380
Views
0
CrossRef citations to date
0
Altmetric
Review

Monoclonal antibodies for the management of central nervous system diseases: clinical success and future strategies

, , , &
Pages 603-618 | Received 23 Jan 2023, Accepted 15 Jun 2023, Published online: 27 Jun 2023

References

  • Parray HA, Shukla S, Samal S, et al. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol. 2020 Aug;85:106639.
  • Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020 Nov 18;17(1):69. doi: 10.1186/s12987-020-00230-3
  • Pardridge WM. Blood-brain barrier and delivery of protein and gene therapeutics to brain [Review]. Front Aging Neurosci. 2020 Jan 10;11(373). doi: 10.3389/fnagi.2019.00373
  • Pardridge WM. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front Aging Neurosci. 2020;11:373–373. doi: 10.3389/fnagi.2019.00373
  • Choudhari M, Hejmady S, Narayan Saha R, et al. Evolving new-age strategies to transport therapeutics across the blood-brain-barrier. Int J Pharmaceut. 2021 Apr 15;599:120351.
  • Labrijn AF, Janmaat ML, Reichert JM, et al. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019 Aug 01;18(8):585–608.
  • Voge NV, Alvarez E. Monoclonal antibodies in multiple sclerosis: present and future. Biomedicines. 2019 Mar 14;7(1):20. doi: 10.3390/biomedicines7010020
  • Hernandez I, Bott SW, Patel AS, et al. Pricing of monoclonal antibody therapies: higher if used for cancer? Am J Manag Care. 2018 Feb;24(2):109–112.
  • Azam S, Haque ME, Balakrishnan R, et al. The ageing brain: molecular and cellular basis of neurodegeneration [Review]. Front Cell Dev Biol. 2021 Aug 13;9. doi: 10.3389/fcell.2021.683459
  • Pardridge WM. Treatment of alzheimer’s disease and blood–brain barrier drug delivery. Pharmaceuticals. 2020;13(11):394. doi: 10.3390/ph13110394
  • Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016 Jun;8(6):595–608. doi: 10.15252/emmm.201606210
  • Vaz M, Silvestre S. Alzheimer’s disease: recent treatment strategies. Eur J Pharmacol. 2020 Nov 15;887:173554.
  • Montoliu-Gaya L, Villegas S. A β -Immunotherapeutic strategies: a wide range of approaches for Alzheimer’s disease treatment. Expert Rev Mol Med. 2016 Jun 30;18:e13.
  • van Dyck CH. Anti-amyloid-β monoclonal antibodies for alzheimer’s disease: pitfalls and promise. Biological Psychiatry. 2018 Feb 15;83(4):311–319. doi: 10.1016/j.biopsych.2017.08.010
  • Loureiro JC, Pais MV, Stella F, et al. Passive antiamyloid immunotherapy for Alzheimer’s disease. Curr Opin Psychiatry. 2020 May;33(3):284–291.
  • Arndt JW, Qian F, Smith BA, et al. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci Rep. 2018 Apr 23;8(1):6412. doi: 10.1038/s41598-018-24501-0
  • Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016 Sep 1;537(7618):50–56. doi: 10.1038/nature19323
  • Fillit H, Green A. Aducanumab and the FDA - where are we now? Nat Rev Neurol. 2021 Mar;17(3):129–130. doi: 10.1038/s41582-020-00454-9
  • Haeberlein SB, von Hehn C, Tian Y, et al. Emerge and Engage topline results: phase 3 studies of aducanumab in early Alzheimer’s disease. Alzheimer’s Dementia. 2020;16(S9):e047259. doi: 10.1002/alz.047259
  • Ferrero J, Williams L, Stella H, et al. First-in-human, double-blind, placebo-controlled, single-dose escalation study of aducanumab (BIIB037) in mild-to-moderate Alzheimer’s disease. Alzheimers Dement. 2016 Sep;2(3):169–176.
  • Mullard A. FDA approval for biogen’s aducanumab sparks alzheimer disease firestorm. nature reviews drug discovery. Nat Rev Drug Discov. 2021 Jul;20(7):496. doi: 10.1038/d41573-021-00099-3
  • Ostrowitzki S, Lasser RA, Dorflinger E, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimer’s Res Ther. 2017 Dec 8;9(1):95. doi: 10.1186/s13195-017-0318-y
  • Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014 Jan 23;370(4):322–333. doi: 10.1056/NEJMoa1304839
  • Honig LS, Vellas B, Woodward M, et al. Trial of solanezumab for mild dementia due to alzheimer’s disease. N Engl J Med. 2018;378(4):321–330. doi: 10.1056/NEJMoa1705971
  • Doody RS, Thomas RG, Farlow M, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014 Jan 23;370(4):311–321. doi: 10.1056/NEJMoa1312889
  • Kastanenka KV, Bussiere T, Shakerdge N, et al. Immunotherapy with aducanumab restores calcium homeostasis in Tg2576 Mice. J Neurosci. 2016 Dec 14;36(50):12549–12558. doi: 10.1523/JNEUROSCI.2080-16.2016
  • Zokaei N, Grogan J, Fallon SJ, et al. Short-term memory advantage for brief durations in human APOE ε4 carriers. Sci Rep. 2020 Jun 11;10(1):9503. doi: 10.1038/s41598-020-66114-6
  • Knopman DS, Jones DT, Greicius MD. Failure to demonstrate efficacy of aducanumab: an analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimer’s Dementia. 2021 Apr;17(4):696–701. doi: 10.1002/alz.12213
  • Budd Haeberlein S, O’Gorman J, Chiao P, et al. Clinical development of aducanumab, an anti-aβ human monoclonal antibody being investigated for the treatment of early alzheimer’s disease. J Prev Alzheimer’s Dis. 2017;4(4):255–263. doi: 10.14283/jpad.2017.39
  • Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology. 2019 Aug;27(4):663–677. doi: 10.1007/s10787-019-00580-x
  • Brody M, Liu E, Di J, et al. A phase II, randomized, double-blind, placebo-controlled study of safety, pharmacokinetics, and biomarker results of subcutaneous bapineuzumab in patients with mild to moderate Alzheimer’s disease. J Alzheimer’s Disease: JAD. 2016 Oct 18;54(4):1509–1519. doi: 10.3233/JAD-160369
  • Arrighi HM, Barakos J, Barkhof F, et al. Amyloid-related imaging abnormalities-haemosiderin (ARIA-H) in patients with Alzheimer’s disease treated with bapineuzumab: a historical, prospective secondary analysis. J Neurol Neurosurg Psychiatry. 2016 Jan;87(1):106–112.
  • Ivanoiu A, Pariente J, Booth K, et al. Long-term safety and tolerability of bapineuzumab in patients with Alzheimer’s disease in two phase 3 extension studies. Alzheimer’s Res Ther. 2016 Jun 23;8(1):24. doi: 10.1186/s13195-016-0193-y
  • Salloway S, Marshall GA, Lu M, et al. Long- term safety and efficacy of bapineuzumab in patients with mild-to-moderate alzheimer’s disease: a phase 2, open-label extension study. Curr Alzheimer Res. 2018;15(13):1231–1243. doi: 10.2174/1567205015666180821114813
  • Logovinsky V, Satlin A, Lai R, et al. Safety and tolerability of BAN2401–a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody. Alzheimer’s Res Ther. 2016 Apr 6;8(1):14. doi: 10.1186/s13195-016-0181-2
  • Swanson CJ, Zhang Y, Dhadda S, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimer’s Res Ther. 2021 Apr 17;13(1):80. doi: 10.1186/s13195-021-00813-8
  • Reardon S. FDA approves Alzheimer’s drug lecanemab amid safety concerns. Nature. 2023 Jan;613(7943):227–228. doi: 10.1038/d41586-023-00030-3
  • Song C, Shi J, Zhang P, et al. Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond. Transl Neurodegener. 2022 Mar 18;11(1):18. doi: 10.1186/s40035-022-00292-3
  • Plotkin SS, Cashman NR. Passive immunotherapies targeting Aβ and tau in Alzheimer’s disease. Neurobiol Dis. 2020 Oct;144:105010. doi: 10.1016/j.nbd.2020.105010
  • Imbimbo BP, Ippati S, Watling M, et al. Role of monomeric amyloid-β in cognitive performance in Alzheimer’s disease: insights from clinical trials with secretase inhibitors and monoclonal antibodies. Pharmacol Res. 2022 Dec 28;187:106631. doi: 10.1016/j.phrs.2022.106631
  • Decourt B, Noorda K, Noorda K, et al. Review of advanced drug trials focusing on the reduction of brain beta-amyloid to prevent and treat dementia. J Exp Pharmacol. 2022;14:331–352. doi: 10.2147/JEP.S265626
  • Nimmo JT, Kelly L, Verma A, et al. Amyloid-β and α-synuclein immunotherapy: from experimental studies to clinical trials. Front Neurosci. 2021;15:733857. doi: 10.3389/fnins.2021.733857
  • Panza F, Solfrizzi V, Imbimbo BP, et al. Efficacy and safety studies of gantenerumab in patients with Alzheimer’s disease. Expert Rev Neurotherapeutics. 2014 Sep;14(9):973–986.
  • Salloway S, Farlow M, McDade E, et al. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nature Med. 2021 Jul;27(7):1187–1196.
  • Punyakoti P, Behl T, Sehgal A, et al. Postulating the possible cellular signalling mechanisms of antibody drug conjugates in Alzheimer’s disease. Cell Signal. 2023 Feb;102:110539.
  • Panza F, Lozupone M, Logroscino G, et al. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2019 Feb;15(2):73–88.
  • Willis BA, Sundell K, Lachno DR, et al. Central pharmacodynamic activity of solanezumab in mild Alzheimer’s disease dementia. Alzheimers Dement. 2018;4(1):652–660. doi: 10.1016/j.trci.2018.10.001
  • Siemers ER, Sundell KL, Carlson C, et al. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer’s disease patients. Alzheimer’s Dementia. 2016 Feb;12(2):110–120.
  • Liu-Seifert H, Case MG, Andersen SW, et al. Delayed-start analyses in the phase 3 solanezumab EXPEDITION3 Study in Mild Alzheimer’s Disease. J Prev Alzheimer’s Dis. 2018;5(1):8–14. doi: 10.14283/jpad.2018.1
  • Chen Y, Wei G, Zhao J, et al. Computational Investigation of gantenerumab and crenezumab recognition of Aβ fibrils in alzheimer’s disease brain tissue. ACS Chem Neurosci. 2020 Oct 21;11(20):3233–3244. doi: 10.1021/acschemneuro.0c00364
  • Crespi GA, Hermans SJ, Parker MW, et al. Molecular basis for mid-region amyloid-β capture by leading Alzheimer’s disease immunotherapies. Sci Rep. 2015 Apr 16;5:9649. doi: 10.1038/srep09649
  • Meilandt WJ, Maloney JA, Imperio J, et al. Characterization of the selective in vitro and in vivo binding properties of crenezumab to oligomeric Aβ. Alzheimer’s Res Ther. 2019 Dec 1;11(1):97. doi: 10.1186/s13195-019-0553-5
  • Yang T, Dang Y, Ostaszewski B, et al. Target engagement in an alzheimer trial: crenezumab lowers amyloid β oligomers in cerebrospinal fluid. Ann Neurol. 2019 Aug;86(2):215–224.
  • Cummings JL, Cohen S, van Dyck CH, et al. ABBY: a phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology. 1897 [2018 May 22];90(21):e1889–e. doi: 10.1212/WNL.0000000000005550
  • Yoshida K, Moein A, Bittner T, et al. Pharmacokinetics and pharmacodynamic effect of crenezumab on plasma and cerebrospinal fluid beta-amyloid in patients with mild-to-moderate Alzheimer’s disease. Alzheimer’s Res Ther. 2020 Jan 22;12(1):16. doi: 10.1186/s13195-020-0580-2
  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: gLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca A Cancer J Clinicians. 2021;71(3):209–249. doi: 10.3322/caac.21660
  • Zhu P, Du XL, Lu G, et al. Survival benefit of glioblastoma patients after FDA approval of temozolomide concomitant with radiation and bevacizumab: a population-based study. Oncotarget. 2017 Jul 4;8(27):44015–44031. doi: 10.18632/oncotarget.17054
  • Bromberg JEC, Issa S, Bakunina K, et al. Rituximab in patients with primary CNS lymphoma (HOVON 105/ALLG NHL 24): a randomised, open-label, phase 3 intergroup study. Lancet Oncol. 2019 Feb;20(2):216–228.
  • Babaesfahani A, Khanna NR, Kuns B. Natalizumab. [Updated 2022 Apr 22]. StatPearls. Treasure Island (FL): StatPearls Publishing; 2021. https://www.ncbi.nlm.nih.gov/books/NBK534201/
  • Frampton JE. Ocrelizumab: first global approval. Drugs. 2017 Jun;77(9):1035–1041. doi: 10.1007/s40265-017-0757-6
  • Ofatumumab (Kesimpta) for multiple sclerosis. The Medical letter on drugs and therapeutics. 1614 2020 Dec 28;62:203–205.
  • Abo Loha C, Livio F. Pharmacovigilance update. Rev Med Suisse. 2019 Jan 9;15(N° 632–633):92–95. doi: 10.53738/REVMED.2019.15.632-33.0092
  • Mayer L, Kappos L, Racke MK, et al. Ocrelizumab infusion experience in patients with relapsing and primary progressive multiple sclerosis: results from the phase 3 randomized OPERA I, OPERA II, and ORATORIO studies. Multi Sclerosis Relat Disord. 2019 May;30:236–243.
  • Ardizzone A, Basilotta R, Filippone A, et al. Recent emerging immunological treatments for primary brain tumors: focus on chemokine-targeting immunotherapies. Cells. 2023;12(6):841. doi: 10.3390/cells12060841
  • Thomas AA, Ernstoff MS, Fadul CE. Immunotherapy for the treatment of glioblastoma. Cancer J. 2012 Jan;18(1):59–68. doi: 10.1097/PPO.0b013e3182431a73
  • Waller CF, Vutikullird A, Lawrence TE, et al. A pharmacokinetics phase 1 bioequivalence study of the trastuzumab biosimilar MYL-1401O vs. EU-trastuzumab and US-trastuzumab. Br J Clin Pharmacol. 2018 Oct;84(10):2336–2343.
  • Sousa F, Dhaliwal HK, Gattacceca F, et al. Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J Control Release. 2019 Sep 10;309:37–47. doi: 10.1016/j.jconrel.2019.07.033
  • Qiu W, Zhang C, Wang S, et al. A novel anti-EGFR mAb ame55 with lower toxicity and better efficacy than cetuximab when combined with irinotecan. J Immunol Res. 2019;2019:3017360. doi: 10.1155/2019/3017360
  • Westphal M, Heese O, Steinbach JP, et al. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer. 2015 Mar;51(4):522–532.
  • Kamran N, Calinescu A, Candolfi M, et al. Recent advances and future of immunotherapy for glioblastoma. Expert Opin Biol Ther. 2016 Oct;16(10):1245–1264.
  • Liu ZG, Zhao Y, Tang J, et al. Nimotuzumab combined with concurrent chemoradiotherapy in locally advanced nasopharyngeal carcinoma: a retrospective analysis. Oncotarget. 2016 Apr 26;7(17):24429–24435. doi: 10.18632/oncotarget.8225
  • Cuesta-Mateos C, Alcaraz-Serna A, Somovilla-Crespo B, et al. Monoclonal antibody therapies for hematological malignancies: not just lineage-specific targets. Front Immunol. 2017;8:1936. doi: 10.3389/fimmu.2017.01936
  • Siemann DW, Chaplin DJ, Horsman MR. Realizing the potential of vascular targeted therapy: the rationale for combining vascular disrupting agents and anti-angiogenic agents to treat cancer. Cancer Invest. 2017 Sep 14;35(8):519–534. doi: 10.1080/07357907.2017.1364745
  • Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017 Nov;20(4):409–426. doi: 10.1007/s10456-017-9562-9
  • Ghiaseddin A, Peters KB. Use of bevacizumab in recurrent glioblastoma. CNS Oncol. 2015;4(3):157–169. doi: 10.2217/cns.15.8
  • Gilbert MR, Pugh SL, Aldape K, et al. NRG oncology RTOG 0625: a randomized phase II trial of bevacizumab with either irinotecan or dose-dense temozolomide in recurrent glioblastoma. J Neurooncol. 2017 Jan;131(1):193–199.
  • Dongpo S, Zhengyao Z, Xiaozhuo L, et al. Efficacy and safety of bevacizumab combined with other therapeutic regimens for treatment of recurrent glioblastoma: a network meta-analysis. World Neurosurg. 2022 Apr;160:e61–e79.
  • Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014 Feb 20;370(8):699–708. doi: 10.1056/NEJMoa1308573
  • Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014 Feb 20;370(8):709–722. doi: 10.1056/NEJMoa1308345
  • Fend F, Ferreri AJ, Coupland SE. How we diagnose and treat vitreoretinal lymphoma. Br J Haematol. 2016 Jun;173(5):680–692. doi: 10.1111/bjh.14025
  • Glass J, Won M, Schultz CJ, et al. Phase I and II study of induction chemotherapy with methotrexate, rituximab, and temozolomide, followed by whole-brain radiotherapy and postirradiation temozolomide for primary CNS Lymphoma: nRG Oncology RTOG 0227. J Clin Oncol. 2016 May 10;34(14):1620–1625. doi: 10.1200/JCO.2015.64.8634
  • Ferreri AJ, Cwynarski K, Pulczynski E, et al. Chemoimmunotherapy with methotrexate, cytarabine, thiotepa, and rituximab (MATRix regimen) in patients with primary CNS lymphoma: results of the first randomisation of the International Extranodal Lymphoma Study Group-32 (IELSG32) phase 2 trial. Lancet Haematol. 2016 May;3(5):e217–27.
  • Su S, Esparza TJ, Brody DL, et al. Selection of single domain anti-transferrin receptor antibodies for blood-brain barrier transcytosis using a neurotensin based assay and histological assessment of target engagement in a mouse model of Alzheimer’s related amyloid-beta pathology. PLoS One. 2022;17(10):e0276107. doi: 10.1371/journal.pone.0276107
  • Han Y, Wu D, Wang Y, et al. Skin alpha-synuclein deposit patterns: a predictor of Parkinson’s disease subtypes. EBioMedicine. 2022;80.
  • Teleanu RI, Niculescu AG, Roza E, et al. Neurotransmitters—key factors in neurological and neurodegenerative disorders of the central nervous system. Int J Mol Sci. 2022 May 25;23(11):5954. doi: 10.3390/ijms23115954
  • Elkouzi A, Vedam-Mai V, Eisinger RS, et al. Emerging therapies in Parkinson disease - repurposed drugs and new approaches. Nat Rev Neurol. 2019 Apr;15(4):204–223.
  • Pandey SK, Singh RK. Recent developments in nucleic acid-based therapies for Parkinson’s disease: current status, clinical potential, and future strategies. Front Pharmacol. 2022;13:986668. doi: 10.3389/fphar.2022.986668
  • Lu R-M, Hwang Y-C, Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020 Jan 02;27(1):1.
  • Pagano G, Taylor KI, Anzures-Cabrera J, et al. Trial of prasinezumab in early-stage Parkinson’s disease. 2022;387(5):421–432. doi: 10.1056/NEJMoa2202867
  • Lang AE, Siderowf AD, Macklin EA, et al. Trial of cinpanemab in early parkinson’s disease. N Engl J Med. 2022;387(5):408–420. doi: 10.1056/NEJMoa2203395
  • Shi M, Chu F, Jin T, et al. Progress in treatment of neuromyelitis optica spectrum disorders (NMOSD): novel insights into therapeutic possibilities in NMOSD. CNS Neurosci Ther. 2022;28(7):981–991. doi: 10.1111/cns.13836
  • Papadopoulos MC, Verkman AS. Aquaporin 4 and neuromyelitis optica. Lancet Neurol. 2012 Jun;11(6):535–544. doi: 10.1016/S1474-4422(12)70133-3
  • Hofer LS, Ramberger M, Gredler V, et al. Comparative analysis of t-cell responses to aquaporin-4 and myelin oligodendrocyte glycoprotein in inflammatory demyelinating central nervous system diseases. Front Immunol. 2020;11:1188. doi: 10.3389/fimmu.2020.01188
  • Cree BAC, Bennett JL, Kim HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet (London, England). 2019 Oct 12;394(10206):1352–1363. doi: 10.1016/S0140-6736(19)31817-3
  • Pittock SJ, Berthele A, Fujihara K, et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N Engl J Med. 2019 Aug 15;381(7):614–625. doi: 10.1056/NEJMoa1900866
  • Yamamura T, Kleiter I, Fujihara K, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med. 2019 Nov 28;381(22):2114–2124. doi: 10.1056/NEJMoa1901747
  • Brod SA. Review of approved NMO therapies based on mechanism of action, efficacy and long-term effects. Multi Sclerosis Relat Disord. 2020 Nov;46:102538. doi: 10.1016/j.msard.2020.102538
  • Nie T, Blair HA. Inebilizumab: a review in neuromyelitis optica spectrum disorder. CNS Drugs. 2022 Oct 01;36(10):1133–1141.
  • Ventola CL. Biosimilars: part 1: proposed regulatory criteria for FDA approval. P & T: A Peer-Reviewed Journal For Formulary Management. 2013 May;38(5):270–287.
  • Kirchhoff CF, Wang XM, Conlon HD, et al. Biosimilars: key regulatory considerations and similarity assessment tools. Biotechnol Bioeng. 2017 Dec;114(12):2696–2705.
  • García JJ, Raez LE, Rosas D. A narrative review of biosimilars: a continued journey from the scientific evidence to practice implementation. Transl Lung Cancer Res. 2020 Oct;9(5):2113–2119. doi: 10.21037/tlcr-20-601
  • Udpa N, Million RP. Monoclonal antibody biosimilars. Nat Rev Drug Discov. 2016 Jan 01;15(1):13–14.
  • Hansel TT, Kropshofer H, Singer T, et al. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010 Apr 01;9(4):325–338.
  • Mullard A. Controversial Alzheimer’s drug approval could affect other diseases. Nature. 2021 Jul;595(7866):162–163. doi: 10.1038/d41586-021-01763-9
  • Salloway S, Chalkias S, Barkhof F, et al. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early alzheimer disease. JAMA Neurol. 2022;79(1):13–21. doi: 10.1001/jamaneurol.2021.4161
  • Buss NAPS, Henderson SJ, McFarlane M, et al. Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol. 2012 Oct 01;12(5):615–622.
  • Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect. 2019 Dec;7(6):e00535. doi: 10.1002/prp2.535
  • Runcie K, Budman DR, John V, et al. Bi-specific and tri-specific antibodies- the next big thing in solid tumor therapeutics. Mol Med. 2018 Sep 24;24(1):50.
  • The L. Lecanemab for Alzheimer’s disease: tempering hype and hope. Lancet (London, England). 2022 Dec 3;400(10367):1899. doi: 10.1016/S0140-6736(22)02480-1
  • Šimić G, Babić Leko M, Wray S, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer’s Disease and other tauopathies, and possible neuroprotective strategies. Biomolecules. 2016 Jan 6;6(1):6. doi: 10.3390/biom6010006
  • Swartz AM, Li QJ, Sampson JH. Rindopepimut: a promising immunotherapeutic for the treatment of glioblastoma multiforme. Immunotherapy. 2014;6(6):679–690. doi: 10.2217/imt.14.21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.