212
Views
0
CrossRef citations to date
0
Altmetric
Review

Progress towards the clinical use of antimicrobial peptides: challenges and opportunities

, , ORCID Icon, , & ORCID Icon
Pages 641-650 | Received 22 Mar 2023, Accepted 14 Jun 2023, Published online: 27 Jun 2023

References

  • Goldsworthy PD, McFarlane AC. Howard Florey, Alexander Fleming and the fairy tale of penicillin. Med J Aust. 2002;18176(4):176–178. doi: 10.5694/j.1326-5377.2002.tb04349.x
  • Cook-Deegan R. Lessons from biomedical innovation during world war II. Hastings Cent Rep. 2021;51(5):3. doi: 10.1002/hast.1280.
  • Matarazzo L, Bettencourt PJG. mRNA vaccines: a new opportunity for malaria, tuberculosis and HIV. Front Immunol. 2023;24:1172691. doi: 10.3389/fimmu.2023.1172691
  • Viñas M, Espinal P, Fusté E. The emergence of antibiotic-resistant bacteria: chance and necessity. In: A critical appraisal of current microbiological hot topics. Villa T, and Abril A, eds. Cambridge Scholar Publishing:Newcastle (UK);2023. pp. 59–82. ISBN (10):1. ISBN (10):1527502473527502473
  • Fassarella M, Blaak EE, Penders J, et al. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut. 2021;70(3):595–605. doi: 10.1136/gutjnl-2020-321747
  • Johnstone KF, Herzberg MC. Antimicrobial peptides: defending the mucosal epithelial barrier. Front Oral Health. 2022;3:958480. doi: 10.3389/froh.2022.958480
  • Zhang K, Teng D, Mao R, et al. Thinking on the construction of antimicrobial peptide databases: powerful tools for the molecular design and screening. Int J Mol Sci. 2023;24(4):3134. doi: 10.3390/ijms24043134
  • Nagarajan D, Nagarajan T, Roy N, et al. Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. J Biol Chem. 2018;293(10):3492–3509. doi: 10.1074/jbc.M117.805499
  • Al Musaimi O, Lombardi L, Williams DR, et al. Strategies for improving peptide stability and delivery. Pharmaceuticals (Basel). 2022;15(10):1283. doi: 10.3390/ph15101283
  • Cebrián R, Martínez-García M, Fernández M, et al. Advances in the preclinical characterization of the antimicrobial peptide AS-48. Front Microbiol. 2023;14:1110360. doi: 10.3389/fmicb.2023.1110360
  • Armengol E, Domenech O, Fusté E, et al. Efficacy of combinations of colistin with other antimicrobials involves membrane fluidity and efflux machinery. Infect Drug Resist. 2019;12:2031–2038.
  • Pérez-Guillén I, Domènech Ò, Botet-Carreras A, et al. Studying lipid membrane interactions of a super-cationic peptide in model membranes and living bacteria. Pharmaceutics. 2022;14(10):2191. doi: 10.3390/pharmaceutics14102191
  • Aguilar-Pérez C, Gracia B, Rodrigues L, et al. Synergy between circular bacteriocin AS-48 and ethambutol against mycobacterium tuberculosis. Antimicrob Agents Chemother. 62 2018;62(9). doi: 10.1128/AAC.00359-18
  • Leite ML, Duque HM, Rodrigues GR, et al. The LL-37 domain: a clue to cathelicidin immunomodulatory response? Peptides. 2023;165:171011. doi: 10.1016/j.peptides.2023.171011
  • Yang B, Good D, Mosaiab T, et al. Significance of LL-37 on immunomodulation and disease outcome. Biomed Res Int. 2020;8349712:1–16. doi: 10.1155/2020/8349712
  • Svenson J, Molchanova N, Schroeder CI. Antimicrobial peptide mimics for clinical use: does size matter? Front Immunol. 2022;13:915368. doi: 10.3389/fimmu.2022.915368
  • Kaplan S, Fischer AE, Kohn J. Treatment of pertussis with polymyxin B (aerosporin). J Pediatr. 1949;35(1):49–57. doi: 10.1016/s0022-3476(49)80030-8
  • Brownlee G, Bushby SR. Chemotherapy and pharmacology of aerosporin; a selective gram-negative antibiotic. Lancet. 1948;24(6491):127–132. doi: 10.1016/s0140-6736(48)90090-7
  • Beeuwkes H, Mouton RP, Durlinger L. A study of the influence of polymyxine combined with chloramphenicol on Salmonella in vitro and in vivo in carriers of S. paratyphi B. Antonie Van Leeuwenhoek. 1960;26(1):340–348. doi: 10.1007/BF02539023
  • Ehrlich R. Treatment of ulcerative colitis with a resin polymyxin phthalylsulfacetamide preparation. Am J Gastroenterol. 1960;33:235–239.
  • Wolinsky E, Hines JD. Neurotoxic and nephrotoxic effects of colistin in patients with renal disease. N Engl J Med. 1962;266(15):759–762. doi: 10.1056/NEJM196204122661505
  • Rabanal F, Grau-Campistany A, Vila-Farrés X, et al. A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity. Sci Rep. 2015;5(1):10558. doi: 10.1038/srep10558
  • Rudilla H, Pérez-Guillén I, Rabanal F, et al. Novel synthetic polymyxins kill Gram-positive bacteria. J Antimicrob Chemother. 2018;73:3385–3390. doi: 10.1093/jac/dky366
  • Martin-Gómez H, Jorba M, Albericio F, et al. Chemical modification of microcin J25 reveals new insights on the stereospecific requirements for antimicrobial activity. Int J Mol Sci. 2019;20(20):5152. doi: 10.3390/ijms20205152
  • Armengol E, Asunción T, Viñas M, et al. When Combined with colistin, an otherwise ineffective rifampicin–linezolid combination becomes active in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Microorganisms. 2020;8(1):86. doi: 10.3390/microorganisms8010086
  • Jorba M, Pedrola M, Ghashghaei O, et al. New trimethoprim-like molecules: bacteriological evaluation and insights into their action. Antibiotics (Basel). 2021;10(6):709. doi: 10.3390/antibiotics10060709
  • Armengol E, Kragh KN, Tolker-Nielsen T, et al. Colistin enhances rifampicin’s antimicrobial action in colistin-resistant pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2023;18(4):67. doi: 10.1128/aac.01641-22
  • Lin WC, Chen YR, Chuang CM, et al. A cationic amphipathic tilapia piscidin 4 peptide-based antimicrobial formulation promotes eradication of bacterial vaginosis-associated bacterial biofilms. Front Microbiol. 2022;13:806654.
  • Umerska A, Strandh M, Cassisa V, et al. Synergistic effect of combinations containing EDTA and the antimicrobial peptide AA230, an arenicin-3 derivative, on gram-negative bacteria. Biomolecules. 2018;8(4):122. doi: 10.3390/biom8040122
  • Shein AMS, Wannigama DL, Higgins PG, et al. Novel colistin-EDTA combination for successful eradication of colistin-resistant Klebsiella pneumoniae catheter-related biofilm infections. Sci Rep. 2021;11(1):21676. doi: 10.1038/s41598-021-01052-5
  • Cui XD, Zhang JK, Sun YW, et al. Synergistic antibacterial activity of baicalin and EDTA in combination with colistin against colistin-resistant Salmonella. Poult Sci. 2023;102(2):102346. doi: 10.1016/j.psj.2022.102346
  • Wang X, Wang Y, Tang M, et al. Controlled cascade-release and high selective sterilization by core–shell nanogels for microenvironment regulation of aerobic vaginitis. Adv Healthc Mater. 2023;6(15):e2202432. doi: 10.1002/adhm.202202432
  • Tanphaichitr N, Srakaew N, Alonzi R, et al. Potential use of antimicrobial peptides as vaginal spermicides/microbicides. Pharmaceuticals (Basel). 2016;9(1):13. doi: 10.3390/ph9010013
  • Zhu J, Huang Y, Chen M, et al. Functional synergy of antimicrobial peptides and chlorhexidine acetate against gram-negative/gram-positive bacteria and a fungus in vitro and in vivo. Infect Drug Resist. 2019;12:3227–3239. doi: 10.2147/IDR.S218778
  • de Souza GHA, Rossato L, de Oliveira AR, et al. Antimicrobial peptides against polymyxin-resistant Klebsiella pneumoniae: a patent review. World J Microbiol Biotechnol. 2023;39(3):86. doi: 10.1007/s11274-023-03530-6
  • Romero-Luna HE, Hernández-Mendoza A, González-Córdova AF, et al. Bioactive peptides produced by engineered probiotics and other food-grade bacteria: a review. Food Chem X. 2021;2213:100196. doi: 10.1016/j.fochx.2021.100196
  • Geldart KG, Kommineni S, Forbes M, et al. Engineered E. coli Nissle 1917 for the reduction of vancomycin-resistant Enterococcus in the intestinal tract. Bioeng Transl Med. 2018;3(3):197–208. doi: 10.1002/btm2.10107
  • Hwang IY, Koh E, Wong A, et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun. 2017;8(1):15028. doi: 10.1038/ncomms15028
  • Peredo-Lovillo A, Hernández-Mendoza A, Vallejo-Cordoba B, et al. Conventional and in silico approaches to select promising food-derived bioactive peptides: a review. Food Chem X. 2021;13:100183. doi: 10.1016/j.fochx.2021.100183
  • Perez-Rodriguez A, Eraso E, Quindós G, et al. Antimicrobial peptides with anti-Candida activity. Int J Mol Sci. 2022;17(16):9264. doi: 10.3390/ijms23169264
  • Tóth L, Váradi G, Boros É, et al. Biofungicidal potential of neosartorya (aspergillus) fischeri antifungal protein NFAP and novel synthetic γ-core peptides. Front Microbiol. 2020;11:820. doi: 10.3389/fmicb.2020.00820
  • Sonderegger C, Váradi G, Galgóczy L, et al. The evolutionary conserved γ-core motif influences the anti-Candida Activity of the penicillium chrysogenum antifungal protein PAF. Front Microbiol. 2018;9:1655. doi: 10.3389/fmicb.2018.01655
  • Aaghaz S, Sharma K, Maurya IK, et al. Synthetic amino acids-based short amphipathic peptides exhibit antifungal activity by targeting cell membrane disruption. Drug Dev Res. 2023;84(3):514–526. doi: 10.1002/ddr.22041
  • Nikapitiya C, Dananjaya SHS, Chandrarathna HPSU, et al. Octominin: a novel synthetic anticandidal peptide derived from defense protein of octopus minor. Mar Drugs. 2020;18(1):56. doi: 10.3390/md18010056
  • Stensen W, Turner R, Brown M, et al. Short cationic antimicrobial peptides display superior antifungal activities toward candidiasis and onychomycosis in comparison with terbinafine and amorolfine. Mol Pharm. 2016;13(10):3595–3600. doi: 10.1021/acs.molpharmaceut.6b00654
  • Memariani H, Memariani M. Melittin as a promising anti-protozoan peptide: current knowledge and future prospects. AMB Express. 2021;11(1):69. doi: 10.1186/s13568-021-01229-1
  • Nogrado K, Adisakwattana P, Reamtong O. Antimicrobial peptides: on future antiprotozoal and anthelminthic applications. Acta Trop. 2022;235:106665. doi: 10.1016/j.actatropica.2022.106665
  • Khalil A, Elesawy BH, Ali TM, et al. Bee venom: from venom to drug. Molecules. 2021;26(16):4941. doi: 10.3390/molecules26164941
  • Joglekar AV, Dehari D, Anjum MM, et al. Therapeutic potential of venom peptides: insights in the nanoparticle mediated venom formulations. Futur J Pharm Sci. 2022;8(1):34. doi: 10.1186/s43094-022-00415-7
  • Cruz GS, Santos ATD, Brito EHS, et al. Cell-penetrating antimicrobial peptides with anti-infective activity against intracellular pathogens. Antibiotics. 2022;11(12):1772. doi: 10.3390/antibiotics11121772
  • El-Dirany R, Fernández-Rubio C, Peña-Guerrero J, et al. Repurposing the antibacterial agents peptide 19-4LF and Peptide 19-2.5 for treatment of cutaneous leishmaniasis. Pharmaceutics. 2022;14(11):2528. doi: 10.3390/pharmaceutics14112528
  • Kumar V, Lin JS, Molchanova N, et al. Membrane-acting biomimetic peptoids against visceral leishmaniasis. FEBS Open Bio. 2023 Mar;13(3):519–531. Epub 2023 Feb 7. PMID: 36683396; PMCID: PMC9989931. doi: 10.1002/2211-5463.13562
  • El-Dirany R, Shahrour H, Dirany Z, et al. Activity of Anti-Microbial Peptides (AMPs) against leishmania and other parasites: an overview. Biomolecules. 2021;11(7):984. doi: 10.3390/biom11070984
  • Reddy AS, Pati SP, Kumar PP, et al. Virtual screening in drug discovery – a computational perspective. Curr Protein Pept Sci. 2007;8(4):329–351. doi: 10.2174/138920307781369427
  • Andreu D, Torrent M. Prediction of bioactive peptides using artificial neural networks. In: Cartwright H, editor. Artificial neural networks. methods in molecular biology. (NY): NY: Springer; 2015. p. 1260. doi: 10.1007/978-1-4939-2239-0_7
  • Porto WF, Irazazabal L, Alves ESF, et al. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat Commun. 2018;9(1):1490. doi: 10.1038/s41467-018-03746-3
  • Moretta A, Scieuzo C, Salvia R. Tools in the era of multidrug resistance in bacteria: applications for new antimicrobial peptides discovery. Curr Pharm Des. 2022;28(35):2856–2866. doi: 10.2174/1381612828666220817163339
  • Aronica PGA, Reid LM, Desai N, et al. Computational methods and tools in antimicrobial peptide research. J Chem Inf Model. 2021 Jul 26;61(7):3172–3196. doi: 10.1021/acs.jcim.1c00175
  • Xu J, Li F, Leier A, et al. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides. Briefings Bioinf. 2021;2021:1–22. doi: 10.1093/bib/bbab083
  • Ronco C, Chawla L, Husain-Syed F, et al. Rationale for sequential extracorporeal therapy (SET) in sepsis. Crit Care. 2023;27(1):50. doi: 10.1186/s13054-023-04310-2
  • Honore PM, Hoste E, Molnár Z, et al. Cytokine removal in human septic shock: where are we and where are we going? Ann Intensive Care. 2019;9(1):56. doi: 10.1186/s13613-019-0530-y
  • Andrä J, Gutsmann T, Garidel P, et al. Mechanisms of endotoxin neutralization by synthetic cationic compounds. J Endotoxin Res. 2006;12(5):261–277. doi: 10.1179/096805106X118852
  • Jiang Z, Hong Z, Guo W, et al. A synthetic peptide derived from bactericidal/permeability-increasing protein neutralizes endotoxin in vitro and in vivo. Int Immunopharmacol. 2004;4(4):527–537. doi: 10.1016/j.intimp.2004.02.004
  • Sharma A, Kumar A, de la Torre BG, et al. Liquid-Phase Peptide Synthesis (LPPS): a third wave for the preparation of peptides. Chem Rev. 2022;122(16):13516–13546. doi: 10.1021/acs.chemrev.2c00132
  • Sharma A, Sheyi R, de la Torre BG, et al. S-triazine: a privileged structure for drug discovery and bioconjugation. Molecules. 2021 6;26(4):864. doi: 10.3390/molecules26040864
  • Li Y, Smith C, Wu H, et al. Short antimicrobial lipo-α/γ-AA hybrid peptides. Chembiochem. 2014;15(15):2275–2280. doi: 10.1002/cbic.201402264
  • Gan BH, Gaynord J, Rowe SM, et al. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev. 2021;50(13):7820–7880. doi: 10.1039/d0cs00729c

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.