307
Views
0
CrossRef citations to date
0
Altmetric
Special Report

The role of immune checkpoint inhibitors for patients with advanced stage microsatellite stable colorectal cancer and high tumor mutation burden: quantity or quality?

, , , , , , & ORCID Icon show all
Pages 595-601 | Received 01 May 2023, Accepted 13 Jun 2023, Published online: 18 Jun 2023

References

  • Siegel RL, Wagle NS, Cercek A, et al. Colorectal cancer statistics, 2023. CA Cancer J Clin. 2023 Mar 1;73(1):17–48. doi: 10.3322/caac.21763
  • Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727–742.
  • Darvin P, Toor SM, Sasidharan Nair V, et al. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018 Dec 13;50(12):1–11. doi: 10.1038/s12276-018-0191-1
  • Memmott RM, Wolfe AR, Carbone DP, et al. Predictors of response, progression-free survival, and overall survival in patients with lung cancer treated with immune checkpoint inhibitors. J Thorac Oncol. 2021 Jul;16(7):1086–1098.
  • Rizzo A, Ricci AD. PD-L1, TMB, and other potential predictors of response to immunotherapy for hepatocellular carcinoma: how can they assist drug clinical trials? Expert Opin Investig Drugs. 2022 Apr;31(4):415–423. doi: 10.1080/13543784.2021.1972969
  • Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017 Jul 28;357(6349):409–413. doi: 10.1126/science.aan6733
  • Hause RJ, Pritchard CC, Shendure J, et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016 Nov;22(11):1342–1350.
  • Bonneville R, Krook MA, Kautto EA, et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017;(1):1–15. doi: 10.1200/PO.17.00073
  • Saeterdal I, Bjørheim J, Lislerud K, et al. Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13255–13260. doi: 10.1073/pnas.231326898
  • Maby P, Galon J, Latouche JB. Frameshift mutations, neoantigens and tumor-specific CD8(+) T cells in microsatellite unstable colorectal cancers. Oncoimmunology. 2016 May;5(5):e1115943. doi: 10.1080/2162402X.2015.1115943
  • Zheng Y, Fu Y, Wang PP, et al. Neoantigen: a promising target for the immunotherapy of colorectal cancer. Dis Markers. 2022;2022:1–11. doi: 10.1155/2022/8270305
  • Mur P, García-Mulero S, Del Valle J, et al. Role of POLE and POLD1 in familial cancer. Genet Med. 2020 Dec;22(12):2089–2100.
  • Ma X, Dong L, Liu X, et al. POLE/POLD1 mutation and tumor immunotherapy. J Exp Clin Cancer Res. 2022 Jul 2;41(1):216. doi: 10.1186/s13046-022-02422-1
  • Domingo E, Freeman-Mills L, Rayner E, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. Lancet Gastroenterol Hepatol. 2016 Nov;1(3):207–216.
  • Stenzinger A, Pfarr N, Endris V, et al. Mutations in POLE and survival of colorectal cancer patients–link to disease stage and treatment. Cancer Med. 2014 Dec;3(6):1527–1538.
  • Jansen AM, Van Wezel T, Van Den Akker BE, et al. Combined mismatch repair and POLE/POLD1 defects explain unresolved suspected lynch syndrome cancers. Eur J Hum Genet. 2016;24(7):1089–1092. doi: 10.1038/ejhg.2015.252
  • Bourdais R, Rousseau B, Pujals A, et al. Polymerase proofreading domain mutations: new opportunities for immunotherapy in hypermutated colorectal cancer beyond MMR deficiency. Crit Rev Oncol Hematol. 2017 May;113:242–248.
  • Marcus L, Fashoyin-Aje LA, Donoghue M, et al. FDA Approval Summary: pembrolizumab for the Treatment of Tumor Mutational Burden-High Solid Tumors. Clin Cancer Res. 2021 Sep 1;27(17):4685–4689. doi: 10.1158/1078-0432.CCR-21-0327
  • Marabelle A, Le DT, Ascierto PA, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 Study. J Clin Oncol. 2020 Jan 1;38(1):1–10. doi: 10.1200/JCO.19.02105
  • Overman MJ, Kopetz S, McDermott RS, et al. Nivolumab ± ipilimumab in treatment (tx) of patients (pts) with metastatic colorectal cancer (mCRC) with and without high microsatellite instability (MSI-H): CheckMate-142 interim results. J Clin Oncol. 2016;34(15_suppl):3501–3501. doi: 10.1200/JCO.2016.34.15_suppl.3501
  • Overman M, Kopetz S, Lonardi S, et al. Nivolumab±ipilimumab treatment (Tx) efficacy, safety, and biomarkers in patients (Pts) with metastatic colorectal cancer (mCRC) with and without high microsatellite instability (MSI-H): results from the CheckMate-142 study. Ann Oncol. 2016;27:vi158. doi: 10.1093/annonc/mdw370.27
  • Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015 Jun 25;372(26):2509–2520. doi: 10.1056/NEJMoa1500596
  • O’Neil BH, Wallmark JM, Lorente D, et al. Safety and antitumor activity of the anti–PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma. PLoS One. 2017;12(12):e0189848. doi: 10.1371/journal.pone.0189848
  • Chen EX, Jonker DJ, Loree JM, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian cancer trials group CO.26 Study. JAMA Oncol. 2020 Jun 1;6(6):831–838. doi: 10.1001/jamaoncol.2020.0910
  • Eng C, Kim TW, Bendell J, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2019 Jun;20(6):849–861.
  • Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020 Oct;21(10):1353–1365.
  • Rousseau B, Foote MB, Maron SB, et al. The spectrum of benefit from checkpoint blockade in hypermutated tumors. N Engl J Med. 2021 Mar 25;384(12):1168–1170. doi: 10.1056/NEJMc2031965
  • Valero C, Lee M, Hoen D, et al. Response rates to anti-PD-1 immunotherapy in microsatellite-stable solid tumors with 10 or more mutations per megabase. JAMA Oncol. 2021 May 1;7(5):739–743. doi: 10.1001/jamaoncol.2020.7684
  • Gaber O, Karan C, Walko CM, et al. Effect of immunotherapy on the survival outcomes in tumor mutational burden-high (TMB-H) microsatellite stable (MSS) metastatic colorectal cancer (mCRC): a single-institution experience. J Clin Oncol. 2023;41(4_suppl):239–239. doi: 10.1200/JCO.2023.41.4_suppl.239
  • Vilar E, Tabernero J. Molecular dissection of microsatellite instable colorectal cancer. Cancer Discov. 2013 May;3(5):502–511. doi: 10.1158/2159-8290.CD-12-0471
  • Weng J, Li S, Zhu Z, et al. Exploring immunotherapy in colorectal cancer. J Hematol Oncol. 2022 Jul 16;15(1):95. doi:10.1186/s13045-022-01294-4
  • Lin A, Zhang J, Luo P. Crosstalk Between the MSI status and tumor microenvironment in colorectal cancer. Front Immunol. 2020;11:2039. doi: 10.3389/fimmu.2020.02039
  • Maby P, Tougeron D, Hamieh M, et al. Correlation between density of CD8+ T-cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy. Cancer Res. 2015 Sep 1;75(17):3446–3455. doi: 10.1158/0008-5472.CAN-14-3051
  • Chen C, Liu S, Qu R, et al. Recurrent Neoantigens in Colorectal Cancer as Potential Immunotherapy Targets. Biomed Res Int. 2020;2020:2861240.
  • Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015 Jan;5(1):43–51. doi: 10.1158/2159-8290.CD-14-0863
  • Wang J, Xiu J, Farrell A, et al. Mutational analysis of microsatellite-stable gastrointestinal cancer with high tumour mutational burden: a retrospective cohort study. Lancet Oncol. 2023 Feb;24(2):151–161.
  • André T, Shiu KK, Kim TW, et al. Pembrolizumab In microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020 Dec 3;383(23):2207–2218. doi: 10.1056/NEJMoa2017699
  • Luke JJ, Bao R, Sweis RF, et al. WNT/β-catenin Pathway Activation Correlates with Immune Exclusion across Human CancersWNT/β-catenin–Associated Immune Exclusion across Cancers. Clin Cancer Res. 2019;25(10):3074–3083. doi: 10.1158/1078-0432.CCR-18-1942
  • Wang B, Tian T, Kalland K-H, et al. Targeting Wnt/β-catenin signaling for cancer immunotherapy. Trends Pharmacol Sci. 2018;39(7):648–658. doi: 10.1016/j.tips.2018.03.008
  • Giannakis M, Hodis E, Jasmine Mu X, et al. RNF43 is frequently mutated in colorectal and endometrial cancers. Nature Genet. 2014;46(12):1264–1266. doi: 10.1038/ng.3127
  • Tauriello DV, Palomo-Ponce S, Stork D, et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554(7693):538–543. doi: 10.1038/nature25492
  • Fessler E, Drost J, van Hooff SR, et al. TGFβ signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol Med. 2016;8(7):745–760. doi: 10.15252/emmm.201606184
  • Pellatt AJ, Mullany LE, Herrick JS, et al. The TGFβ-signaling pathway and colorectal cancer: associations between dysregulated genes and miRnas. J Transl Med. 2018;16(1):1–22. doi: 10.1186/s12967-018-1566-8
  • Sumimoto H, Imabayashi F, Iwata T, et al. The BRAF–MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006;203(7):1651–1656. doi: 10.1084/jem.20051848
  • Liu H, Liang Z, Cheng S, et al. Mutant KRAS Drives Immune Evasion by Sensitizing Cytotoxic T‐Cells to Activation‐Induced Cell Death in Colorectal Cancer. Adv Sci. 2023;10(6):2203757. doi: 10.1002/advs.202203757
  • Liao W, Overman MJ, Boutin AT, et al. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell. 2019;35(4):559–572. e7. doi: 10.1016/j.ccell.2019.02.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.