215
Views
0
CrossRef citations to date
0
Altmetric
Review

Stem cell therapy for acute myocardial infarction: Mesenchymal Stem Cells and induced Pluripotent Stem Cells

ORCID Icon, ORCID Icon & ORCID Icon
Pages 951-967 | Received 13 Jun 2023, Accepted 03 Aug 2023, Published online: 30 Aug 2023

References

  • Ahmad FB, Cisewski JA, Xu J, et al. Provisional Mortality Data — United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2023;72(18):488–492. doi: 10.15585/mmwr.mm7218a3
  • Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021 Apr 7;42(14):1289–1367.
  • Ibanez B, James S, Agewall S, et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2017;39(2):119–177.
  • Alraies MC, Eckman P. Adult heart transplant: indications and outcomes. J Thorac Dis. 2014 Aug;6(8):1120–1128. doi: 10.3978/j.issn.2072-1439.2014.06.44
  • Niccoli G, Burzotta F, Galiuto L, et al. Myocardial no-reflow in humans. J Am Coll Cardiol. 2009 Jul 21;54(4):281–292.
  • Przybyt E, Harmsen MC. Mesenchymal stem cells: promising for myocardial regeneration? Curr Stem Cell Res Ther. 2013 Jul;8(4):270–277. doi: 10.2174/1574888X11308040002
  • Lalu MM, Mazzarello S, Zlepnig J, et al. Safety and efficacy of adult stem cell therapy for acute myocardial infarction and ischemic heart failure (safecell heart): a systematic review and meta-analysis. Stem Cells Transl Med. 2018 Dec;7(12):857–866. doi: 10.1002/sctm.18-0120
  • Wu K Hong, Mo X Ming, Han Z Chao and Zhou B. (2011). Stem Cell Engraftment and Survival in the Ischemic Heart. The Annals of Thoracic Surgery, 92(5), 1917–1925. doi: 10.1016/j.athoracsur.2011.07.012
  • Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Circulation. 2018;138(20):e618–e651. doi: 10.1161/CIR.0000000000000617
  • Anderson JL, Morrow DA, Campion EW. Acute myocardial infarction. N Engl J Med. 2017 May 25;376(21):2053–2064.
  • Broughton KM, Wang BJ, Firouzi F, et al. Mechanisms of cardiac repair and regeneration. Circ Res. 2018;122(8):1151–1163. doi: 10.1161/CIRCRESAHA.117.312586
  • Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016 Jun 24;119(1):91–112.
  • Katrukha IA, Katrukha AG. Myocardial injury and the release of troponins I and T in the blood of patients. Clin Chem. 2020;67(1):124–130. doi: 10.1093/clinchem/hvaa281
  • Arora S, Stouffer GA, Kucharska-Newton A, et al. Fifteen-year trends in management and outcomes of non-ST-segment-elevation myocardial infarction among black and white patients: the ARIC community surveillance study, 2000-2014. J Am Heart Assoc. 2018 Oct 2;7(19):e010203.
  • Ghafoor M, Kamal M, Nadeem U and Husain A N. (2020). Educational Case: Myocardial Infarction: Histopathology and Timing of Changes. Academic Pathology, 7 2374289520976639. doi: 10.1177/2374289520976639
  • DeFilippis AP, Hall ME. Impact of new ICD codes on acute MI characteristics and outcomes. J Am Coll Cardiol. 2021;78(12):1254–1256. doi: 10.1016/j.jacc.2021.07.033
  • Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009 Apr 3;324(5923):98–102.
  • Fernández-Avilés F, Sanz-Ruiz R, Climent AM, et al. Global position paper on cardiovascular regenerative medicine. Eur Heart J. 2017 Sep 1;38(33):2532–2546.
  • Iseoka H, Miyagawa S, Saito A, et al. Role and therapeutic effects of skeletal muscle-derived non-myogenic cells in a rat myocardial infarction model. Stem Cell Res Ther. 2020 Feb 18;11(1):69.
  • Schächinger V, Erbs S, Elsässer A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006 Sep 21;355(12):1210–1221.
  • Prat-Vidal C, Crisóstomo V, Moscoso I, et al. Intracoronary delivery of porcine cardiac progenitor cells overexpressing IGF-1 and HGF in a pig model of sub-acute myocardial infarction. Cells. 2021;10(10):2571. doi: 10.3390/cells10102571
  • Tokunaga M, Liu M-L, Nagai T, et al. Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction. J Mol Cell Cardiol. 2010 Dec 01;49(6):972–983.
  • Malliaras K, Makkar RR, Smith RR, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (cardiosphere-derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. 2014 Jan 21;63(2):110–122.
  • Chong JJ, Yang X, Don CW, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014 Jun 12;510(7504):273–277.
  • Thavapalachandran S, TYL L, Romanazzo S, et al. Pluripotent stem cell-derived mesenchymal stromal cells improve cardiac function and vascularity after myocardial infarction. Cytotherapy. 2021 Dec;23(12):1074–1084. doi: 10.1016/j.jcyt.2021.07.016
  • Menasché P. Skeletal myoblasts and cardiac repair. J Mol Cell Cardiol. 2008 Oct 01;45(4):545–553.
  • Scorsin M, Hagège A, Vilquin JT, et al. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg. 2000 Jun;119(6):1169–1175. doi: 10.1067/mtc.2000.104865
  • Menasché P, Alfieri O, Janssens S, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008 Mar 4;117(9):1189–1200.
  • Eaves CJ. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood. 2015 Apr 23;125(17):2605–2613.
  • Huizer K, Mustafa DA, Spelt JC, et al. Improving the characterization of endothelial progenitor cell subsets by an optimized FACS protocol. PLoS ONE. 2017;12(9):e0184895 10.1371. doi: 10.1371/journal.pone.0184895.
  • Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002 Oct 8;106(15):1913–1918.
  • Cao F, Sun D, Li C, et al. Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up. Eur Heart J. 2009 Aug;30(16):1986–1994. doi: 10.1093/eurheartj/ehp220
  • Traverse JH, Henry TD, Ellis SG, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011 Nov 16;306(19):2110–2119.
  • Traverse JH, Henry TD, Pepine CJ, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012 Dec 12;308(22):2380–2389.
  • Choudry F, Hamshere S, Saunders N, et al. A randomized double-blind control study of early intracoronary autologous bone marrow cell infusion in acute myocardial infarction: the REGENERATE-AMI clinical trial†. Eur Heart J. 2016 Jan 14;37(3):256–263.
  • Mathur A, Fernández-Avilés F, Bartunek J, et al. The effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: the BAMI trial. Eur Heart J. 2020;41(38):3702–3710. doi: 10.1093/eurheartj/ehaa651
  • Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell And Tissue Kinetics. 1970 Oct;3(4):393–403. doi: 10.1111/j.1365-2184.1970.tb00347.x
  • Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002 Dec;13(12):4279–4295. doi: 10.1091/mbc.e02-02-0105
  • Haynesworth SE, Goshima J, Goldberg VM, et al. Characterization of cells with osteogenic potential from human marrow. Bone. 1992;13(1):81–88. doi: 10.1016/8756-3282(92)90364-3
  • Girdlestone J, Limbani VA, Cutler AJ, et al. Efficient expansion of mesenchymal stromal cells from umbilical cord under low serum conditions. Cytotherapy. 2009;11(6):738–748. doi: 10.3109/14653240903079401
  • Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905
  • Zuk PA, Zhu M, Mizuno H. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–228. doi: 10.1089/107632701300062859
  • Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004 Feb 10;109(5):656–663.
  • Karaöz E, Çetinalp Demircan P, Erman G, et al. Comparative analyses of immunosuppressive characteristics of bone-marrow, wharton’s jelly, and adipose tissue-derived human mesenchymal stem cells. Turk J Haematol. 2017 Aug 2;34(3):213–225.
  • Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009 Dec 8;54(24):2277–2286.
  • Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7634–7638. doi: 10.1073/pnas.78.12.7634
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998 Nov 6;282(5391):1145–1147.
  • Hartman ME, Dai DF, Laflamme MA. Human pluripotent stem cells: prospects and challenges as a source of cardiomyocytes for in vitro modeling and cell-based cardiac repair. Adv Drug Deliv Rev. 2016 Jan 15;96:3–17. doi: 10.1016/j.addr.2015.05.004.
  • Liu YW, Chen B, Yang X, et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol. 2018 Aug;36(7):597–605. doi: 10.1038/nbt.4162
  • Robertson JA. Human embryonic stem cell research: ethical and legal issues. Nat Rev Genet. 2001 Jan 01;2(1):74–78.
  • Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell. 2007 Jun 7;1(1):39–49.
  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872. doi: 10.1016/j.cell.2007.11.019
  • Lee J-H, Lee JB, Shapovalova Z, et al. Somatic transcriptome priming gates lineage-specific differentiation potential of human-induced pluripotent stem cell states. Nat Commun. 2014 Dec 03;5(1):5605.
  • Nelson TJ, Martinez-Fernandez A, Yamada S, et al. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation. 2009;120(5):408–416. doi: 10.1161/CIRCULATIONAHA.109.865154
  • Batalov I, Feinberg AW. Differentiation of cardiomyocytes from human pluripotent stem cells using monolayer culture. Biomark Insights. 2015;10(Suppl 1):71–76. doi: 10.4137/BMI.S20050
  • VV O, FE VDH, Petrus-Reurer S, et al. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat Protoc. 2014;9(6):1514–1531. doi: 10.1038/nprot.2014.102
  • Xie CQ, Huang H, Wei S, et al. A comparison of murine smooth muscle cells generated from embryonic versus induced pluripotent stem cells. Stem Cells Dev. 2009 Jun;18(5):741–748. doi: 10.1089/scd.2008.0179
  • Mauritz C, Schwanke K, Reppel M, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation. 2008 Jul 29;118(5):507–517.
  • Garbern JC and Lee RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2021;12(1). doi: 10.1186/s13287-021-02252-6
  • Karbassi E, Fenix A, Marchiano S, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 2020 Jun;17(6):341–359. doi: 10.1038/s41569-019-0331-x
  • Machiraju P, Greenway SC. Current methods for the maturation of induced pluripotent stem cell-derived cardiomyocytes. World J Stem Cells. 2019 Jan 26;11(1):33–43.
  • Scuderi GJ, Butcher J. Naturally engineered maturation of cardiomyocytes. Front Cell Dev Biol. 2017;5:50. doi: 10.3389/fcell.2017.00050
  • Kaneko S, Yamanaka S. To be immunogenic, or not to be: that’s the iPSC question. Cell Stem Cell. 2013 Apr 4;12(4):385–386.
  • Qiao Y, Agboola OS, Hu X, et al. Tumorigenic and immunogenic properties of induced pluripotent stem cells: a promising cancer vaccine. Stem Cell Rev And Rep. 2020 Dec;16(6):1049–1061. doi: 10.1007/s12015-020-10042-5
  • Tu C, Zoldan J. Moving Ipsc-derived cardiomyocytes forward to treat myocardial infarction. Cell Stem Cell. 2018 Sep 6;23(3):322–323.
  • Mazo M, Araña M, Pelacho B, et al. Mesenchymal stem cells and cardiovascular disease: a bench to bedside roadmap. Stem Cells Int. 2012 Jan 22;2012:175979.
  • Hafez P, Jose S, Chowdhury SR, et al. Cardiomyogenic differentiation of human sternal bone marrow mesenchymal stem cells using a combination of basic fibroblast growth factor and hydrocortisone. Cell Biol Int. 2016;40(1):55–64. doi: 10.1002/cbin.10536
  • Raman N, Imran SAM, Ahmad Amin Noordin KB, et al. Mechanotransduction of mesenchymal stem cells (MSCs) during cardiomyocytes differentiation. Heliyon. 2022 Nov 01;8(11):e11624.
  • Martin-Rendon E, Sweeney D, Lu F, et al. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang. 2008 Aug;95(2):137–148. doi: 10.1111/j.1423-0410.2008.01076.x
  • Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci U S A. 2009;106(33):14022–14027. doi: 10.1073/pnas.0903201106
  • Leri A, Rota M, Hosoda T, et al. Cardiac stem cell niches. Stem Cell Res. 2014 Nov;13(3 Pt B):631–646. doi: 10.1016/j.scr.2014.09.001
  • Pokrovskaya LA, Zubareva EV, Nadezhdin SV, et al. Biological activity of mesenchymal stem cells secretome as a basis for cell-free therapeutic approach. Res Results Pharmacol. 2020;6(1):57–68. doi: 10.3897/rrpharmacology.6.49413
  • Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006 Apr;20(6):661–669. doi: 10.1096/fj.05-5211com
  • Nikoloff J M, Saucedo-Espinosa M A, Kling A and Dittrich P S. (2021). Identifying extracellular vesicle populations from single cells. Proc. Natl. Acad. Sci. U.S.A., 118(38). doi: 10.1073/pnas.2106630118
  • Teixeira FG, Salgado AJ. Mesenchymal stem cells secretome: current trends and future challenges. Neural Regen Res. 2020 Jan;15(1):75–77. doi: 10.4103/1673-5374.264455
  • Kishore R, Garikipati VNS, Gumpert A. Tiny shuttles for information transfer: exosomes in cardiac health and disease. J Cardiovasc Transl Res. 2016 Jun;9(3):169–175. doi: 10.1007/s12265-016-9682-4
  • Taheri B, Soleimani M, Fekri Aval S, et al. Induced pluripotent stem cell-derived extracellular vesicles: A novel approach for cell-free regenerative medicine. J Cell Physiol. 2019 Jun;234(6):8455–8464. doi: 10.1002/jcp.27775
  • HR M, Bayraktar E, KH G, et al. Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci. 2017 Mar 2;18(3):538.
  • Gentek R, Hoeffel G. The innate immune response in myocardial infarction, repair, and regeneration. Adv Exp Med Biol. 2017;1003:251–272.
  • van den Akker F, de Jager SCA, Sluijter JPG, et al. Mesenchymal stem cell therapy for cardiac inflammation: immunomodulatory properties and the influence of toll-like receptors. Mediators Inflamm. 2013 Dec 10;2013:1–13. doi: 10.1155/2013/181020.
  • Ruparelia N, Chai JT, Fisher EA, et al. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol. 2017 Mar;14(3):133–144. doi: 10.1038/nrcardio.2016.185
  • Williams A R, Hare J M, and . (2011). Mesenchymal Stem Cells. Circ Res, 109(8), 923–940. doi: 10.1161/CIRCRESAHA.111.243147
  • Hare J M et al . (2012). Comparison of Allogeneic vs Autologous Bone Marrow–Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients With Ischemic Cardiomyopathy. JAMA, 308(22), 2369. doi: 10.1001/jama.2012.25321
  • Hare J M et al . (2017). Randomized Comparison of Allogeneic Versus Autologous Mesenchymal Stem Cells for Nonischemic Dilated Cardiomyopathy. Journal of the American College of Cardiology, 69(5), 526–537. doi: 10.1016/j.jacc.2016.11.009
  • Golpanian S, Wolf A, Hatzistergos KE, et al. Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol Rev. 2016 Jul;96(3):1127–1168. doi: 10.1152/physrev.00019.2015
  • Sun YQ, Zhang Y, Li X, et al. Insensitivity of human iPS cells-derived mesenchymal stem cells to interferon-γ-induced hla expression potentiates repair efficiency of hind limb ischemia in immune humanized NOD scid gamma mice. Stem Cells. 2015 Dec;33(12):3452–3467. doi: 10.1002/stem.2094
  • Haworth R, Sharpe M. Accept or reject: the role of immune tolerance in the development of stem cell therapies and possible future approaches. Toxicol Pathol. 2021;49(7):1308–1316. doi: 10.1177/0192623320918241.
  • Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci. 2017 Jul;74(13):2345–2360. doi: 10.1007/s00018-017-2473-5
  • Dittrich A, Lauridsen H. Myocardial infarction and the immune response - Scarring or regeneration? A comparative look at mammals and popular regenerating animal models. J Immunol Reg Med. 2019 Jun 01;4:100016. doi: 10.1016/j.regen.2019.100016.
  • Guo J, Lin GS, Bao CY, et al. Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction. Inflammation. 2007 Aug;30(3–4):97–104. doi: 10.1007/s10753-007-9025-3
  • Wang Y, Chen X, Cao W, et al. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014 Nov;15(11):1009–1016. doi: 10.1038/ni.3002
  • Ren G, Zhang L, Zhao X, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008 Feb 7;2(2):141–150.
  • Yan X, Anzai A, Katsumata Y, et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol. 2013 Sep;62:24–35.
  • Duncan SE, Gao S, Sarhene M, et al. Macrophage activities in myocardial infarction and heart failure. Cardiol Res Pract. 2020;2020:4375127. doi: 10.1155/2020/4375127
  • Lantz C, Becker A and Thorp E B. (2021). Can polarization of macrophage metabolism enhance cardiac regeneration?. Journal of Molecular and Cellular Cardiology, 160 87–96. doi: 10.1016/j.yjmcc.2021.07.003
  • Chiossone L, Conte R, Spaggiari GM, et al. Mesenchymal stromal cells induce peculiar alternatively activated macrophages capable of dampening both innate and adaptive immune responses. Stem Cells. 2016 Jul;34(7):1909–1921. doi: 10.1002/stem.2369
  • Davies LC, Heldring N, Kadri N, et al. Mesenchymal stromal cell secretion of programmed death-1 ligands regulates T cell mediated immunosuppression. Stem Cells. 2017 Mar;35(3):766–776. doi: 10.1002/stem.2509
  • Ala M, Eftekhar SP. The footprint of kynurenine pathway in cardiovascular diseases. Int J Tryptophan Res. 2022;15:11786469221096643. doi: 10.1177/11786469221096643
  • Laing AG, Fanelli G, Ramirez-Valdez A, et al. Mesenchymal stem cells inhibit T-cell function through conserved induction of cellular stress. Plos One. 2019;14(3):e0213170. doi: 10.1371/journal.pone.0213170
  • Ringdén O, Uzunel M, Rasmusson I, et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation. 2006 May 27;81(10):1390–1397.
  • Weiß E, Ramos GC, Delgobo M. Myocardial-treg crosstalk: how to tame a wolf. Front Immunol. 2022;13:914033. doi: 10.3389/fimmu.2022.914033
  • Sun K, Li Y and Jin J. (2021). A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Sig Transduct Target Ther, 6(1). doi: 10.1038/s41392-020-00455-6
  • Spaggiari GM, Capobianco A, Abdelrazik H, et al. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood. 2008 Feb 1;111(3):1327–1333.
  • Sun SJ, Lai WH, Jiang Y, et al. Immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction. Theranostics. 2021;11(4):1641–1654. doi: 10.7150/thno.46119
  • Dai Z, Aoki T, Fukumoto Y, et al. Coronary perivascular fibrosis is associated with impairment of coronary blood flow in patients with non-ischemic heart failure. J Cardiol. 2012 Nov;60(5):416–421. doi: 10.1016/j.jjcc.2012.06.009
  • Mills JS, Rao SV. REPAIR-AMI: stem cells for acute myocardial infarction. Future Cardiol. 2007 Mar;3(2):137–140. doi: 10.2217/14796678.3.2.137
  • Cochain C, Channon KM, Silvestre JS. Angiogenesis in the infarcted myocardium. Antioxid Redox Signal. 2013 Mar 20;18(9):1100–1113.
  • Tang J, Wang J, Yang J, et al. Mesenchymal stem cells over-expressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats. Eur J Cardiothorac Surg. 2009 Oct;36(4):644–650. doi: 10.1016/j.ejcts.2009.04.052
  • Hutchings G, Janowicz K, Moncrieff L, et al. The proliferation and differentiation of adipose-derived stem cells in neovascularization and angiogenesis. Int J Mol Sci. 2020 May 27;21(11):3790.
  • Wang L, Deng J, Tian W, et al. Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. Am J Physiol Heart Circ Physiol. 2009;297(3):H1020–H1031. doi: 10.1152/ajpheart.01082.2008
  • Valina C, Pinkernell K, Song YH, et al. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J. 2007 Nov;28(21):2667–2677. doi: 10.1093/eurheartj/ehm426
  • Houtgraaf JH, WKd D, BMv D, et al. First experience in humans using adipose tissue–derived regenerative cells in the treatment of patients with ST-Segment elevation myocardial infarction. J Am Coll Cardiol. 2012;59(5):539–540. doi: 10.1016/j.jacc.2011.09.065
  • Gupta S, Sharma A, S A, et al. Mesenchymal stem cells for cardiac regeneration: from differentiation to cell delivery. Stem Cell Rev Rep. 2021 Oct;17(5):1666–1694. doi: 10.1007/s12015-021-10168-0
  • Oskowitz A, McFerrin H, Gutschow M, et al. Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic. Stem Cell Res. 2011 May;6(3):215–225. doi: 10.1016/j.scr.2011.01.004
  • Premer C, Wanschel A, Porras V, et al. Mesenchymal stem cell secretion of SDF-1α modulates endothelial function in dilated cardiomyopathy. Front Physiol. 2019;10:1182. doi: 10.3389/fphys.2019.01182
  • Kwon HM, Hur S-M, Park K-Y, et al. Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis. Vascul Pharmacol. 2014 Oct 01;63(1):19–28.
  • Gerber HP, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem. 1998 Nov 13;273(46):30336–30343.
  • Meadows KN, Bryant P, Pumiglia K. Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem. 2001 Dec 28;276(52):49289–49298.
  • Liang X, Ding Y, Zhang Y, et al. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014;23(9):1045–1059. doi: 10.3727/096368913X667709
  • Rufaihah AJ, Huang NF, Jamé S, et al. Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):e72–9. doi: 10.1161/ATVBAHA.111.230938
  • Assis-Ribas T, Forni MF, Winnischofer SMB, et al. Extracellular matrix dynamics during mesenchymal stem cells differentiation. Dev Biol. 2018 May 15;437(2):63–74.
  • Kachgal S, Putnam AJ. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis. 2011 Mar;14(1):47–59. doi: 10.1007/s10456-010-9194-9
  • Mauritz C, Martens A, Rojas SV, et al. Induced pluripotent stem cell (Ipsc)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. Eur Heart J. 2011;32(21):2634–2641. doi: 10.1093/eurheartj/ehr166
  • Zhang H, Yamaguchi T, Kokubu Y, et al. Transient ETV2 expression promotes the generation of mature endothelial cells from human pluripotent stem cells. Biol Pharm Bull. 2022;45(4):483–490. doi: 10.1248/bpb.b21-00929
  • Kurian GA, Rajagopal R, Vedantham S, et al. The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited. Oxid Med Cell Longev. 2016;2016:1656450. doi: 10.1155/2016/1656450
  • Lodrini AM, Goumans M-J. Cardiomyocytes cellular phenotypes after myocardial infarction [review]. Front Cardiovasc Med. 2021 Nov 08;2021:8. doi: 10.3389/fcvm.2021.750510.
  • Walkowski B, Kleibert M, Majka M, et al. Insight into the role of the PI3K/Akt pathway in ischemic injury and post-infarct left ventricular remodeling in normal and diabetic heart. Cells. 2022 May 5;11(9):1553.
  • Yan B, Singla DK. Transplanted induced pluripotent stem cells mitigate oxidative stress and improve cardiac function through the Akt cell survival pathway in diabetic cardiomyopathy. Mol Pharm. 2013 Sep 3;10(9):3425–3432.
  • Chen B, Chen X, Liu C, et al. Co-expression of Akt1 and Wnt11 promotes the proliferation and cardiac differentiation of mesenchymal stem cells and attenuates hypoxia/reoxygenation-induced cardiomyocyte apoptosis. Biomed Pharmacother. 2018 Dec;108:508–514.
  • Karetnikova V N, Kashtalap V V, Kosareva S N and Barbarash O L. (2017). Myocardial fibrosis: Current aspects of the problem. Terapevticheskii arkhiv, 89(1), 88–93. doi: 10.17116/terarkh201789188-93
  • Arai AE. Healing after myocardial infarction: a loosely defined process. JACC Cardiovasc Imaging. 2015 Jun;8(6):680–683. doi: 10.1016/j.jcmg.2015.02.012
  • Karantalis V, DiFede DL, Gerstenblith G, et al. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circ Res. 2014 Apr 11;114(8):1302–1310.
  • Hassink RJ, Pasumarthi KB, Nakajima H, et al. Cardiomyocyte cell cycle activation improves cardiac function after myocardial infarction. Cardiovasc Res. 2008 Apr 1;78(1):18–25.
  • Schang LM. The cell cycle, cyclin-dependent kinases, and viral infections: new horizons and unexpected connections. Prog Cell Cycle Res. 2003;5:103–124.
  • Zhu W, Zhao M, Mattapally S, et al. CCND2 overexpression enhances the regenerative potency of human induced pluripotent stem cell-derived cardiomyocytes: remuscularization of injured ventricle. Circ Res. 2018 Jan 5;122(1):88–96. doi: 10.1161/CIRCRESAHA.117.311504.
  • Zhao M, Nakada Y, Wei Y, et al. Cyclin D2 Overexpression enhances the efficacy of human induced pluripotent stem cell-derived cardiomyocytes for myocardial repair in a swine model of myocardial infarction. Circulation. 2021 Jul 20;144(3):210–228.
  • Kanelidis AJ, Premer C, Lopez J, et al. Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: a meta-analysis of preclinical studies and clinical trials. Circ Res. 2017 Mar 31;120(7):1139–1150.
  • Fakoya AO. New delivery systems of stem cells for vascular regeneration in ischemia. Front Cardiovasc Med. 2017;4:7. doi: 10.3389/fcvm.2017.00007
  • Bagno LL, Salerno AG, Balkan W, et al. Mechanism of Action of Mesenchymal Stem Cells (MSCs): impact of delivery method. Expert Opin Biol Ther. 2022 Apr;22(4):449–463. doi: 10.1080/14712598.2022.2016695
  • Masterson CH, Tabuchi A, Hogan G, et al. Intra-vital imaging of mesenchymal stromal cell kinetics in the pulmonary vasculature during infection. Sci Rep. 2021 Mar 04;11(1):5265.
  • Fischer UM, Harting MT, Jimenez F. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009;18(5):683–692. doi: 10.1089/scd.2008.0253
  • Schrepfer S, Deuse T, Reichenspurner H, et al. Stem cell transplantation: the lung barrier. Transplant Proc. 2007 Mar;39(2):573–576. doi: 10.1016/j.transproceed.2006.12.019
  • De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells. 2016 Mar 26;8(3):73–87.
  • Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009 Mar 6;4(3):206–216.
  • Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009 Jul 2;5(1):54–63.
  • Zhang J, Bolli R, Garry DJ, et al. Basic and translational research in cardiac repair and regeneration: JACC state-of-the-art review. J Am Coll Cardiol. 2021 Nov 23;78(21):2092–2105.
  • Levine GN, Bates ER, Blankenship JC, et al. ACCF/AHA/SCAI guideline for percutaneous coronary intervention: a report of the American college of cardiology foundation/American heart association task force on practice guidelines and the society for cardiovascular angiography and interventions. Circulation. 2011 Dec 6;124(23):e574–651.
  • de Jong R, Houtgraaf JH, Samiei S, et al. Intracoronary stem cell infusion after acute myocardial infarction: a meta-analysis and update on clinical trials. Circ Cardiovasc Interv. 2014 Apr;7(2):156–167. doi: 10.1161/CIRCINTERVENTIONS.113.001009
  • Watanabe M, Yavagal DR. Intra-arterial delivery of mesenchymal stem cells. Brain Circ. 2016 Jul;2(3):114–117. doi: 10.4103/2394-8108.192522
  • Keith MCL, Tokita Y, Tang X-L, et al. Effect of the stop-flow technique on cardiac retention of c-kit positive human cardiac stem cells after intracoronary infusion in a porcine model of chronic ischemic cardiomyopathy. Basic Res Cardiol. 2015 Jul 07;110(5):46.
  • Premaratne GU, Tambara K, Fujita M, et al. Repeated implantation is a more effective cell delivery method in skeletal myoblast transplantation for rat myocardial infarction. Circ J. 2006 Sep;70(9):1184–1189. doi: 10.1253/circj.70.1184
  • Yigman Z, Ozdemir ED, Turan NN, et al. Umbilical cord mesenchymal stromal cells engraft and transdifferentiate into cardiomyocyte-like cells following acute myocardial ischemia⋆. Acta Histochem. 2020 Sep;122(6):151578. doi: 10.1016/j.acthis.2020.151578
  • Bagno L, Hatzistergos KE, Balkan W, et al. Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. Mol Ther. 2018 Jul 5;26(7):1610–1623.
  • Wysoczynski M, Khan A, Bolli R. New paradigms in cell therapy: repeated dosing, intravenous delivery, immunomodulatory actions, and new cell types. Circ Res. 2018 Jul 6;123(2):138–158.
  • Ravichandran R, Sridhar R, Venugopal JR, et al. Gold nanoparticle loaded hybrid nanofibers for cardiogenic differentiation of stem cells for infarcted myocardium regeneration. Macromol biosci. 2014;14(4):515–525. doi: 10.1002/mabi.201300407
  • Pala R, Anju VT, Dyavaiah M, et al. Nanoparticle-mediated drug delivery for the treatment of cardiovascular diseases. Int J Nanomedicine. 2020;15:3741–3769. doi: 10.2147/IJN.S250872
  • Yang H, Qin X, Wang H, et al. An in vivo miRNA delivery system for restoring infarcted myocardium. ACS Nano. 2019 Sep 24;13(9):9880–9894. doi: 10.1021/acsnano.9b03343.
  • Traverse JH, Henry TD, Pepine CJ, et al. TIME trial: effect of timing of stem cell delivery following ST-elevation myocardial infarction on the recovery of global and regional left ventricular function: final 2-year analysis. Circ Res. 2018 Feb 2;122(3):479–488.
  • Dai B, Huang W, Xu M, et al. Reduced collagen deposition in infarcted myocardium facilitates induced pluripotent stem cell engraftment and angiomyogenesis for improvement of left ventricular function. J Am Coll Cardiol. 2011 Nov 08;58(20):2118–2127.
  • Jiang Y, Sun S-J, Zhen Z, et al. Myocardial repair of bioengineered cardiac patches with decellularized placental scaffold and human-induced pluripotent stem cells in a rat model of myocardial infarction. Stem Cell Res Ther. 2021 Jan 07;12(1):13.
  • Pharmicell Co. L. A randomized, open labeled, multicenter trial for safety and efficacy of intracoronary adult human mesenchymal stem cells acute myocardial infarction 2013. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT01652209
  • Inc HM. MiSaver® stem cell treatment for heart attack (acute myocardial infarction) 2019. Available from: https://classic.clinicaltrials.gov/ct2/show/record/NCT04050163
  • Technology SLS. UC-MSC transplantation for left ventricular dysfunction after AMI 2023. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03902067
  • Sciences SUo M. MSCs for prevention of MI-induced HF (PREVENT-TAHA) 2021. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05043610
  • CellProthera. EXCELLENT (EXpanded CELL ENdocardiac Transplantation) 2024. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02669810
  • Taljaard M, Ward MR, Kutryk MJB, et al. Rationale and design of enhanced angiogenic cell therapy in acute myocardial infarction (ENACT-AMI): The first randomized placebo-controlled trial of enhanced progenitor cell therapy for acute myocardial infarction. Am Heart J. 2010 Mar 01;159(3):354–360.
  • Fernández-Avilés F, Sanz-Ruiz R, Bogaert J, et al. Safety and efficacy of intracoronary infusion of allogeneic human cardiac stem cells in patients with ST-Segment elevation myocardial infarction and left ventricular dysfunction. Circ Res. 2018 Aug 17;123(5):579–589.
  • Collins FS, Mansoura MK. The human genome project. Revealing the shared inheritance of all humankind. Cancer. 2001 Jan 1;91(1 Suppl):221–225.
  • Litman T. Personalized medicine—concepts, technologies, and applications in inflammatory skin diseases. APMIS. 2019;127(5):386–424. doi: 10.1111/apm.12934
  • Lu YF, Goldstein DB, Angrist M, et al. Personalized medicine and human genetic diversity. Cold Spring Harb Perspect Med. 2014 Jul 24;4(9):a008581.
  • Katsnelson A. Momentum grows to make ‘personalized’ medicine more ‘precise’. Nat Med. 2013 Mar;19(3):249. doi: 10.1038/nm0313-249
  • Rieger AC, Myerburg RJ, Florea V, et al. Genetic determinants of responsiveness to mesenchymal stem cell injections in non-ischemic dilated cardiomyopathy. EBioMedicine. 2019 Oct;48:377–385.
  • Delewi R, Hirsch A, Tijssen JG, et al. Impact of intracoronary bone marrow cell therapy on left ventricular function in the setting of ST-segment elevation myocardial infarction: a collaborative meta-analysis. Eur Heart J. 2014 Apr;35(15):989–998. doi: 10.1093/eurheartj/eht372
  • Loffredo FS, Steinhauser ML, Gannon J, et al. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell. 2011 Apr 8;8(4):389–398.
  • Ye M, Ni Q, Qi H, et al. Exosomes derived from human induced pluripotent stem cells-endothelia cells promotes postnatal angiogenesis in mice bearing ischemic limbs. Int J Biol Sci. 2019;15(1):158–168. doi: 10.7150/ijbs.28392
  • Moghaddam AS, Afshari JT, Esmaeili SA, et al. Cardioprotective microRnas: Lessons from stem cell-derived exosomal microRnas to treat cardiovascular disease. Atherosclerosis. 2019 Jun;285:1–9.
  • Carotenuto F, Teodori L, Maccari AM, et al. Turning regenerative technologies into treatment to repair myocardial injuries. J Cell Mol Med. 2020;24(5):2704–2716. doi: 10.1111/jcmm.14630
  • Lai CP, Kim EY, Badr CE, et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun. 2015 May 13;6(1):7029.
  • Bradley JA, Bolton EM, Pedersen RA. Stem cell medicine encounters the immune system. Nat Rev Immunol. 2002 Nov;2(11):859–871. doi: 10.1038/nri934
  • Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010 May;4(3):214–222. doi: 10.1016/j.scr.2009.12.003
  • Xu MY, Ye ZS, Song XT, et al. Differences in the cargos and functions of exosomes derived from six cardiac cell types: a systematic review. Stem Cell Res Ther. 2019 Jun 27;10(1):194.
  • Khan M, Nickoloff E, Abramova T, et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res. 2015 Jun 19;117(1):52–64.
  • Adamiak M, Cheng G, Bobis-Wozowicz S, et al. Induced pluripotent stem cell (Ipsc)-derived extracellular vesicles are safer and more effective for cardiac repair than iPscs. Circ Res. 2018 Jan 19;122(2):296–309.
  • Maleki B, Alani B, Tamehri Zadeh SS, et al. MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathol Res Pract. 2022 Jan 01;229:153701.
  • Çakmak HA, Demir M. MicroRNA and cardiovascular diseases. Balkan Med J. 2020 Feb 28;37(2):60–71.
  • Shao L, Zhang Y, Lan B, et al. MiRNA-Sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Biomed Res Int. 2017;2017:4150705. doi: 10.1155/2017/4150705
  • Torrini C, Cubero RJ, Dirkx E, et al. Common regulatory pathways mediate activity of MicroRNAs inducing cardiomyocyte proliferation. Cell Rep. 2019 May 28;27(9):2759–2771.e5. doi: 10.1016/j.celrep.2019.05.005.
  • Tian Y, Liu Y, Wang T, et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med. 2015 Mar 18;7(279):279ra38.
  • Sun X, Dai G, Yu L, et al. MiR-143-3p inhibits the proliferation, migration and invasion in osteosarcoma by targeting FOSL2. Sci Rep. 2018 Jan 12;8(1):606.
  • Wen SY, Lin Y, Yu YQ, et al. MiR-506 acts as a tumor suppressor by directly targeting the hedgehog pathway transcription factor Gli3 in human cervical cancer. Oncogene. 2015 Feb 5;34(6):717–725.
  • Mayourian J, Ceholski DK, Gorski PA, et al. Exosomal microRNA-21-5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility. Circ Res. 2018 Mar 30;122(7):933–944.
  • Yu B, Kim HW, Gong M, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRnas for cardioprotection. Int J Cardiol. 2015 Mar 1;182:349–360.
  • Liu L, Jin X, Hu CF, et al. Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and akt pathways. Cell Physiol Biochem. 2017;43(1):52–68. doi: 10.1159/000480317
  • Dougherty JA, Kumar N, Noor M, et al. Extracellular vesicles released by human induced-pluripotent stem cell-derived cardiomyocytes promote angiogenesis. Front Physiol. 2018;9:1794. doi: 10.3389/fphys.2018.01794

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.