378
Views
0
CrossRef citations to date
0
Altmetric
Review

The future of CAR T-cell therapy for B-cell acute lymphoblastic leukemia in pediatrics and adolescents

&
Pages 633-640 | Received 19 Apr 2023, Accepted 15 Jun 2023, Published online: 23 Jun 2023

References

  • Gardner RA, Finney O, Annesley C, et al., Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017 Jun 22;129(25):3322–3331. doi: 10.1182/blood-2017-02-769208
  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al., T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015 Feb 7;385(9967):517–528. doi: 10.1016/S0140-6736(14)61403-3
  • Maude SL, Frey N, Shaw PA, et al., Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014 Oct 16;371(16):1507–1517. doi: 10.1056/NEJMoa1407222
  • Maude SL, Laetsch TW, Buechner J, et al., Tisagenlecleucel in children and young adults with B-Cell lymphoblastic leukemia. N Engl J Med. 2018 Feb 1;378(5):439–448. doi: 10.1056/NEJMoa1709866
  • Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018 Oct;8(10):1219–1226. doi: 10.1158/2159-8290.CD-18-0442
  • Schultz LM, Baggott C, Prabhu S, et al., Disease burden affects outcomes in pediatric and young adult B-cell lymphoblastic leukemia after commercial tisagenlecleucel: a pediatric real-world chimeric antigen receptor consortium report. J Clin Oncol. 2021 Dec 9:p. JCO2003585.
  • Schultz LM, Eaton A, Baggott C, et al., Outcomes after nonresponse and relapse post-tisagenlecleucel in children, adolescents, and young adults with B-Cell acute lymphoblastic leukemia. J Clin Oncol. 2022 Sep 15:p. JCO2201076.
  • Bai Z, Woodhouse S, Zhao Z, et al., Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Sci Adv. 2022 Jun 10;8(23):eabj2820. doi: 10.1126/sciadv.abj2820
  • Chen GM, Chen C, Das RK, et al., Integrative Bulk and Single-Cell Profiling of Premanufacture T-cell Populations Reveals Factors Mediating Long-Term Persistence of CAR T-cell Therapy. Cancer Discov. 2021 Sep;11(9):2186–2199. doi: 10.1158/2159-8290.CD-20-1677
  • Deng Q, Han G, Puebla-Osorio N, et al., Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med. 2020 Dec;26(12):1878–1887.
  • Melenhorst JJ, Chen GM, Wang M, et al., Decade-long leukaemia remissions with persistence of CD4(+) CAR T cells. Nature. 2022 Feb;602(7897):503–509. doi: 10.1038/s41586-021-04390-6
  • Good Z, Spiegel JY, Sahaf B, et al., Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy. Nat Med. 2022 Sep;28(9):1860–1871.
  • Haradhvala NJ, Leick MB, Maurer K, et al., Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nat Med. 2022 Sep;28(9):1848–1859.
  • Pulsipher MA, Han X, Maude SL, et al., Next-generation sequencing of minimal residual disease for predicting relapse after tisagenlecleucel in children and young adults with acute lymphoblastic leukemia. Blood Cancer Discov. 2022 Jan;3(1):66–81. doi: 10.1158/2643-3230.BCD-21-0095
  • Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013 Apr;3(4):388–398. doi: 10.1158/2159-8290.CD-12-0548
  • Labanieh L, Majzner RG, Mackall CL. Programming CAR-T cells to kill cancer. Nat Biomed Eng. 2018 Jun;2(6):377–391. doi: 10.1038/s41551-018-0235-9
  • Labanieh L, Mackall CL. CAR immune cells: design principles, resistance and the next generation. Nature. 2023;614(7949):635–648. doi: 10.1038/s41586-023-05707-3
  • Brentjens RJ, Santos E, Nikhamin Y, et al., Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res. 2007 Sep 15;13(18 Pt 1):5426–5435. doi: 10.1158/1078-0432.CCR-07-0674
  • Long AH, Haso WM, Shern JF, et al., 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015 Jun;21(6):581–590.
  • Feucht J, Sun J, Eyquem J, et al., Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med. 2019 Jan;25(1):82–88.
  • Majzner RG, Rietberg SP, Sotillo E, et al., Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov. 2020 May;10(5):702–723.
  • Mansilla-Soto J, Eyquem J, Haubner S, et al., HLA-independent T cell receptors for targeting tumors with low antigen density. Nat Med. 2022 Feb;28(2):345–352.
  • Lynn RC, Weber EW, Sotillo E, et al., C-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019 Dec;576(7786):293–300.
  • Iuliucci JD, Oliver SD, Morley S, et al., Intravenous safety and pharmacokinetics of a novel dimerizer drug, AP1903, in healthy volunteers. J Clin Pharmacol. 2001 Aug;41(8):870–879.
  • Straathof KC, Pule MA, Yotnda P, et al., An inducible caspase 9 safety switch for T-cell therapy. Blood. 2005 Jun 1;105(11):4247–4254. doi: 10.1182/blood-2004-11-4564
  • Ciceri F, Bonini C, Stanghellini MT, et al., Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol. 2009 May;10(5):489–500.
  • Recchia A, Bonini C, Magnani Z, et al., Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells. Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1457–1462. doi: 10.1073/pnas.0507496103
  • Weber EW, Parker KR, Sotillo E, et al., Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science. 2021 Apr 2;372(6537). doi: 10.1126/science.aba1786
  • Mestermann K, Giavridis T, Weber J, et al., The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med. 2019 Jul 3;11(499). doi: 10.1126/scitranslmed.aau5907
  • Weber EW, Lynn RC, Sotillo E, et al., Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv. 2019 Mar 12;3(5):711–717. doi: 10.1182/bloodadvances.2018028720
  • Flinn IW, Jaeger U, Shah NN, editors. A first-in-human study of YTB323, a novel, autologous CD19-directed CAR-T cell therapy manufactured using the novel T-Charge TM platform, for the Treatment of Patients (Pts) with Relapsed/Refractory (r/r) Diffuse Large B-Cell Lymphoma (DLBCL). Atlanta (GA): American Society of Hematology; 2021.
  • Fabrizio VA, Boelens JJ, Mauguen A, et al., Adoptive therapy with CMV-specific cytotoxic T lymphocytes depends on baseline CD4+ immunity to mediate durable responses. Blood Adv. 2021 Nov 17;5(2):496–503. doi: 10.1182/bloodadvances.2020002735
  • Dekker L, Calkoen FG, Jiang Y, et al., Fludarabine exposure predicts outcome after CD19 CAR T-cell therapy in children and young adults with acute leukemia. Blood Adv. 2022 Apr 12;6(7):1969–1976. doi: 10.1182/bloodadvances.2021006700
  • Myers RM, Li Y, Barz Leahy A, et al., Humanized CD19-Targeted Chimeric Antigen Receptor (CAR) T Cells in CAR-Naive and CAR-Exposed children and young adults with relapsed or refractory acute lymphoblastic leukemia. J Clin Oncol. 2021 Sep 20;39(27):3044–3055. doi: 10.1200/JCO.20.03458
  • Annesley C, Gardner R, Wilson A, editors. Novel CD19t T-antigen presenting cells expand CD19 CAR T cells in vivo. Orlando (Fl): American Society of Hematology; 2019.
  • Miyazaki T, Maiti M, Hennessy M, et al., NKTR-255, a novel polymer-conjugated rhIL-15 with potent antitumor efficacy. J Immunother Cancer. 2021 May;9(5):e002024.
  • Sotillo E, Barrett DM, Black KL, et al., Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015 Dec;5(12):1282–1295.
  • Leahy AB, Devine KJ, Li Y, et al., Impact of high-risk cytogenetics on outcomes for children and young adults receiving CD19-directed CAR T-cell therapy. Blood. 2022 Apr 7;139(14):2173–2185. doi: 10.1182/blood.2021012727
  • Domizi P, Sarno J, Jager A, editors. Ikaros mediates antigen escape following CD19 CAR T cell therapy in r/r B-ALL. Atlanta (GA): American Society of Hematology; 2021.
  • Shah NN, Highfill SL, Shalabi H, et al., CD4/CD8 T-Cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase i anti-CD22 CAR T-cell trial. J Clin Oncol. 2020 Jun 10;38(17):1938–1950. doi: 10.1200/JCO.19.03279
  • Suematsu M, Yagyu S, Yoshida H, et al., Targeting FLT3-specific chimeric antigen receptor T cells for acute lymphoblastic leukemia with KMT2A rearrangement. Cancer Immunol Immunother. 2022 Oct 10;72(4):957–968. doi: 10.1007/s00262-022-03303-4
  • Nix MA, Mandal K, Geng H, et al., Surface proteomics reveals CD72 as a target for in vitro-evolved nanobody-based CAR-T cells in KMT2A/MLL1-rearranged B-ALL. Cancer Discov. 2021 Aug;11(8):2032–2049.
  • Ding S, Mao X, Cao Y, et al., Targeting CD79b for chimeric antigen receptor T-Cell therapy of B-cell lymphomas. Target Oncol. 2020 Jun;15(3):365–375.
  • Qin H, Cho M, Haso W, et al., Eradication of B-ALL using chimeric antigen receptor-expressing T cells targeting the TSLPR oncoprotein. Blood. 2015 Jul 30;126(5):629–639. doi: 10.1182/blood-2014-11-612903
  • Shalabi H, Qin H, Su A, et al., CD19/22 CAR T cells in children and young adults with B-ALL: phase 1 results and development of a novel bicistronic CAR. Blood. 2022 Aug 4;140(5):451–463. doi: 10.1182/blood.2022015795
  • Spiegel JY, Patel S, Muffly L, et al., CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021 Aug;27(8):1419–1431.
  • Cordoba S, Onuoha S, Thomas S, et al., CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat Med. 2021 Oct;27(10):1797–1805.
  • Gardner RA, Finney O, Summers C, et al., Editor early clinical experience of CD19 x CD22 dual specific CAR T cells for enhanced anti-leukemic targeting of acute lymphoblastic leukemia. San Diego (CA): American Society of Hematology; 2018.
  • Wang T, Tang Y, Cai J, et al., Coadministration of CD19- and CD22-directed chimeric antigen receptor T-Cell therapy in childhood B-Cell acute lymphoblastic leukemia: a single-arm, multicenter, phase II trial. J Clin Oncol. 2022 Nov 8;41:JCO2201214.
  • Hunger SP, Lu X, Devidas M, et al., Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J Clin Oncol. 2012 May 10;30(14):1663–1669. doi: 10.1200/JCO.2011.37.8018
  • Pasquini MC, Hu ZH, Curran K, et al., Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 2020 Nov 10;4(21):5414–5424. doi: 10.1182/bloodadvances.2020003092
  • Myers RM, Taraseviciute A, Steinberg SM, et al., Blinatumomab nonresponse and high-disease burden are associated with inferior outcomes after CD19-CAR for B-ALL. J Clin Oncol. 2022 Mar 20;40(9):932–944. doi: 10.1200/JCO.21.01405

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.