishmael A, et al. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol. 2013;51(9):2884–2892. Epub 2013/06/28. PubMed PMID: 23804381; PubMed Central PMCID: PMC3754663
  • Carlucci C, Jones CS, Oliphant K, et al. Effects of defined gut microbial ecosystem components on virulence determinants of Clostridioides difficile. Sci Rep. 2019;9(1):885. Epub 20190129. Epub 20190129
  • Seekatz AM, Theriot CM, Rao K, et al. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe. 2018;53:64–73. Epub 20180412. Epub 20180412.
  • Fletcher JR, Pike CM, Parsons RJ, et al. Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota. Nat Commun. 2021;12(1):462. Epub 2021/01/21. Epub 2021/01/21
  • Jenior ML, Leslie JL, Young VB, et al. Clostridium difficile colonizes alternative nutrient niches during infection across distinct murine gut microbiomes. mSystems. 2017;2(4). 10.1128/mSystems.00063-17 Epub 2017/08/02. PubMed PMID: 28761936; PubMed Central PMCID: PMC5527303
  • Buckley AM, Moura IB, Wilcox MH. The potential of microbiome replacement therapies for Clostridium difficile infection. Curr Opin Gastroenterol. 2022;38(1):1–6. PubMed PMID: 34871192.
  • Ng KM, Ferreyra JA, Higginbottom SK, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature. 2013;502(7469):96–99. PubMed PMID: 23995682; PubMed Central PMCID: 3825626.
  • Abt MC, McKenney PT, Pamer EG.Clostridium difficile colitis: pathogenesis and host defence.Nat Rev Microbiol.2016;14(10):609–620; Epub 20160830. Epub 20160830;
  • Bender KO, Garland M, Ferreyra JA, et al. A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med. 2015;7(306):306ra148. Epub 2015/09/25. Epub 2015/09/25
  • Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–341. Epub 2011/01/06. PubMed PMID: 21205640
  • Zuo T, Wong SH, Lam K, et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut. 2018;67(4):634–643. Epub 20170524. Epub 20170524
  • Nale JY, Spencer J, Hargreaves KR, et al. Bacteriophage combinations significantly reduce Clostridium difficile growth in vitro and proliferation in vivo. Antimicrob Agents Chemother. 2016;60(2):968–981. Epub 20151207. Epub 20151207
  • Eiseman B, Silen W, Bascom GS, et al. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958;44(5):854–859. PubMed PMID: 13592638.
  • Khoruts A, Sadowsky MJ. Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol. 2016;13(9):508–516; Epub 20160622. Epub 20160622
  • Tariq R, Pardi DS, Bartlett MG, et al. Low cure rates in controlled trials of fecal microbiota transplantation for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Clin Infect Dis. 2019;68(8):1351–1358. PubMed PMID: 30957161.
  • Kelly CR, Khoruts A, Staley C, et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann Intern Med. 2016;165(9):609–616. Epub 2016/11/01. Epub 2016/11/01
  • Osman M, Budree S, Kelly CR, et al. Effectiveness and safety of fecal microbiota transplantation for cCostridioides difficile infection: results from a 5344-patient cohort study. Gastroenterology. 2022;163(1):319–322; Epub 20220407. Epub 20220407
  • Ianiro G, Bibbò S, Porcari S, et al. Fecal microbiota transplantation for recurrent C.difficile infection in patients with inflammatory bowel disease: experience of a large-volume European FMT center. Gut Microbes. 2021;13(1):1994834. PubMed PMID: 34709989; PubMed Central PMCID: PMC8555518.
  • Mamo Y, Woodworth MH, Wang T, et al. Durability and long-term clinical outcomes of fecal microbiota transplant treatment in patients with recurrent Clostridium difficile infection. Clin Infect Dis. 2018;66(11):1705–1711. PubMed PMID: 29272401; PubMed Central PMCID: PMC5961001.
  • Allegretti JR, Kao D, Phelps E, et al. Risk of Clostridium difficile infection with systemic antimicrobial therapy following successful fecal microbiota transplant: should we recommend anti-clostridium difficile antibiotic prophylaxis? Dig Dis Sci. 2019;64(6):1668–1671. Epub 20190110. Epub 20190110
  • Mullish BH, McDonald JAK, Pechlivanis A, et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection. Gut. 2019;68(10):1791–1800. Epub 20190211. Epub 20190211
  • Rea MC, Dobson A, O’Sullivan O, et al. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci U S A. 2011;108 Suppl 1(Suppl 1):4639–4644. Epub 20100629. Epub 20100629
  • Lay CL, Dridi L, Bergeron MG, et al. Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination. J Med Microbiol. 2016;65(2):169–175; Epub 20151109. Epub 20151109
  • Spinler JK, Auchtung J, Brown A, et al. Next-generation probiotics targeting Clostridium difficile through precursor-directed antimicrobial biosynthesis. Infect Immun. Epub 20170920. 10.1128/iai.00303-17. Epub 20170920. 2017;85(10).
  • Louie TJ, Miller MA, Mullane KM, et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med. 2011;364(5):422–431. PubMed PMID: 21288078
  • van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407–415. PubMed PMID: 61.
  • Ott SJ, Waetzig GH, Rehman A, et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficileinfection. Gastroenterology. 2017;152(4):799–811.e7. Epub 20161117. Epub 20161117
  • Wilcox MH, McGovern BH, Hecht GA. The efficacy and safety of fecal microbiota transplant for recurrent Clostridium difficile infection: current understanding and gap analysis. Open Forum Infect Dis. 2020;7(5):ofaa114; Epub 20200411. Epub 20200411
  • Du C, Luo Y, Walsh S, et al. Oral fecal microbiota transplant capsules are safe and effective for recurrent Clostridioides difficile infection: a systematic review and meta-analysis. J Clin Gastroenterol. 2021;55(4):300–308. PubMed PMID: 33471490.
  • Cammarota G, Ianiro G, Kelly CR, et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut. 2019;68(12):2111–2121. Epub 20190928. PubMed PMID: 31563878; PubMed Central PMCID: PMC6872442
  • DeFilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant E.coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med. 2019;381(21):2043–2050. PubMed PMID: 351.
  • Zellmer C, Sater MRA, Huntley MH, et al. Shiga toxin-producing Escherichia coli transmission via fecal microbiota transplant. Clin Infect Dis. 2020; Epub 2020/11/08. 10.1093/cid/ciaa1486. PubMed PMID: 33159210.
  • Administration Ufa D Safety alert regarding use of fecal microbiota for transplantation and risk of serious adverse events likely due to transmission of pathogenic organisms 2020. [cited 2022 Nov 1]. Available from: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/safety-alert-regarding-use-fecal-microbiota-transplantation-and-risk-serious-adverse-events-likely.
  • FaDA FDA. 2020 [2022 Jun 21]. Available from: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/safety-alert-regarding-use-fecal-microbiota-transplantation-and-additional-safety-protections.
  • FDA. FDA alert for monkeypox 2022 [2022 Oct 30]. Available from: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/safety-alert-regarding-use-fecal-microbiota-transplantation-and-additional-safety-protections-0.
  • Auchtung JM, Preisner EC, Collins J, et al. Identification of simplified microbial communities that inhibit Clostridioides difficile infection through dilution/extinction. mSphere. 2020;5(4). 10.1128/mSphere.00387-20 Epub 2020/07/31. PubMed PMID: 32727857; PubMed Central PMCID: PMC7392540
  • Orenstein R, Dubberke E, Hardi R, et al. Safety and durability of RBX2660 (microbiota suspension) for recurrent Clostridium difficile infection: results of the PUNCH CD study. Clin Infect Dis. 2016;62(5):596–602. Epub 20151112. Epub 20151112
  • Khanna S, Pardi DS, Jones C, et al. RBX7455, a non-frozen, orally administered investigational live biotherapeutic, is safe, effective, and shifts patients’ microbiomes in a phase 1 study for recurrent Clostridioides difficile infections. Clin Infect Dis. 2021;73(7):e1613–e20. PubMed PMID: 32966574; PubMed Central PMCID: PMC8492147.
  • Orenstein R, Dubberke ER, Khanna S, et al. Durable reduction of Clostridioides difficile infection recurrence and microbiome restoration after treatment with RBX2660: results from an open-label phase 2 clinical trial. BMC Infect Dis. 2022;22(1):245. Epub 20220312. Epub 20220312
  • Dubberke ER, Lee CH, Orenstein R, et al. Results from a randomized, placebo-controlled clinical trial of a RBX2660-A microbiota-based drug for the prevention of recurrent Clostridium difficile infection. Clin Infect Dis. 2018;67(8):1198–1204. PubMed PMID: 29617739.
  • Kwak S, Choi J, Hink T, et al. Impact of investigational microbiota therapeutic RBX2660 on the gut microbiome and resistome revealed by a placebo-controlled clinical trial. Microbiome. 2020;8(1):125. Epub 20200831. PubMed PMID: 32862830; PubMed Central PMCID: PMC7457799
  • Ferring. Ferring press release: Ferring receives positive vote from US FDA advisory committee for RBX2660. 2022. Available from: https://www.ferring.com/ferring-receives-positive-vote-from-u-s-fda-advisory-committee-for-rbx2660/ [cited 1 Dec 2022].
  • FDA News release: FDA Approves First Fecal Microbiota Product. 2022. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-fecal-microbiota-product [cited 1 Dec 2022].
  • Khanna SM, Kelly MS, Facg CRM, et al. S131: CP101, an investigational orally administered microbiome therapeutic, increases intestinal microbiome diversity and prevents recurrent C.difficile infection: results from a randomized, placebo-controlled trial. Am J Gastroenterol. 2021 October;116(1):S57.
  • Allegretti JR, Louie T, Fisher M, et al. On behalf of PRISM3 investigators. week 24 efficacy and safety data from PRISM3: a randomized, placebo-controlled trial evaluating CP101, an investigational orally administered microbiome therapeutic for the prevention of recurrent C.difficile infection. American College of Gastroenterology. 2021.
  • Allegretti JR, Louie T, Fisher M, et al. On behalf of PRISM3 investigators. CP101 engraftment drives efficacy: results from a randomized, placebo-controlled trial evaluating CP101, an investigational orally administered microbiome therapeutic for prevention of recurrent C.difficile infection. AmericanCollege of Gastroenterology. 2021.
  • Khanna S, Pardi DS, Kelly CR, et al. A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. J Infect Dis. 2016;214(2):173–181. PubMed PMID: 26908752.
  • McGovern BH, Ford CB, Henn MR, et al. SER-109, an investigational microbiome drug to reduce recurrence after Clostridioides difficile infection: lessons learned from a phase 2 trial. Clin Infect Dis. 2021;72(12):2132–2140. PubMed PMID: 32255488; PubMed Central PMCID: PMC8204772.
  • Feuerstadt P, Louie TJ, Lashner B, et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N Engl J Med. 2022;386(3):220–229. Epub 2022/01/20. Epub 2022/01/20
  • Engraftment of SER-109 is durable through 24 weeks (poster # 3701110). Digestive Diseases Week2022.
  • Kao D, Wong K, Franz R, et al. The effect of a microbial ecosystem therapeutic (MET-2) on recurrent Clostridioides difficile infection: a phase 1, open-label, single-group trial. Lancet Gastroenterol Hepatol. 2021;6(4):282–291. Epub 20210223. Epub 20210223
  • Dsouza M, Menon R, Crossette E, et al. Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host Microbe. 2022;30(4):583–98.e8. PubMed PMID: 35421353.
  • Thomas Louie MD An 8-strain, rationally defined bacterial consortium, VE303, reduces the risk of Clostridioides difficile infection (CDI) recurrence compared with placebo in adults at high risk for recurrence: results for the Phase 2 CONSORTIUM study. Digestive Diseases Week 2022.
  • Rajita Menon PD Rapid and durable colonization of VE303 in Clostridioides difficile infection (CDI) patients is associated with clinical efficacy: results of the Phase 2 CONSORTIUM study. Digestive Diseases Week 2022.
  • Gerding DN, Meyer T, Lee C, et al. Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C.difficile infection: a randomized clinical trial. JAMA. 2015;313(17):1719–1727. PubMed PMID: 25942722.
  • Hill C, Guarner F, Reid G, et al. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–514. Epub 2014/06/11. PubMed PMID: 24912386
  • Bakken JS.Staggered and tapered antibiotic withdrawal with administration of kefir for recurrent Clostridium difficile infection.Clin Infect Dis.2014;59(6):858–861; Epub 20140609. Epub 20140609
  • Oman Evans Ii M, Starley B, Galagan JC, et al. Tea and recurrent clostridium difficileinfection. Gastroenterol Res Pract. 2016;2016:4514687. Epub 20160829. Epub 20160829.
  • Suskind DL, Lee D, Solan P, et al. Dietary therapy for Clostridium difficile colonization: a case series. Anaerobe. 2019;57:1–3. Epub 20190228. Epub 20190228.
  • Sethi AK, Al-Nassir WN, Nerandzic MM, et al.Persistence of skin contamination and environmental shedding of Clostridium difficile during and after treatment of C.difficile infection.Infect Control Hosp Epidemiol.2010;31(1):21–27; Epub 2009/11/26. Epub 2009/11/26;
  • Wadhwa A, Al Nahhas MF, Dierkhising RA, et al. High risk of post-infectious irritable bowel syndrome in patients with Clostridium difficile infection. Aliment Pharmacol Ther. 2016;44(6):576–582. Epub 2016/07/23. Epub 2016/07/23
  • Fang FC, Polage CR, Wilcox MH.Point-Counterpoint: what Is the optimal approach for detection of Clostridium difficile infection?J Clin Microbiol.2017;55(3):670–680; Epub 2017/01/13. Epub 2017/01/13;
  • Young VB.Unexpected results from a phase 2 trial of a microbiome therapeutic for Clostridioides difficile infection: lessons for the future.Clin Infect Dis.2021;72(12):2141–2143; Epub 2020/04/25. Epub 2020/04/25
  • Burnett T, Mozgunov P, Pallmann P, et al.Adding flexibility to clinical trial designs: an example-based guide to the practical use of adaptive designs.BMC Med.2020;18(1):352; Epub 20201119. PubMed PMID: 33208155; PubMed Central PMCID: PMC7677786;
  • Pallmann P, Bedding AW, Choodari-Oskooei B, et al. Adaptive designs in clinical trials: why use them, and how to run and report them. BMC Med. 2018;16(1):29. Epub 20180228. PubMed PMID: 29490655; PubMed Central PMCID: PMC5830330
  • Kassam Z, Lee CH, Yuan Y, et al.Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis.Am J Gastroenterol.2013;108(4):500–508; Epub 20130319. Epub 20130319;
  • Majdi OM, Zachery SB, Kelsey O, et al. Donor efficacy in fecal microbiota transplantation for recurrent cCostridium difficile: evidence from a 1,999-patient cohort. Infectious Disease Week 2016.
  • Khoruts A, Staley C, Sadowsky MJ. Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat Clin Pract Gastroenterol Hepatol. 2021;18(1):67–80; Epub 2020/08/28. Epub 2020/08/28;
  • Smillie CS, Sauk J, Gevers D, et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe. 2018;23(2):229–40.e5. PubMed PMID: 29447696; PubMed Central PMCID: PMC8318347.
  • Chen J, Zaman A, Ramakrishna B, et al. Stool banking for fecal microbiota transplantation: methods and operations at a large stool bank. Front Cell Infect Microbiol. 2021;11:622949. Epub 20210415. PubMed PMID: 33937092; PubMed Central PMCID: PMC8082449.
  • Danne C, Rolhion N, Sokol H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat Rev Gastroenterol Hepatol. Epub 2021/04/29. PubMed PMID: 33907321. 2021; 18(7):503–513.
  • Allegretti JR, Kelly CR, Grinspan A, et al. Inflammatory bowel disease outcomes following fecal microbiota transplantation for recurrent C.difficile infection. Inflamm Bowel Dis. 2021;27(9):1371–1378. PubMed PMID: 33155639; PubMed Central PMCID: PMC8376126.
  • Zuo T, Wong SH, Cheung CP, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun. 2018;9(1):3663. Epub 20180910. Epub 20180910
  • Hitch TCA, Hall LJ, Walsh SK, et al. Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal Immunol. 2022;15(6):1095–1113. Epub 20220930. PubMed PMID: 36180583
  • Sharon G, Sampson TR, Geschwind DH, et al. The central nervous system and the gut microbiome. Cell. 2016;167(4):915–932. PubMed PMID: 27814521; PubMed Central PMCID: PMC5127403.
  • Franzosa EA, Sirota-Madi A, Avila-Pacheco J, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4(2):293–305. Epub 20181210. PubMed PMID: 30531976; PubMed Central PMCID: PMC6342642
  • Sepich-Poore GD, Zitvogel L, Straussman R, et al. The microbiome and human cancer. Science. 2021;371(6536): PubMed PMID: 33766858; PubMed Central PMCID: PMC8767999. 10.1126/science.abc4552.
  • Kelly CR, Yen EF, Grinspan AM, et al. Fecal microbiota transplantation is highly effective in real-world practice: initial results from the FMT national registry. Gastroenterology. 2021;160(1):183–92.e3. Epub 2020/10/05. PubMed PMID: 33011173

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.