244
Views
0
CrossRef citations to date
0
Altmetric
Review

Oncolytic virotherapies for pediatric tumors

ORCID Icon, , , , , & show all
Pages 987-1003 | Received 02 May 2023, Accepted 03 Aug 2023, Published online: 25 Sep 2023

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. doi: 10.3322/caac.21654
  • Zhou X, Liao X, Zhang B, et al. Recurrence patterns in patients with high-grade glioma following temozolomide-based chemoradiotherapy. Mol Clin Oncol. 2016;5(2):289–294. doi: 10.3892/mco.2016.936
  • Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362(23):2202–2211. doi: 10.1056/NEJMra0804577
  • Plant-Fox AS, O’Halloran K, Goldman S. Pediatric brain tumors: the era of molecular diagnostics, targeted and immune-based therapeutics, and a focus on long term neurologic sequelae. Curr Probl Cancer. 2021;45(4):100777. doi: 10.1016/j.currproblcancer.2021.100777
  • Foreman PM, Friedman GK, Cassady KA, et al. Oncolytic virotherapy for the treatment of malignant glioma. Neurotherapeutics. 2017;14(2):333–344. doi: 10.1007/s13311-017-0516-0
  • Zhang Y, Li Y, Chen K, et al. Oncolytic virotherapy reverses the immunosuppressive tumor microenvironment and its potential in combination with immunotherapy. Cancer Cell Int. 2021;21(1):262. doi: 10.1186/s12935-021-01972-2
  • Lawler SE, Speranza MC, Cho CF, et al. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 2017;3(6):841–849. doi: 10.1001/jamaoncol.2016.2064
  • Lan Q, Xia S, Wang Q, et al. Development of oncolytic virotherapy: from genetic modification to combination therapy. Front Med. 2020;14(2):160–184. doi: 10.1007/s11684-020-0750-4
  • Alberts P, Tilgase A, Rasa A, et al. The advent of oncolytic virotherapy in oncology: the rigvir® story. Eur J Pharmacol. 2018;837:117–126. doi: 10.1016/j.ejphar.2018.08.042
  • Liang LM. Oncorine, the world first oncolytic virus medicine and its update in China. Curr Cancer Drug Targets. 2018;18(2):171–176. doi: 10.2174/1568009618666171129221503
  • Aguilar LK, Guzik BW, Aguilar-Cordova E. Cytotoxic immunotherapy strategies for cancer: mechanisms and clinical development. J Cell Biochem. 2011;112(8):1969–1977. doi: 10.1002/jcb.23126
  • Majem M, Cascallo M, Bayo-Puxan N, et al. Control of E1A under an E2F-1 promoter insulated with the myotonic dystrophy locus insulator reduces the toxicity of oncolytic adenovirus Ad-Delta24RGD. Cancer Gene Ther. 2006;13(7):696–705. doi: 10.1038/sj.cgt.7700940
  • Fueyo J, Alemany R, Gomez-Manzano C, et al. Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst. 2003;95(9):652–660. doi: 10.1093/jnci/95.9.652
  • Garcia-Moure M, Martinez-Velez N, Gonzalez-Huarriz M, et al. The oncolytic adenovirus VCN-01 promotes anti-tumor effect in primitive neuroectodermal tumor models. Sci Rep. 2019;9(1):14368. doi: 10.1038/s41598-019-51014-1
  • Wang P, Li X, Wang J, et al. Re-designing Interleukin-12 to enhance its safety and potential as an anti-tumor immunotherapeutic agent. Nat Commun. 2017;8(1):1395. doi: 10.1038/s41467-017-01385-8
  • Mineta T, Rabkin SD, Yazaki T, et al. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med. 1995;1(9):938–943. doi: 10.1038/nm0995-938
  • Streby KA, Geller JI, Currier MA, et al. Intratumoral injection of HSV1716, an oncolytic herpes virus, is safe and shows evidence of immune response and viral replication in young cancer patients. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23(14):3566–3574. doi: 10.1158/1078-0432.CCR-16-2900
  • Kim JH, Oh JY, Park BH, et al. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol Ther J Am Soc Gene Ther. 2006;14(3):361–370. doi: 10.1016/j.ymthe.2006.05.008
  • Kicielinski KP, Chiocca EA, Yu JS, et al. Phase 1 clinical trial of intratumoral reovirus infusion for the treatment of recurrent malignant gliomas in adults. Mol Ther J Am Soc Gene Ther. 2014;22(5):1056–1062. doi: 10.1038/mt.2014.21
  • Gromeier M, Lachmann S, Rosenfeld MR, et al. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci U S A. 2000;97(12):6803–6808. doi: 10.1073/pnas.97.12.6803
  • Dingli D, Peng KW, Harvey ME, et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood. 2004;103(5):1641–1646. doi: 10.1182/blood-2003-07-2233
  • Yu L, Baxter PA, Zhao X, et al. A single intravenous injection of oncolytic picornavirus SVV-001 eliminates medulloblastomas in primary tumor-based orthotopic xenograft mouse models. Neuro Oncol. 2011;13(1):14–27. doi: 10.1093/neuonc/noq148
  • Kieran MW, Goumnerova L, Manley P, et al. Phase I study of gene-mediated cytotoxic immunotherapy with AdV-tk as adjuvant to surgery and radiation for pediatric malignant glioma and recurrent ependymoma. Neuro Oncol. 2019;21(4):537–546. doi: 10.1093/neuonc/noy202
  • Ruano D, López-Martín JA, Moreno L, et al. First-in-human, first-in-child trial of autologous MSCs carrying the oncolytic virus icovir-5 in patients with advanced tumors. Mol Ther J Am Soc Gene Ther. 2020;28(4):1033–1042. doi: 10.1016/j.ymthe.2020.01.019
  • Gállego Pérez-Larraya J, Garcia-Moure M, Labiano S, et al. Oncolytic DNX-2401 virus for pediatric diffuse intrinsic pontine glioma. N Engl J Med. 2022;386(26):2471–2481. doi: 10.1056/NEJMoa2202028
  • Friedman GK, Johnston JM, Bag AK, et al. Oncolytic HSV-1 G207 immunovirotherapy for pediatric high-grade gliomas. N Engl J Med. 2021;384(17):1613–1622. doi: 10.1056/NEJMoa2024947
  • Cripe TP, Ngo MC, Geller JI, et al. Phase 1 study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus, in pediatric cancer patients. Mol Ther J Am Soc Gene Ther. 2015;23(3):602–608. doi: 10.1038/mt.2014.243
  • Kolb EA, Sampson V, Stabley D, et al. A phase I trial and viral clearance study of reovirus (Reolysin) in children with relapsed or refractory extra-cranial solid tumors: a children’s oncology group Phase I consortium report. Pediatr Blood Cancer. 2015;62(5):751–758. doi: 10.1002/pbc.25464
  • Burke MJ, Ahern C, Weigel BJ, et al. Phase I trial of Seneca valley virus (NTX-010) in children with relapsed/refractory solid tumors: a report of the children’s oncology group. Pediatr Blood Cancer. 2015;62(5):743–750. doi: 10.1002/pbc.25269
  • Vera B, Martínez-Vélez N, Xipell E, et al. Characterization of the Antiglioma Effect of the Oncolytic Adenovirus VCN-01. PLoS One. 2016;11(1):e0147211. doi: 10.1371/journal.pone.0147211
  • Martínez-Vélez N, Xipell E, Vera B, et al. The oncolytic adenovirus VCN-01 as therapeutic approach against pediatric osteosarcoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2016;22(9):2217–2225. doi: 10.1158/1078-0432.CCR-15-1899
  • Pascual-Pasto G, Bazan-Peregrino M, Olaciregui NG, et al. Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. Sci Transl Med. 2019;11(476):eaat9321. doi: 10.1126/scitranslmed.aat9321
  • Bortolanza S, Bunuales M, Otano I, et al. Treatment of pancreatic cancer with an oncolytic adenovirus expressing interleukin-12 in Syrian hamsters. Mol Ther J Am Soc Gene Ther. 2009;17(4):614–622. doi: 10.1038/mt.2009.9
  • Zhang Z, Zhang C, Miao J, et al. A tumor-targeted replicating oncolytic adenovirus Ad-TD-nsIL12 as a promising therapeutic agent for human esophageal squamous cell carcinoma. Cells. 2020;9(11):2438. doi: 10.3390/cells9112438
  • Studebaker AW, Hutzen BJ, Pierson CR, et al. Oncolytic herpes virus rRp450 shows efficacy in orthotopic xenograft group 3/4 medulloblastomas and atypical teratoid/rhabdoid tumors. Mol Ther Oncolytics. 2017;6:22–30. doi: 10.1016/j.omto.2017.05.005
  • Friedman GK, Moore BP, Nan L, et al. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses. Neuro Oncol. 2016;18(2):227–235. doi: 10.1093/neuonc/nov123
  • Lun X, Ruan Y, Jayanthan A, et al. Double-deleted vaccinia virus in virotherapy for refractory and metastatic pediatric solid tumors. Mol Oncol. 2013;7(5):944–954. doi: 10.1016/j.molonc.2013.05.004
  • Komorowski M, Tisonczyk J, Kolakowska A, et al. Modulation of the tumor microenvironment by CXCR4 antagonist-armed viral oncotherapy enhances the antitumor efficacy of dendritic cell vaccines against neuroblastoma in syngeneic mice. Viruses. 2018;10(9):455. doi: 10.3390/v10090455
  • Ge Y, Wang H, Ren J, et al. Oncolytic vaccinia virus delivering tethered IL-12 enhances antitumor effects with improved safety. J Immunother Cancer. 2020;8(1):e000710. doi: 10.1136/jitc-2020-000710
  • Ma J, Jin C, Čančer M, et al. Concurrent expression of HP-NAP enhances antitumor efficacy of oncolytic vaccinia virus but not for Semliki Forest virus. Mol Ther Oncolytics. 2021;21:356–366. doi: 10.1016/j.omto.2021.04.016
  • Gujar SA, Clements D, Dielschneider R, et al. Gemcitabine enhances the efficacy of reovirus-based oncotherapy through anti-tumour immunological mechanisms. Br J Cancer. 2014;110(1):83–93. doi: 10.1038/bjc.2013.695
  • Kemp V, van den Wollenberg DJM, Camps MGM, et al. Arming oncolytic reovirus with GM-CSF gene to enhance immunity. Cancer Gene Ther. 2019;26(9–10):268–281. doi: 10.1038/s41417-018-0063-9
  • Toyoda H, Yin J, Mueller S, et al. Oncolytic treatment and cure of neuroblastoma by a novel attenuated poliovirus in a novel poliovirus-susceptible animal model. Cancer Res. 2007;67(6):2857–2864. doi: 10.1158/0008-5472.CAN-06-3713
  • Toyoda H, Wimmer E, Cello J. Oncolytic poliovirus therapy and immunization with poliovirus-infected cell lysate induces potent antitumor immunity against neuroblastoma in vivo. Int J Oncol. 2011;38(1):81–87. doi: 10.3892/ijo_00000826
  • Studebaker AW, Kreofsky CR, Pierson CR, et al. Treatment of medulloblastoma with a modified measles virus. Neuro Oncol. 2010;12(10):1034–1042. doi: 10.1093/neuonc/noq057
  • Studebaker AW, Hutzen B, Pierson CR, et al. Oncolytic measles virus efficacy in murine xenograft models of atypical teratoid rhabdoid tumors. Neuro Oncol. 2015;17(12):1568–1577. doi: 10.1093/neuonc/nov058
  • Lal S, Carrera D, Phillips JJ, et al. An oncolytic measles virus-sensitive Group 3 medulloblastoma model in immune-competent mice. Neuro Oncol. 2018;20(12):1606–1615. doi: 10.1093/neuonc/noy089
  • Liu Z, Zhao X, Mao H, et al. Intravenous injection of oncolytic picornavirus SVV-001 prolongs animal survival in a panel of primary tumor-based orthotopic xenograft mouse models of pediatric glioma. Neuro Oncol. 2013;15(9):1173–1185. doi: 10.1093/neuonc/not065
  • Mennechet FJD, Paris O, Ouoba AR, et al. A review of 65 years of human adenovirus seroprevalence. Expert Rev Vaccines. 2019;18(6):597–613. doi: 10.1080/14760584.2019.1588113
  • Paielli DL, Wing MS, Rogulski KR, et al. Evaluation of the biodistribution, persistence, toxicity, and potential of germ-line transmission of a replication-competent human adenovirus following intraprostatic administration in the mouse. Mol Ther J Am Soc Gene Ther. 2000;1(3):263–274. doi: 10.1006/mthe.2000.0037
  • Zhu J, Huang X, Yang Y. Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and -independent pathways. J Virol. 2007;81(7):3170–3180. doi: 10.1128/JVI.02192-06
  • Suzuki M, Cela R, Bertin TK, et al. NOD2 signaling contributes to the innate immune response against helper-dependent adenovirus vectors independently of MyD88 in vivo. Hum Gene Ther. 2011;22(9):1071–1082. doi: 10.1089/hum.2011.002
  • Minamitani T, Iwakiri D, Takada K. Adenovirus virus-associated RNAs induce type I interferon expression through a RIG-I-mediated pathway. J Virol. 2011;85(8):4035–4040. doi: 10.1128/JVI.02160-10
  • Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature. 2000;406(6797):782–787. doi: 10.1038/35021228
  • Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what’s important? Hum Vaccines Immunother. 2014;10(10):2875–2884. doi: 10.4161/hv.29594
  • Tang J, Olive M, Pulmanausahakul R, et al. Human CD8+ cytotoxic T cell responses to adenovirus capsid proteins. Virology. 2006;350(2):312–322. doi: 10.1016/j.virol.2006.01.024
  • Leen AM, Sili U, Vanin EF, et al. Conserved CTL epitopes on the adenovirus hexon protein expand subgroup cross-reactive and subgroup-specific CD8+ T cells. Blood. 2004;104(8):2432–2440. doi: 10.1182/blood-2004-02-0646
  • Alonso MM, Cascallo M, Gomez-Manzano C, et al. ICOVIR-5 shows E2F1 addiction and potent antiglioma effect in vivo. Cancer Res. 2007;67(17):8255–8263. doi: 10.1158/0008-5472.CAN-06-4675
  • Stanelle J, Stiewe T, Theseling CC, et al. Gene expression changes in response to E2F1 activation. Nucleic Acids Res. 2002;30(8):1859–1867. doi: 10.1093/nar/30.8.1859
  • Rincón E, Cejalvo T, Kanojia D, et al. Mesenchymal stem cell carriers enhance antitumor efficacy of oncolytic adenoviruses in an immunocompetent mouse model. Oncotarget. 2017;8(28):45415–45431. doi: 10.18632/oncotarget.17557
  • Morales-Molina Á, Gambera S, Cejalvo T, et al. Antitumor virotherapy using syngeneic or allogeneic mesenchymal stem cell carriers induces systemic immune response and intratumoral leukocyte infiltration in mice. Cancer Immunol Immunother CII. 2018;67(10):1589–1602. doi: 10.1007/s00262-018-2220-2
  • Cejalvo T, Perisé-Barrios AJ, Del Portillo I, et al. Remission of spontaneous canine tumors after systemic cellular viroimmunotherapy. Cancer Res. 2018;78(17):4891–4901. doi: 10.1158/0008-5472.CAN-17-3754
  • Martínez-Vélez N, Garcia-Moure M, Marigil M, et al. The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models. Nat Commun. 2019;10(1):2235. doi: 10.1038/s41467-019-10043-0
  • Tejada S, Alonso M, Patiño A, et al. Phase I trial of DNX-2401 for diffuse intrinsic pontine glioma newly diagnosed in pediatric patients. Neurosurgery. 2018;83(5):1050. doi: 10.1093/neuros/nyx507
  • Rojas JJ, Gimenez-Alejandre M, Gil-Hoyos R, et al. Improved systemic antitumor therapy with oncolytic adenoviruses by replacing the fiber shaft HSG-binding domain with RGD. Gene Ther. 2012;19(4):453–457. doi: 10.1038/gt.2011.106
  • Rojas JJ, Guedan S, Searle PF, et al. Minimal RB-responsive E1A promoter modification to attain potency, selectivity, and transgene-arming capacity in oncolytic adenoviruses. Mol Ther J Am Soc Gene Ther. 2010;18(11):1960–1971. doi: 10.1038/mt.2010.173
  • Rodríguez-García A, Giménez-Alejandre M, Rojas JJ, et al. Safety and efficacy of VCN-01, an oncolytic adenovirus combining fiber HSG-binding domain replacement with RGD and hyaluronidase expression. Clin Cancer Res Off J Am Assoc Cancer Res. 2015;21(6):1406–1418. doi: 10.1158/1078-0432.CCR-14-2213
  • White E. Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene. 2001;20(54):7836–7846. doi: 10.1038/sj.onc.1204861
  • Cuconati A, Degenhardt K, Sundararajan R, et al. Bak and Bax function to limit adenovirus replication through apoptosis induction. J Virol. 2002;76(9):4547–4558. doi: 10.1128/jvi.76.9.4547-4558.2002
  • Leitner S, Sweeney K, Oberg D, et al. Oncolytic adenoviral mutants with E1B19K gene deletions enhance gemcitabine-induced apoptosis in pancreatic carcinoma cells and anti-tumor efficacy in vivo. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(5):1730–1740. doi: 10.1158/1078-0432.CCR-08-2008
  • Wang H, Satoh M, Chen GP, et al. E1A, E1B double-restricted adenovirus enhances the cytotoxicity and antitumor activity of gemcitabine to renal cell carcinoma. Chin Med J (Engl). 2011;124(7):1082–1087.
  • Tsai YS, Shiau AL, Chen YF, et al. Enhancement of antitumor activity of gammaretrovirus carrying IL-12 gene through genetic modification of envelope targeting HER2 receptor: a promising strategy for bladder cancer therapy. Cancer Gene Ther. 2010;17(1):37–48. doi: 10.1038/cgt.2009.41
  • Roth JC, Cassady KA, Cody JJ, et al. Evaluation of the safety and biodistribution of M032, an attenuated herpes simplex virus type 1 expressing Hil-12, after intracerebral administration to aotus nonhuman primates. Hum Gene Ther Clin Dev. 2014;25(1):16–27. doi: 10.1089/humc.2013.201
  • Pan WY, Lo CH, Chen CC, et al. Cancer immunotherapy using a membrane-bound interleukin-12 with B7-1 transmembrane and cytoplasmic domains. Mol Ther J Am Soc Gene Ther. 2012;20(5):927–937. doi: 10.1038/mt.2012.10
  • Ma W, He H, Wang H. Oncolytic herpes simplex virus and immunotherapy. BMC Immunol. 2018;19(1):40. doi: 10.1186/s12865-018-0281-9
  • Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642–662. doi: 10.1038/nrd4663
  • Copeland AM, Newcomb WW, Brown JC. Herpes simplex virus replication: roles of viral proteins and nucleoporins in capsid-nucleus attachment. J Virol. 2009;83(4):1660–1668. doi: 10.1128/JVI.01139-08
  • Kalus P, De Munck J, Vanbellingen S, et al. Oncolytic herpes simplex virus Type 1 induces immunogenic cell death resulting in maturation of BDCA-1+ myeloid dendritic cells. Int J Mol Sci. 2022;23(9):4865. doi: 10.3390/ijms23094865
  • Aldrak N, Alsaab S, Algethami A, et al. Oncolytic herpes simplex virus-based therapies for cancer. Cells. 2021;10(6):1541. doi: 10.3390/cells10061541
  • Gujar SA, Lee PW. Oncolytic virus-mediated reversal of impaired tumor antigen presentation. Front Oncol. 2014;4:77. doi: 10.3389/fonc.2014.00077
  • Singh PK, Doley J, Kumar GR, et al. Oncolytic viruses & their specific targeting to tumour cells. Indian J Med Res. 2012;136(4):571–584.
  • Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–2788. doi: 10.1200/JCO.2014.58.3377
  • Cassady KA, Bauer DF, Roth J, et al. Pre-clinical assessment of C134, a chimeric oncolytic herpes simplex virus, in mice and non-human primates. Mol Ther Oncolytics. 2017;5:1–10. doi: 10.1016/j.omto.2017.02.001
  • Todo T, Martuza RL, Rabkin SD, et al. Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci U S A. 2001;98(11):6396–6401. doi: 10.1073/pnas.101136398
  • Patel DM, Foreman PM, Nabors LB, et al. Design of a Phase I clinical trial to evaluate M032, a genetically engineered HSV-1 expressing IL-12, in patients with recurrent/progressive glioblastoma multiforme, anaplastic astrocytoma, or gliosarcoma. Hum Gene Ther Clin Dev. 2016;27(2):69–78. doi: 10.1089/humc.2016.031
  • Chiocca EA, Nakashima H, Kasai K, et al. Preclinical toxicology of rQnestin34.5v.2: an oncolytic herpes virus with transcriptional regulation of the ICP34.5 neurovirulence gene. Mol Ther Methods Clin Dev. 2020;17:871–893. doi: 10.1016/j.omtm.2020.03.028
  • Papanastassiou V, Rampling R, Fraser M, et al. The potential for efficacy of the modified (ICP 34.5(-)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther. 2002;9(6):398–406. doi: 10.1038/sj.gt.3301664
  • Deng L, Fan J, Ding Y, et al. Oncolytic cancer therapy with a vaccinia virus strain. Oncol Rep. 2019;41(1):686–692. doi: 10.3892/or.2018.6801
  • Guo ZS, Lu B, Guo Z, et al. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer. 2019;7(1):6. doi: 10.1186/s40425-018-0495-7
  • Kirn DH, Thorne SH. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer. 2009;9(1):64–71. doi: 10.1038/nrc2545
  • Parato KA, Breitbach CJ, Le Boeuf F, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol Ther J Am Soc Gene Ther. 2012;20(4):749–758. doi: 10.1038/mt.2011.276
  • Mastrangelo MJ, Maguire HC, Eisenlohr LC, et al. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther. 1999;6(5):409–422. doi: 10.1038/sj.cgt.7700066
  • Park BH, Hwang T, Liu TC, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008;9(6):533–542. doi: 10.1016/S1470-2045(08)70107-4
  • Breitbach CJ, Burke J, Jonker D, et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature. 2011;477(7362):99–102. doi: 10.1038/nature10358
  • Olland AM, Jané-Valbuena J, Schiff LA, et al. Structure of the reovirus outer capsid and dsRNA-binding protein σ3 at 1.8 Å resolution. Embo J. 2001;20(5):979–989. doi: 10.1093/emboj/20.5.979
  • Urbano P, Urbano FG. The Reoviridae family. Comp Immunol Microbiol Infect Dis. 1994;17(3–4):151–161. doi: 10.1016/0147-9571(94)90040-x
  • Hashiro G, Loh PC, Yau JT. The preferential cytotoxicity of reovirus for certain transformed cell lines. Arch Virol. 1977;54(4):307–315. doi: 10.1007/BF01314776
  • Duncan MR, Stanish SM, Cox DC. Differential sensitivity of normal and transformed human cells to reovirus infection. J Virol. 1978;28(2):444–449. doi: 10.1128/jvi.28.2.444-449.1978
  • Gong J, Mita MM. Activated ras signaling pathways and reovirus oncolysis: an update on the mechanism of preferential reovirus replication in cancer cells. Front Oncol. 2014;4:167. doi: 10.3389/fonc.2014.00167
  • Müller L, Berkeley R, Barr T, et al. Past, present and future of oncolytic reovirus. Cancers. 2020;12(11):3219. doi: 10.3390/cancers12113219
  • Prestwich RJ, Errington F, Steele LP, et al. Reciprocal human dendritic cell-natural killer cell interactions induce antitumor activity following tumor cell infection by oncolytic reovirus. J Immunol Baltim Md 1950. 2009;183(7):4312–4321. doi: 10.4049/jimmunol.0901074
  • Bos JL. Ras oncogenes in human cancer: a review. Cancer Res. 1989;49(17):4682–4689.
  • Carew JS, Espitia CM, Zhao W, et al. Reolysin is a novel reovirus-based agent that induces endoplasmic reticular stress-mediated apoptosis in pancreatic cancer. Cell Death Dis. 2013;4(7):e728. doi: 10.1038/cddis.2013.259
  • Norman KL, Hirasawa K, Yang AD, et al. Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection. Proc Natl Acad Sci U S A. 2004;101(30):11099–11104. doi: 10.1073/pnas.0404310101
  • Gollamudi R, Ghalib MH, Desai KK, et al. Intravenous administration of Reolysin, a live replication competent RNA virus is safe in patients with advanced solid tumors. Invest New Drugs. 2010;28(5):641–649. doi: 10.1007/s10637-009-9279-8
  • Comins C, Spicer J, Protheroe A, et al. REO-10: a phase I study of intravenous reovirus and docetaxel in patients with advanced cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16(22):5564–5572. doi: 10.1158/1078-0432.CCR-10-1233
  • Mehndiratta MM, Mehndiratta P, Pande R. Poliomyelitis: historical facts, epidemiology, and current challenges in eradication. Neurohospitalist. 2014;4(4):223–229. doi: 10.1177/1941874414533352
  • Mendelsohn CL, Wimmer E, Racaniello VR. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989;56(5):855–865. doi: 10.1016/0092-8674(89)90690-9
  • Merrill MK, Bernhardt G, Sampson JH, et al. Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro Oncol. 2004;6(3):208–217. doi: 10.1215/S1152851703000577
  • Desjardins A, Gromeier M, Herndon JE, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379(2):150–161. doi: 10.1056/NEJMoa1716435
  • Misin A, Antonello RM, Di Bella S, et al. Measles: an overview of a re-emerging disease in children and immunocompromised patients. Microorganisms. 2020;8(2):276. doi: 10.3390/microorganisms8020276
  • de Witte L, Abt M, Schneider-Schaulies S, et al. Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol. 2006;80(7):3477–3486. doi: 10.1128/JVI.80.7.3477-3486.2006
  • de Vries RD, Lemon K, Ludlow M, et al. In vivo tropism of attenuated and pathogenic measles virus expressing green fluorescent protein in macaques. J Virol. 2010;84(9):4714–4724. doi: 10.1128/JVI.02633-09
  • von Messling V, Svitek N, Cattaneo R. Receptor (SLAM [CD150]) recognition and the V protein sustain swift lymphocyte-based invasion of mucosal tissue and lymphatic organs by a morbillivirus. J Virol. 2006;80(12):6084–6092. doi: 10.1128/JVI.00357-06
  • Fishelson Z, Donin N, Zell S, et al. Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCrps) in tumors. Mol Immunol. 2003;40(2–4):109–123. doi: 10.1016/s0161-5890(03)00112-3
  • Anderson BD, Nakamura T, Russell SJ, et al. High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res. 2004;64(14):4919–4926. doi: 10.1158/0008-5472.CAN-04-0884
  • Peng KW, TenEyck CJ, Galanis E, et al. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res. 2002;62(16):4656–4662.
  • Galanis E, Atherton PJ, Maurer MJ, et al. Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer. Cancer Res. 2015;75(1):22–30. doi: 10.1158/0008-5472.CAN-14-2533
  • Reddy PS, Burroughs KD, Hales LM, et al. Seneca Valley virus, a systemically deliverable oncolytic picornavirus, and the treatment of neuroendocrine cancers. J Natl Cancer Inst. 2007;99(21):1623–1633. doi: 10.1093/jnci/djm198
  • Luo D, Wang H, Wang Q, et al. Senecavirus a as an oncolytic virus: prospects, challenges and development directions. Front Oncol. 2022;12:839536. DOI:10.3389/fonc.2022.839536
  • Rudin CM, Poirier JT, Senzer NN, et al. Phase I clinical study of Seneca valley virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(4):888–895. doi: 10.1158/1078-0432.CCR-10-1706
  • Moaven O, CW M, JA S, et al. Evolving role of oncolytic virotherapy: challenges and prospects in clinical practice. JCO Precis Oncol. 2021;5(5):432–441. doi: 10.1200/PO.20.00395
  • Ganesh S, Gonzalez-Edick M, Gibbons D, et al. Intratumoral coadministration of hyaluronidase enzyme and oncolytic adenoviruses enhances virus potency in metastatic tumor models. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14(12):3933–3941. doi: 10.1158/1078-0432.CCR-07-4732
  • Kaufman HL. Can biomarkers guide oncolytic virus immunotherapy? Clin Cancer Res Off J Am Assoc Cancer Res. 2021;27(12):3278–3279. doi: 10.1158/1078-0432.CCR-21-0660
  • Goradel NH, Baker AT, Arashkia A, et al. Oncolytic virotherapy: challenges and solutions. Curr Probl Cancer. 2021;45(1):100639. doi: 10.1016/j.currproblcancer.2020.100639
  • Chen XT, Dai SY, Zhan Y, et al. Progress of oncolytic virotherapy for neuroblastoma. Front Pediatr. 2022;10:1055729. doi: 10.3389/fped.2022.1055729

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.