252
Views
1
CrossRef citations to date
0
Altmetric
Review

Recently approved and emerging monoclonal antibody immune checkpoint inhibitors for the treatment of advanced non-small cell lung cancer

, , , &
Pages 261-268 | Received 09 Dec 2022, Accepted 17 Feb 2023, Published online: 08 Mar 2023

References

  • Zhang Y, Zheng J. Functions of immune checkpoint molecules beyond immune evasion. Adv Exp Med Biol. 2020;1248:201–226. PMID: 32185712.
  • Pesce S, Trabanelli S, Di Vito C, et al. Cancer immunotherapy by blocking immune checkpoints on innate lymphocytes. Cancers. 2020;12(12):3504. PMID: 33255582; PMCID: PMC7760325.
  • Rocco D, Gravara LD, Gridelli C. The new immunotherapy combinations in the treatment of advanced non-small cell lung cancer: reality and perspectives. Curr Clin Pharmacol. 2020;151:11–19. PMID: 31400270; PMCID: PMC7497556.
  • Rocco D, Gregorc V, Della Gravara L, et al. New immunotherapeutic drugs in advanced non-small cell lung cancer (NSCLC): from preclinical to phase I clinical trials. Expert Opin Investig Drugs. 2020;29(9):1005–1023. PMID: 32643447.
  • Doroshow DB, Sanmamed MF, Hastings K, et al. Immunotherapy in non-small cell lung cancer: facts and hopes. Clin Cancer Res. 2019;25(15):4592–4602. PMID: 30824587; PMCID: PMC6679805.
  • Alsaab HO, Sau S, Alzhrani R, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.
  • Xu-Monette ZY, Zhang M, Li J, et al. PD-1/PD-L1 blockade: have we found the key to unleash the antitumor immune response? Front Immunol. 2017;8:1597.
  • Hui Y, Boyle TA, Zhou C, et al. PD-L1 expression in lung cancer. J Thorac Oncol. 2016. DOI:10.1016/j.jtho.2016.04.014
  • Meyers DE, Bryan PM, Banerji S, et al. Targeting the PD-1/PD-L1 axis for the treatment of non-small-cell lung cancer. Curr Oncol. 2018;25(4):e324–e334.
  • Buchbinder Elizabeth I, Anupam D. CTLA-4 and PD-1 Pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016. DOI:10.1097/COC.0000000000000239
  • Chae YK, Arya A, Iams W, et al. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC. J Immunother Cancer. 2018;6:39.
  • Engelhardt JJ, Sullivan TJ, Allison JP. CTLA-4 overexpression inhibits T cell responses through a CD28-B7-dependent mechanism. J Immunol. 2006 Jul 15;177(2):1052–1061.
  • Sun H, Dai J, Zhao L, et al. Lymphocyte activation gene-3 is associated with programmed death-ligand 1 and programmed cell death protein 1 in small cell lung cancer. Ann Transl Med. 2021;9(18):1468. PMID: 34734020; PMCID: PMC8506769.
  • Hald SM, Rakaee M, Martinez I, et al. LAG-3 in non-small-cell lung cancer: expression in primary tumors and metastatic lymph nodes is associated with improved survival. Clin Lung Cancer. 2018;19(3):249–259.e2.
  • Weber S, Karjalainen K. Mouse CD4 binds MHC class II with extremely low affinity. Int Immunol. 1993;5(6):695–698.
  • Huard B, Prigent P, Tournier M, et al. CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur J Immunol. 1995;25(9):2718–2721.
  • Goldberg MV, Drake CG. LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol. 2011;344:269–278.
  • Baixeras E, Huard B, Miossec C, et al. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J Exp Med. 1992;176(2):327–337.
  • Xu F, Liu J, Liu D, et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res. 2014;74(13):3418–3428.
  • He Y, Yu H, Rozeboom L, et al. LAG-3 protein expression in non–small cell lung cancer and its relationship with PD-1/PD-L1 and tumor-infiltrating lymphocytes. JTO. 2017;12(5):814–823.
  • Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017;276(1):97–111.
  • Jia K, He Y, Dziadziuszko R, et al. T cell immunoglobulin and mucin-domain containing-3 in non-small cell lung cancer. TLCR. 2019;8. DOI:10.21037/tlcr.2019.11.17
  • Du W, Yang M, Turner A, et al. TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int J Mol Sci. 2017;18(3):645.
  • Leitner J, Klauser C, Pickl WF, et al. B7-H3 is a potent inhibitor of human T-cell activation: no evidence for B7-H3 and TREML2 interaction. Eur J Immunol. 2009;39(7):1754–1764.
  • Castellanos JR, Purvis IJ, Labak CM, et al. B7-H3 role in the immune landscape of cancer. Am J Clin Exp Immunol. 2017;6(4):66–75.
  • Altan M, Pelekanou V, Schalper KA, et al. B7-H3 expression in NSCLC and its association with B7-H4, PD-L1 and tumor-infiltrating lymphocytes. Clin Cancer Res. 2017;23(17):5202–5209.
  • Lee YH, Martin-Orozco N, Zheng P, et al. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res. 2017;27(8):1034–1045.
  • Lines JL, Sempere LF, Broughton T, et al. Vista is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy. Cancer Immunol Res. 2014;2(6):510–517.
  • Hernandez-Martinez JM, Vergara E, Zatarain-Barrón ZL, et al. Vista/PD-1H: a potential target for non-small cell lung cancer immunotherapy. J Thorac Dis. 2018;10(12):6378–6382. PMID: 30746169; PMCID: PMC6344701.
  • Villarroel-Espindola F, Yu X, Datar I, et al. Spatially resolved and quantitative analysis of vista/PD-1H as a novel immunotherapy target in human non-small cell lung cancer. Clin Cancer Res. 2018;24(7):1562–1573.
  • Deuss FA, Gully BS, Rossjohn J, et al. Recognition of nectin-2 by the natural killer cell receptor T cell immunoglobulin and ITIM domain (TIGIT). J Biol Chem. 2017;292(27):11413–11422.
  • Zhang B, Zhao W, Li H, et al. Immunoreceptor TIGIT inhibits the cytotoxicity of human cytokine-induced killer cells by interacting with CD155. Cancer Immunol Immunother. 2016;65(3):305–314.
  • Lozano E, Dominguez-Villar M, Kuchroo V, et al. The TIGIT/CD226 axis regulates human T cell function. J Immunol. 2012;188(8):3869–3875.
  • Johnston RJ, Comps-Agrar L, Hackney J, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014;26(6):923–937.
  • Li X, Xu Z, Cui G, et al. BTLA expression in stage I-III non-small-cell lung cancer and its correlation with PD-1/PD-L1 and clinical outcomes. Onco Targets Ther. 2020;13:215–224. PMID: 32021268; PMCID: PMC6957103.
  • Ning Z, Liu K, Xiong H. Roles of BTLA in immunity and immune disorders. Front Immunol. 2021;12:654960. PMID: 33859648; PMCID: PMC8043046.
  • Onoi K, Chihara Y, Uchino J, et al. Immune checkpoint inhibitors for lung cancer treatment: a review. J Clin Med. 2020;9(5):1362. PMID: 32384677; PMCID: PMC7290914.
  • Nivolumab plus ipilimumab in first-line NSCLC: two new indications, many more questions; Available from: https://ascopost.com/issues/november-25-2020/nivolumab-plus-ipilimumab-in-first-line-nsclc-two-new-indications-many-more-questions/ Cited Oct 2022.
  • Xiong A, Wang J, Zhou C. Immunotherapy in the first-line treatment of NSCLC: current status and future directions in China. Front Oncol. 2021;11:757993. PMID: 34900707; PMCID: PMC8654727.
  • Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med. 2019;381(21):2020–2031. PMID: 31562796.
  • Paz-Ares LG, Ramalingam SS, Ciuleanu TE, et al. First-line nivolumab plus ipilimumab in advanced NSCLC: 4-year outcomes from the randomized, open-label, phase 3 checkmate 227 part 1 trial. J Thorac Oncol. 2022;17(2):289–308. PMID: 34648948.
  • Brahmer JR, Lee JS, Ciuleanu TE, et al. Five-year survival outcomes with nivolumab (NIVO) plus ipilimumab (IPI) versus chemotherapy (chemo) as first-line (1L) treatment for metastatic non–small cell lung cancer (NSCLC): results from CheckMate 227. J Clin Oncol. 2022;40(17_suppl):LBA9025–LBA9025.
  • Paz-Ares L, Ciuleanu TE, Cobo M, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(2):198–211.
  • Reck M, Ciuleanu TE, Cobo M, et al. First-line nivolumab plus ipilimumab with two cycles of chemotherapy versus chemotherapy alone (four cycles) in advanced non-small-cell lung cancer: checkMate 9LA 2-year update. ESMO Open. 2021;6(5):100273.
  • Paz-Ares LG, Ciuleanu TE, Cobo-Dols M, et al. First-line (1L) nivolumab (NIVO) + ipilimumab (IPI) + 2 cycles of chemotherapy (chemo) versus chemo alone (4 cycles) in patients (pts) with metastatic non–small cell lung cancer (NSCLC): 3-year update from CheckMate 9LA. J Clin Oncol. 2022;40(17_suppl):LBA9026–LBA9026.
  • Sezer A, Kilickap S, Gümüş M, et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: a multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet. 2021;397(10274):592–604. PMID: 33581821.
  • Zhou C, Chen G, Huang Y, et al. Camrelizumab plus carboplatin and pemetrexed versus chemotherapy alone in chemotherapy-naive patients with advanced non-squamous non-small-cell lung cancer (CameL): a randomised, open-label, multicentre, phase 3 trial. Lancet Respir Med. 2021;9(3):305–314. PMID: 33347829.
  • Wang J, Lu S, Yu X, et al. Tislelizumab plus chemotherapy vs chemotherapy alone as first-line treatment for advanced squamous non-small-cell lung cancer: a phase 3 randomized clinical trial. JAMA Oncol. 2021;7(5):709–717. PMID: 33792623; PMCID: PMC8017481.
  • Lu S, Wang J, Yu Y, et al. Tislelizumab plus chemotherapy as first-line treatment for locally advanced or metastatic nonsquamous NSCLC (RATIONALE 304): a randomized phase 3 trial. J Thorac Oncol. 2021;16(9):1512–1522. PMID: 34033975.
  • Yang Y, Wang Z, Fang J, et al. Efficacy and safety of sintilimab plus pemetrexed and platinum as first-line treatment for locally advanced or metastatic nonsquamous NSCLC: a randomized, double-blind, phase 3 study (oncology program by InnovENT anti-PD-1-11). J Thorac Oncol. 2020;15(10):1636–1646. PMID: 32781263.
  • Yang Y, Sun J, Wang Z, et al. Updated overall survival data and predictive biomarkers of sintilimab plus pemetrexed and platinum as first-line treatment for locally advanced or metastatic nonsquamous NSCLC in the phase 3 ORIENT-11 Study. J Thorac Oncol. 2021;16(12):2109–2120. PMID: 34358724.
  • Zhou C, Wu L, Fan Y, et al. Sintilimab plus platinum and gemcitabine as first-line treatment for advanced or metastatic squamous NSCLC: results from a randomized, double-blind, phase 3 trial (ORIENT-12). J Thorac Oncol. 2021;16(9):1501–1511. PMID: 34048947.
  • Kazandjian D, Suzman DL, Blumenthal G, et al. FDA approval summary: nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist. 2016;21(5):634–642. PMID: 26984449; PMCID: PMC4861371.
  • Planchard D, Popat S, Kerr K, et al. Advanced non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29Supplement 4:iv192–iv237.• Current European guidelines on advanced NSCLC treatment
  • NCCN clinical practice guidelines in oncology non-small cell lung cancer version 1.2022; NCCN.org [internet]. Available from: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Cited Oct 2022
  • Singh N, Temin S, S B Jr, et al. Therapy for stage IV non-small-cell lung cancer without driver alterations: ASCO living guideline. J Clin Oncol. 2022:JCO2200825. PMID: 35816668. doi:10.1200/JCO.22.00825• Current US guidelines on advanced NSCLC treatment
  • Zhou C, Xiong A, Li W, et al. Efficacy and safety of IBI110 (anti-LAG-3 mAb) in combination with sintilimab (anti-PD-1 mAb) in first-line advanced squamous non-small cell lung cancer (sqNSCLC): initial results from a phase Ib study. J Clin Oncol. 2022;40(16_suppl):e21145–e21145.
  • Schöffski P, Tan DSW, Martín M, et al. Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies. J Immunother Cancer. 2022;10(2):e003776. PMID: 35217575; PMCID: PMC8883259.
  • Harding JJ, Moreno V, Bang YJ, et al. Blocking TIM-3 in treatment-refractory advanced solid tumors: a Phase Ia/b study of LY3321367 with or without an Anti-PD-L1 antibody. Clin Cancer Res. 2021;27(8):2168–2178. PMID: 33514524.
  • Falchook GS, Ribas A, Davar D, et al. Phase 1 trial of TIM-3 inhibitor cobolimab monotherapy and in combination with PD-1 inhibitors nivolumab or dostarlimab (AMBER). J Clin Oncol. 2022;40(16_suppl):2504.
  • Aggarwal C, Prawira A, Antonia S, et al. Dual checkpoint targeting of B7-H3 and PD-1 with enoblituzumab and pembrolizumab in advanced solid tumors: interim results from a multicenter phase I/II trial. J Immunother Cancer. 2022;10(4):e004424. PMID: 35414591; PMCID: PMC9006844.
  • Maio M, Schenker M, Medioni J, et al. Phase 2 study of retifanlimab (INCMGA00012) in patients (pts) with selected solid tumors (POD1UM-203). J Clin Oncol. 2021;39(15_suppl):2571.
  • Cho BC, Abreu DR, Hussein M, et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 2022;23(6):781–792. PMID: 35576957.
  • Genentech reports interim results for phase III SKYSCRAPER-01 study in PD-L1-high metastatic non-small cell lung cancer Available from: https://www.gene.com/media/press-releases/14951/2022-05-10/genentech-reports-interim-results-for-ph. Cited Oct 2022.
  • De Giglio A, Di Federico A, Nuvola G, et al. The landscape of immunotherapy in advanced NSCLC: driving beyond PD-1/PD-L1 Inhibitors (CTLA-4, LAG3, IDO, OX40, TIGIT, vaccines). Curr Oncol Rep. 2021;23(11):126. PMID: 34453261; PMCID: PMC8397682.
  • Krzyżanowska N, Wojas-Krawczyk K, Milanowski J, et al. Future prospects of immunotherapy in non-small-cell lung cancer patients: is there hope in other immune checkpoints targeting molecules? Int J Mol Sci. 2022;23(6):3087. PMID: 35328510; PMCID: PMC8950480.
  • Archilla-Ortega A, Domuro C, Martin-Liberal J, et al. Blockade of novel immune checkpoints and new therapeutic combinations to boost antitumor immunity. J Exp Clin Cancer Res. 2022;411:62. PMID: 35164813; PMCID: PMC8842574.• Recent in-depth review exploring novel ICIs
  • Passiglia F, Reale ML, Cetoretta A, et al. Immune-checkpoint inhibitors combinations in metastatic NSCLC: new options on the horizon? Immunotargets Ther. 2021;10:9–26. PMID: 33575224; PMCID: PMC7872895.
  • Lee DH. Update of early phase clinical trials in cancer immunotherapy. BMB Rep. 2021;54(1):70–88. PMID: 33407992; PMCID: PMC7851447.
  • Lee JB, Ha SJ, Kim HR. Clinical insights into novel immune checkpoint inhibitors. Front Pharmacol. 2021;12:681320. PMID: 34025438; PMCID: PMC8139127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.