662
Views
0
CrossRef citations to date
0
Altmetric
Review

The evolving therapeutic landscape of diabetic retinopathy

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 969-985 | Received 23 Mar 2023, Accepted 11 Aug 2023, Published online: 25 Sep 2023

References

  • International Diabetes Federation. IDF Diabetes Atlas, 10th ed [Internet]. Brussels, Belgium; 2021 [cited 2022 Oct 19]. Available from: https://diabetesatlas.org.
  • Yau JWY, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–564. doi: 10.2337/dc11-1909
  • Fong DS, Aiello L, Gardner TW, et al. Retinopathy in diabetes. Diabetes Care. 2004;27(Suppl 1):S84–87. doi: 10.2337/diacare.27.2007.S84
  • Köberlein J, Beifus K, Schaffert C, et al. The economic burden of visual impairment and blindness: a systematic review. BMJ Open. 2013;3(11):e003471. doi: 10.1136/bmjopen-2013-003471
  • Moshfeghi AA, Lanitis T, Kropat G, et al. Social cost of blindness due to AMD and diabetic retinopathy in the United States in 2020. Ophthalmic Surg Lasers Imaging Retina. 2020;51(S1):S6–S14. doi: 10.3928/23258160-20200401-01
  • Khoo K, Man REK, Rees G, et al. The relationship between diabetic retinopathy and psychosocial functioning: a systematic review. Qual Life Res. 2019;28(8):2017–2039. doi: 10.1007/s11136-019-02165-1
  • Sharma S, Oliver-Fernandez A, Liu W, et al. The impact of diabetic retinopathy on health-related quality of life. Curr Opin Ophthalmol. 2005;16(3):155. doi: 10.1097/01.icu.0000161227.21797.3d
  • Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res. 2012;31(5):377–406. doi: 10.1016/j.preteyeres.2012.04.004
  • Hammes H-P, Lin J, Renner O, et al. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes. 2002;51(10):3107–3112. doi: 10.2337/diabetes.51.10.3107
  • Shoshani Y, Harris A, Shoja MM, et al. Impaired ocular blood flow regulation in patients with open-angle glaucoma and diabetes. Clini& Experi Ophthalm. 2012;40(7):697–705. doi:10.1111/j.1442-9071.2012.02778.x
  • Ciulla TA, Harris A, Latkany P, et al. Ocular perfusion abnormalities in diabetes. Acta Ophth Scandi. 2002;80(5):468–477. doi:10.1034/j.1600-0420.2002.800503.x
  • Roy S, Kim D. Retinal capillary basement membrane thickening: role in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res. 2021;82:100903. doi: 10.1016/j.preteyeres.2020.100903
  • Ciulla TA, Amador AG, Zinman B. Diabetic Retinopathy and Diabetic Macular Edema. Diabetes Care. 2003;26(9):2653–2664. doi:10.2337/diacare.26.9.2653
  • Lim LS, Wong TY. Lipids and diabetic retinopathy. Expert Opin Biol Ther. 2012;12(1):93–105. doi: 10.1517/14712598.2012.641531
  • Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011;30(5):343–358. doi: 10.1016/j.preteyeres.2011.05.002
  • Caldwell RB, Bartoli M, Behzadian MA, et al. Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev. 2003;19:442–455. doi: 10.1002/dmrr.415
  • Whitehead M, Osborne A, Widdowson PS, et al. Angiopoietins in diabetic retinopathy: current understanding and therapeutic potential. J Diabetes Res. 2019;2019:e5140521. doi: 10.1155/2019/5140521
  • Michael J. Schematic depiction of the major interactions between endothelial-specific growth factors and their receptors. 2017 [cited 2023 Mar 23]; Available from: https://commons.wikimedia.org/wiki/File:Endothelial_receptors_and_growth_factors_02.svg.
  • Besenczi R, Tóth J, Hajdu A. A review on automatic analysis techniques for color fundus photographs. Computat Struct Biotechnol J. 2016;14:371–384. doi: 10.1016/j.csbj.2016.10.001
  • Girach A, Lund-Andersen H. Diabetic macular oedema: a clinical overview. Int J Clin Pract. 2007;61(1):88–97. doi: 10.1111/j.1742-1241.2006.01211.x
  • Bhatwadekar AD, Shughoury A, Belamkar A, et al. Genetics of Diabetic Retinopathy, a Leading Cause of Irreversible Blindness in the Industrialized World. Genes. 2021;12(8):1200. doi:10.3390/genes12081200
  • Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from Stereoscopic color fundus photographs—an extension of the modified Airlie house classification: ETDRS report number 10. Ophthalmol. 1991;98(5):786–806. doi: 10.1016/S0161-6420(13)38012-9
  • Early Treatment Diabetic Retinopathy Study research group. Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Early treatment diabetic retinopathy study research group. Arch Ophthalmol. 1985;103(12):1796–1806. doi: 10.1001/archopht.1985.01050120030015
  • Silva PS, Cavallerano JD, Haddad NMN, et al. Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmol. 2015;122(5):949–956. doi: 10.1016/j.ophtha.2015.01.008
  • Zhang J, Strauss EC. Sensitive detection of therapeutic efficacy with the ETDRS diabetic retinopathy severity Scale. Clin Ophthalmol. 2020;14:4385–4393.
  • Wilkinson CP, Ferris FL, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmol. 2003;110(9):1677–1682. doi: 10.1016/S0161-6420(03)00475-5
  • UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998; 352:837–853. doi: 10.1016/S0140-6736(98)07019-6
  • The Diabetes Control and Complications Trial Research Group. The Effect of intensive treatment of Diabetes on the development and progression of long-term complications in insulin-dependent Diabetes mellitus. N Engl J Med. 1993;329(14):977–986. doi: 10.1056/NEJM199309303291401
  • The Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 Diabetes. N Engl J Med. 2008;358(24):2545–2559. doi: 10.1056/NEJMoa0802743
  • Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–430. doi: 10.1016/S0140-6736(10)60576-4
  • Martin CL, Trapani VR, Backlund J-Y, et al. Physical function in middle-aged and older adults with type 1 diabetes: long-term follow-up of the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2022;45:2037–2045. doi: 10.2337/dc21-2119
  • Nathan DM. The Diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care. 2014;37(1):9–16. doi: 10.2337/dc13-2112
  • Ipp E, Kumar M. A clinical conundrum: intensifying glycemic control in the presence of advanced diabetic retinopathy. Diabetes Care. 2021;44(10):2192–2193. doi: 10.2337/dci21-0029
  • Azad N, Agrawal L, Bahn G, et al. Eye outcomes in Veteran Affairs Diabetes trial (VADT) after 17 Years. Diabetes Care. 2021;44(10):2397–2402. doi: 10.2337/dc20-2882
  • The ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 Diabetes. N Engl J Med. 2008;358(24):2560–2572. doi: 10.1056/NEJMoa0802987
  • Wong T, Mitchell P. The eye in hypertension. Lancet. 2007;369(9559):425–435. doi: 10.1016/S0140-6736(07)60198-6
  • Aroca PR, Salvat M, Fernández J, et al. Risk factors for diffuse and focal macular edema. J Diabetes Complications. 2004;18(4):211–215. doi: 10.1016/S1056-8727(03)00038-2
  • Vitale S, Maguire MG, Murphy RP, et al. Clinically significant macular edema in type I diabetes. Incidence and risk factors. Ophthalmol. 1995;102(8):1170–1176. doi: 10.1016/S0161-6420(95)30894-9
  • Do DV, Wang X, Vedula SS, et al. Blood pressure control for diabetic retinopathy. Cochrane Database Of Systematic Reviews. 2015 [cited 2022 Dec 24]; Available from: https://www-cochranelibrary-com.proxy.ulib.uits.iu.edu/cdsr/doi/10.1002/14651858.CD006127.pub2/full.
  • Assmann G, Schulte H. The Prospective Cardiovascular Münster (PROCAM) study: prevalence of hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to coronary heart disease. Am Heart J. 1988;116(6):1713–1724. doi: 10.1016/0002-8703(88)90220-7
  • Chou Y, Ma J, Su X, et al. Emerging insights into the relationship between hyperlipidemia and the risk of diabetic retinopathy. Lipids Health Dis. 2020;19(1):1–12. doi: 10.1186/s12944-020-01415-3
  • ACCORD Study Group and ACCORD Eye Study Group. Effects of medical therapies on retinopathy progression in type 2 Diabetes. N Engl J Med. 2010;363(3):233–244. doi: 10.1056/NEJMoa1001288
  • Shi R, Zhao L, Wang F, et al. Effects of lipid-lowering agents on diabetic retinopathy: a meta-analysis and systematic review. Int J Ophthalmol. 2018;11(2):287–295. doi: 10.18240/ijo.2018.02.18
  • Keech A, Mitchell P, Summanen P, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370(9600):1687–1697. doi: 10.1016/S0140-6736(07)61607-9
  • Meer E, Bavinger JC, Yu Y, et al. Association of fenofibrate use and the risk of progression to vision-threatening diabetic retinopathy. JAMA Ophthalmol. 2022;140(5):529–532. doi: 10.1001/jamaophthalmol.2022.0633
  • Frank RN. Use of fenofibrate in the management of diabetic retinopathy—large population analyses. JAMA Ophthalmol. 2022;140(5):533. doi: 10.1001/jamaophthalmol.2022.0634
  • Sramek C, Paulus Y, Nomoto H, et al. Dynamics of retinal photocoagulation and rupture. J Biomed Opt. 2009;14(3):034007. doi: 10.1117/1.3130282
  • Stefánsson E. The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmologica Scandinavica. 2001;79(5):435–440. doi: 10.1034/j.1600-0420.2001.790502.x
  • Everett LA, Paulus YM. Laser therapy in the treatment of diabetic retinopathy and diabetic macular edema. Curr Diab Rep. 2021;21(9):35. doi: 10.1007/s11892-021-01403-6
  • The Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy: clinical application of Diabetic Retinopathy Study (DRS) findings, DRS report number 8. Ophthalmol. 1981;88(7):583–600. doi: 10.1016/S0161-6420(81)34978-1
  • The Early Treatment Diabetic Retinopathy Study Research Group. Techniques for scatter and local photocoagulation treatment of diabetic retinopathy: early treatment diabetic retinopathy study report no. 3. Int Ophthalmol Clin. 1987;27(4):254. doi: 10.1097/00004397-198702740-00005
  • Chew EY, Ferris FL, Csaky KG, et al. The long-term effects of laser photocoagulation treatment in patients with diabetic retinopathy: the early treatment diabetic retinopathy follow-up study. Ophthalmol. 2003;110(9):1683–1689. doi: 10.1016/S0161-6420(03)00579-7
  • Reddy SV, Husain D. Panretinal photocoagulation: a review of complications. Semin Ophthalmol. 2018;33:83–88. doi: 10.1080/08820538.2017.1353820
  • The Early Treatment Diabetic Retinopathy Study Research Group. Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Ophthalmol. 1987;94(7):761–774. doi: 10.1016/S0161-6420(87)33527-4
  • Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema: early treatment diabetic retinopathy study report no. 4. Int Ophthalmol Clin. 1987;27(4):265–272. doi: 10.1097/00004397-198702740-00006
  • Herold TR, Langer J, Vounotrypidis E, et al. 3-year-data of combined navigated laser photocoagulation (Navilas) and intravitreal ranibizumab compared to ranibizumab monotherapy in DME patients. PLoS One. 2018;13(8):e0202483. doi: 10.1371/journal.pone.0202483
  • Mitchell P, Bandello F, Schmidt-Erfurth U, et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmol. 2011;118(4):615–625. doi: 10.1016/j.ophtha.2011.01.031
  • Payne JF, Wykoff CC, Clark WL, et al. Long-term outcomes of treat-and-extend ranibizumab with and without navigated laser for diabetic macular oedema: TREX-DME 3-year results. Br J Ophthalmol. 2021;105(2):253–257. doi: 10.1136/bjophthalmol-2020-316176
  • Prünte C, Fajnkuchen F, Mahmood S, et al. Ranibizumab 0.5 mg treat-and-extend regimen for diabetic macular oedema: the RETAIN study. Br J Ophthalmol. 2016;100(6):787–795. doi: 10.1136/bjophthalmol-2015-307249
  • Zur D, Loewenstein A. Should we still be performing macular laser for non-centre involving diabetic macular oedema? yes. Eye. 2022;36(3):483–484. doi: 10.1038/s41433-021-01793-7
  • Mueller I, Talks JS. Should we still be performing macular laser for non-centre involving diabetic macular oedema? no. Eye. 2022;36(3):485–486. doi: 10.1038/s41433-021-01787-5
  • Scholz P, Altay L, Fauser S. A review of subthreshold micropulse laser for treatment of macular disorders. Adv Ther. 2017;34(7):1528–1555. doi: 10.1007/s12325-017-0559-y
  • Silva PS, Sun JK, Aiello LP. Role of steroids in the management of diabetic macular edema and proliferative diabetic retinopathy. Semin Ophthalmol. 2009;24(2):93–99. doi: 10.1080/08820530902800355
  • Lattanzio R, Cicinelli MV, Bandello F. Intravitreal Steroids in Diabetic Macular Edema. In: Bandello F, Zarbin M Lattanzio R, et al.,editors Developments in ophthalmology [Internet]. S. Karger AG. 2017; p. 78–90. cited 2023 Jan 7. doi: 10.1159/000459691
  • Gillies MC, McAllister IL, Zhu M, et al. Intravitreal triamcinolone prior to laser treatment of diabetic macular edema: 24-month results of a randomized controlled trial. Ophthalmol. 2011;118(5):866–872. doi: 10.1016/j.ophtha.2010.09.029
  • Gillies MC, Sutter FKP, Simpson JM, et al. Intravitreal triamcinolone for refractory diabetic macular edema - two-year results of a double-masked, placebo-controlled, randomized clinical trial. Ophthalmol. 2006;113:1533–1538. doi: 10.1016/j.ophtha.2006.02.065
  • Grover DA, Li T, Chong CC Intravitreal steroids for macular edema in diabetes. Cochrane Database Of Systematic Reviews. 2008 [cited 2023 Jan 7]; Available from: https://www-cochranelibrary-com.proxy.ulib.uits.iu.edu/cdsr/doi/10.1002/14651858.CD005656.pub2/full.
  • Jeon S, Lee WK. Effect of intravitreal triamcinolone in diabetic macular edema unresponsive to intravitreal bevacizumab. Retina. 2014;34(8):1606. doi: 10.1097/IAE.0000000000000109
  • Larsson J, Kifley A, Zhu M, et al. Rapid reduction of hard exudates in eyes with diabetic retinopathy after intravitreal triamcinolone: data from a randomized, placebo-controlled, clinical trial. Acta Ophthalmol. 2009;87(3):275–280. doi: 10.1111/j.1755-3768.2008.01245.x
  • Maia OO, Takahashi BS, Costa RA, et al. Combined laser and intravitreal triamcinolone for proliferative diabetic retinopathy and macular edema: one-year results of a randomized clinical trial. Am J Ophthalmol. 2009;147(2):291–297.e2. doi: 10.1016/j.ajo.2008.08.024
  • Yilmaz T, Weaver CD, Gallagher MJ, et al. Intravitreal triamcinolone acetonide injection for treatment of refractory diabetic macular edema: a systematic review. Ophthalmol. 2009;116(5):902–913. doi: 10.1016/j.ophtha.2009.02.002
  • Lam DSC, Chan CKM, Mohamed S, et al. Intravitreal triamcinolone plus sequential grid laser versus triamcinolone or laser alone for treating diabetic macular edema: six-month outcomes. Ophthalmol. 2007;114(12):2162–2167.e1. doi: 10.1016/j.ophtha.2007.02.006
  • Kang SW, Sa H-S, Cho HY, et al. Macular grid photocoagulation after intravitreal triamcinolone acetonide for diffuse diabetic macular edema. Arch Ophtalmol. 2006;124:653–658. doi: 10.1001/archopht.124.5.653
  • Elman MJ, Aiello LP, Beck RW, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmol. 2010;117(6):1064–1077.e35. doi: 10.1016/j.ophtha.2010.02.031
  • Zein WM, Noureddin BN, Jurdi FA, et al. Panretinal photocoagulation and intravitreal triamcinolone acetonide for the management of proliferative diabetic retinopathy with macular edema. Retina. 2006;26(2):137–142. doi: 10.1097/00006982-200602000-00002
  • Liu L, Wu X, Geng J, et al. IVTA as adjunctive treatment to PRP and MPC for PDR and macular edema: a meta-analysis. PLoS One. 2012;7(9):e44683. doi: 10.1371/journal.pone.0044683
  • Avci R, Kaderli B. Intravitreal triamcinolone injection for chronic diabetic macular oedema with severe hard exudates. Graefes Arch Clin Exp Ophthalmol. 2006;244(1):28–35. doi: 10.1007/s00417-005-0069-5
  • Choi KS, Chung J, Lim SH. Laser photocoagulation combined with intravitreal triamcinolone acetonide injection in proliferative diabetic retinopathy with macular edema. Korean J Ophthalmol. 2007;21(1):11–17. doi: 10.3341/kjo.2007.21.1.11
  • Diabetic Retinopathy Clinical Research Network. A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmol. 2008;115(9):1447–1459.e10. doi: 10.1016/j.ophtha.2008.06.015
  • Diabetic Retinopathy Clinical Research Network, Beck RW, Edwards AR. Three-year follow-up of a randomized trial comparing focal/grid photocoagulation and intravitreal triamcinolone for diabetic macular edema. Arch Ophthalmol. 2009;127:245–251.
  • Jonas JB, Degenring RF, Kreissig I, et al. Intraocular pressure elevation after intravitreal triamcinolone acetonide injection. Ophthalmol. 2005;112(4):593–598. doi: 10.1016/j.ophtha.2004.10.042
  • Mishra C, Lalitha P, Rameshkumar G, et al. Incidence of endophthalmitis after intravitreal injections: risk factors, microbiology profile, and clinical outcomes. Ocul Immunol Inflamm. 2018;26:559–568. doi: 10.1080/09273948.2018.1430238
  • VanderBeek BL, Bonaffini SG, Ma L. The association between intravitreal steroids and post-injection endophthalmitis rates. Ophthalmol. 2015;122(11):2311–2315.e1. doi: 10.1016/j.ophtha.2015.07.005
  • Boyer DS, Yoon YH, Belfort R, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmol. 2014;121(10):1904–1914. doi: 10.1016/j.ophtha.2014.04.024
  • Haller JA, Kuppermann BD, Blumenkranz MS, et al. Randomized controlled trial of an intravitreous dexamethasone drug delivery system in patients with diabetic macular edema. Arch Ophtalmol. 2010;128:289–296. doi: 10.1001/archophthalmol.2010.21
  • Callanan DG, Gupta S, Boyer DS, et al. Dexamethasone intravitreal implant in combination with laser photocoagulation for the treatment of diffuse diabetic macular edema. Ophthalmol. 2013;120(9):1843–1851. doi: 10.1016/j.ophtha.2013.02.018
  • Boyer DS, Faber D, Gupta S, et al. Dexamethasone intravitreal implant for treatment of diabetic macular edema in vitrectomized patients. Retina. 2011;31(5):915. doi: 10.1097/IAE.0b013e318206d18c
  • Gillies MC, Lim LL, Campain A, et al. A randomized clinical trial of intravitreal bevacizumab versus intravitreal dexamethasone for diabetic macular edema: the BEVORDEX study. Ophthalmol. 2014;121(12):2473–2481. doi: 10.1016/j.ophtha.2014.07.002
  • Iglicki M, Zur D, Busch C, et al. Progression of diabetic retinopathy severity after treatment with dexamethasone implant: a 24-month cohort study the ‘DR-Pro-DEX study. Acta Diabetol. 2018;55:541–547. doi: 10.1007/s00592-018-1117-z
  • Chang-Lin J-E, Attar M, Acheampong AA, et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Invest Ophthalmol Vis Sci. 2011;52(1):80–86. doi: 10.1167/iovs.10-5285
  • Montes Rodríguez P, Mateo Gabás J, Esteban Floría O, et al. Cost-effectiveness of dexamethasone compared with aflibercept in naïve diabetic macular edema. Cost Eff Resour Allocation. 2022;20(1):61. doi: 10.1186/s12962-022-00401-z
  • Campochiaro P A et al . (2010). Sustained Ocular Delivery of Fluocinolone Acetonide by an Intravitreal Insert. Ophthalmology, 117(7), 1393–1399.e3. 10.1016/j.ophtha.2009.11.024
  • Campochiaro PA. Long-term Benefit of Sustained-Delivery Fluocinolone Acetonide Vitreous Inserts for Diabetic Macular Edema. Ophthalmology. 2011;118(4):626–635.e2. doi: 10.1016/j.ophtha.2010.12.028
  • Campochiaro PA, Brown DM, Pearson A, et al. Sustained delivery fluocinolone acetonide vitreous Inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmol. 2012;119(10):2125–2132. doi: 10.1016/j.ophtha.2012.04.030
  • Cunha-Vaz J, Ashton P, Iezzi R, et al. Sustained delivery fluocinolone acetonide vitreous implants: long-term benefit in patients with chronic diabetic macular edema. Ophthalmol. 2014;121(10):1892–1903.e3. doi: 10.1016/j.ophtha.2014.04.019
  • Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248–1264. doi: 10.1016/j.cell.2019.01.021
  • Witmer AN, Vrensen GFJM, Van Noorden CJF, et al. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003;22:1–29.
  • Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–186. doi: 10.1016/j.preteyeres.2015.08.001
  • Das A, McGuire PG, Rangasamy S. Diabetic macular edema: pathophysiology and novel therapeutic targets. Ophthalmol. 2015;122(7):1375–1394. doi: 10.1016/j.ophtha.2015.03.024
  • Li AS, Veerappan M, Mittal V, et al. Anti-VEGF agents in the management of diabetic macular edema. Expert Rev Ophthalmol. 2020;15(5):285–296. doi: 10.1080/17469899.2020.1806713
  • Ehlers JP, Yeh S, Maguire MG, et al. Intravitreal pharmacotherapies for diabetic macular edema: a report by the American Academy of Ophthalmology. Ophthalmol. 2022;129(1):88–99. doi: 10.1016/j.ophtha.2021.07.009
  • Chatziralli I, Loewenstein A. Intravitreal anti-vascular endothelial growth factor agents for the treatment of diabetic retinopathy: a review of the literature. Pharmaceutics. 2021;13(8):1137. doi: 10.3390/pharmaceutics13081137
  • EWM N, Shima DT, Calias P, et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5:123–132. doi: 10.1038/nrd1955
  • Ferrara N, Damico L, Shams N, et al. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina. 2006;26:859–870. doi: 10.1097/01.iae.0000242842.14624.e7
  • Nguyen QD, Shah SM, Heier JS, et al. Primary end point (six months) results of the ranibizumab for edema of the mAcula in diabetes (READ-2) study. Ophthalmol. 2009;116(11):2175–2181.e1. doi: 10.1016/j.ophtha.2009.04.023
  • Sepah YJ, Sadiq MA, Boyer D, et al. Twenty-four-month outcomes of the ranibizumab for edema of the macula in Diabetes - Protocol 3 with high dose (READ-3) study. Ophthalmol. 2016;123:2581–2587. doi: 10.1016/j.ophtha.2016.08.040
  • Massin P, Bandello F, Garweg JG, et al. Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE study). Diabetes Care. 2010;33(11):2399–2405. doi: 10.2337/dc10-0493
  • Elman MJ, Aiello LP, Beck RW, et al.; Diabetic Retinopathy Clinical Research Network. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010;117(6):1064–1077.e35.
  • Bressler SB, Glassman AR, Almukhtar T, et al. Five-year outcomes of ranibizumab with prompt or deferred laser versus laser or triamcinolone plus deferred ranibizumab for diabetic macular edema. Am J Ophthalmol. 2016;164:57–68. doi: 10.1016/j.ajo.2015.12.025
  • Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmol. 2016;123:1351–1359.
  • Schmidt-Erfurth U, Lang GE, Holz FG, et al. Three-year outcomes of Individualized ranibizumab treatment in patients with diabetic macular edema: the restore extension study. Ophthalmol. 2014;121(5):1045–1053. doi: 10.1016/j.ophtha.2013.11.041
  • Mitchell P, Massin P, Bressler S, et al. Three-year patient-reported visual function outcomes in diabetic macular edema managed with ranibizumab: the RESTORE extension study. Curr Med Res Opin. 2015;31(11):1967–1975. doi: 10.1185/03007995.2015.1081880
  • Ishibashi T, Li X, Koh A, et al. The REVEAL study: ranibizumab monotherapy or combined with laser versus laser monotherapy in Asian patients with diabetic macular edema. Ophthalmol. 2015;122(7):1402–1415. doi: 10.1016/j.ophtha.2015.02.006
  • Bressler NM, Varma R, Suñer IJ, et al. Vision-related function after ranibizumab treatment for diabetic macular edema: results from RIDE and RISE. Ophthalmol. 2014;121:2461–2472.
  • Brown DM, Nguyen QD, Marcus DM, et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmol. 2013;120(10):2013–2022. doi: 10.1016/j.ophtha.2013.02.034
  • Maturi RK, Glassman AR, Liu D, et al. Effect of adding dexamethasone to continued ranibizumab treatment in patients with persistent diabetic macular edema: a DRCR Network Phase 2 randomized clinical trial. JAMA Ophthalmol. 2018;136(1):29–38. doi: 10.1001/jamaophthalmol.2017.4914
  • Wykoff CC, Eichenbaum DA, Roth DB, et al. Ranibizumab induces regression of diabetic retinopathy in most patients at high risk of progression to proliferative diabetic retinopathy. Ophthalmol Retina. 2018;2(10):997–1009. doi: 10.1016/j.oret.2018.06.005
  • Bressler SB, Odia I, Glassman AR, et al. Changes in diabetic retinopathy severity when treating diabetic macular edema with ranibizumab: DRCR.Net Protocol I 5-year report. Retina. 2018;38(10):1896–1904. doi: 10.1097/IAE.0000000000002302
  • Lang GE, Stahl A, Voegeler J, et al. Efficacy and safety of ranibizumab with or without panretinal laser photocoagulation versus laser photocoagulation alone in proliferative diabetic retinopathy – the PRIDE study. Acta Ophthalmol. 2020;98(5):e530–e539. doi: 10.1111/aos.14312
  • Figueira J, Fletcher E, Massin P, et al. Ranibizumab plus panretinal photocoagulation versus panretinal photocoagulation alone for high-risk Proliferative Diabetic Retinopathy (PROTEUS study). Ophthalmol. 2018;125(5):691–700. doi: 10.1016/j.ophtha.2017.12.008
  • Gross JG, Glassman AR, Liu D, et al. Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA Ophthalmol. 2018;136(10):1138–1148. doi: 10.1001/jamaophthalmol.2018.3255
  • Ip MS, Domalpally A, Sun JK, et al. Long-term effects of therapy with ranibizumab on diabetic retinopathy severity and baseline risk factors for worsening retinopathy. Ophthalmol. 2015;122(2):367–374. doi: 10.1016/j.ophtha.2014.08.048
  • Diabetic Retinopathy Clinical Research Network. Randomized clinical trial evaluating intravitreal ranibizumab or saline for vitreous hemorrhage from proliferative diabetic retinopathy. JAMA Ophthalmol. 2013;131(3):283–293. doi: 10.1001/jamaophthalmol.2013.2015
  • Chelala E, Nehme J, El Rami H, et al. Efficacy of intravitreal ranibizumab injections in the treatment of vitreous hemorrhage related to proliferative diabetic retinopathy. Retina. 2018;38(6):1127–1133. doi: 10.1097/IAE.0000000000001673
  • Holekamp NM, Campochiaro PA, Chang MA, et al. Archway randomized Phase 3 trial of the port delivery system with ranibizumab for neovascular age-related macular degeneration. Ophthalmol. 2022;129(3):295–307. doi: 10.1016/j.ophtha.2021.09.016
  • Susvimo Prescribing Information. Package insert. [Internet]. Genentech, Inc. 2022 [cited 2023 Mar 15]; Available from: https://www.gene.com/download/pdf/susvimo_prescribing.pdf.
  • Rosenfeld PJ, Moshfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (Avastin®) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging. 2005;36(4):331–335. doi: 10.3928/1542-8877-20050701-14
  • Diabetic Retinopathy Clinical Research Network. A Phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmol. 2007;114(10):1860–1867.e7. doi: 10.1016/j.ophtha.2007.05.062
  • The Diabetic Retinopathy Clinical Research Network. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 2015;372(13):1193–1203. doi: 10.1056/NEJMoa1414264
  • Heier JS, Bressler NM, Avery RL, et al. Comparison of aflibercept, bevacizumab, and ranibizumab for treatment of diabetic macular edema: extrapolation of data to clinical practice. JAMA Ophthalmol. 2016;134(1):95–99. doi: 10.1001/jamaophthalmol.2015.4110
  • Rajendram R, Fraser-Bell S, Kaines A, et al. A 2-year prospective randomized controlled trial of intravitreal Bevacizumab Or Laser Therapy (BOLT) in the management of diabetic macular edema: 24-month data: report 3. Arch Ophtalmol. 2012;130(8):972–979. doi: 10.1001/archophthalmol.2012.393
  • Schmidinger G, Maar N, Bolz M, et al. Repeated intravitreal bevacizumab (Avastin®) treatment of persistent new vessels in proliferative diabetic retinopathy after complete panretinal photocoagulation. Acta Ophthalmol. 2011;89(1):76–81. doi: 10.1111/j.1755-3768.2009.01622.x
  • Mirshahi A, Roohipoor R, Lashay A, et al. Bevacizumab-augmented retinal laser photocoagulation in proliferative diabetic retinopathy: a randomized Double-masked clinical trial. Eur J Ophthalmol. 2008;18(2):263–269. doi: 10.1177/112067210801800215
  • Michaelides M, Kaines A, Hamilton RD, et al. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study): 12-month data: report 2. Ophthalmol. 2010;117(6):1078–1086.e2. doi: 10.1016/j.ophtha.2010.03.045
  • Ford JA, Elders A, Shyangdan D, et al. The relative clinical effectiveness of ranibizumab and bevacizumab in diabetic macular oedema: an indirect comparison in a systematic review. BMJ. 2012;345(aug13 1):e5182. doi: 10.1136/bmj.e5182
  • Bressler SB, Liu D, Glassman AR, et al. Change in diabetic retinopathy through 2 years: secondary analysis of a randomized clinical trial comparing aflibercept, bevacizumab, and ranibizumab. JAMA Ophthalmol. 2017;135(6):558–568. doi: 10.1001/jamaophthalmol.2017.0821
  • Holekamp N, Duff SB, Rajput Y, et al. Cost-effectiveness of ranibizumab and aflibercept to treat diabetic macular edema from a US perspective: analysis of 2-year Protocol T data. J Med Econ. 2020;23(3):287–296. doi: 10.1080/13696998.2019.1666855
  • Gunther JB, Altaweel MM. Bevacizumab (Avastin) for the treatment of ocular disease. Surv Ophthalmol. 2009;54(3):372–400. doi: 10.1016/j.survophthal.2009.02.004
  • Stewart MW, Grippon S, Kirkpatrick P. Aflibercept. Nat Rev Drug Discov. 2012;11(4):269–270. doi: 10.1038/nrd3700
  • Korobelnik J-F, Do DV, Schmidt-Erfurth U, et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmol. 2014;121(11):2247–2254. doi: 10.1016/j.ophtha.2014.05.006
  • Heier JS, Korobelnik J-F, Brown DM, et al. Intravitreal aflibercept for diabetic macular edema: 148-week results from the VISTA and VIVID studies. Ophthalmol. 2016;123(11):2376–2385. doi: 10.1016/j.ophtha.2016.07.032
  • Brown DM, Wykoff CC, Boyer D, et al. Evaluation of intravitreal aflibercept for the treatment of severe nonproliferative diabetic retinopathy: results from the panorama randomized clinical trial. JAMA Ophthalmol. 2021;139(9):946–955. doi: 10.1001/jamaophthalmol.2021.2809
  • Maturi RK, Glassman AR, Josic K, et al. Effect of Intravitreous anti–vascular endothelial growth factor vs sham treatment for prevention of vision-threatening complications of diabetic retinopathy: the protocol W randomized clinical trial. JAMA Ophthalmol. 2021;139(7):701–712. doi: 10.1001/jamaophthalmol.2021.0606
  • Antoszyk AN, Glassman AR, Beaulieu WT, et al. Effect of intravitreous aflibercept vs vitrectomy with panretinal photocoagulation on visual acuity in patients with vitreous hemorrhage from proliferative diabetic retinopathy: a randomized clinical trial. JAMA. 2020;324(23):2383–2395. doi: 10.1001/jama.2020.23027
  • Regeneron Pharmaceuticals, Inc. EYLEA HD (aflibercept) Injection 8 mg Approved by FDA for Treatment of Wet Age-related Macular Degeneration (wAMD), Diabetic Macular Edema (DME) and Diabetic Retinopathy (DR) [Internet]. Regeneron Pharmaceuticals. 2023 [cited 2023 Aug 19]. Available from: https://investor.regeneron.com/news-releases/news-release-details/eylea-hd-aflibercept-injection-8-mg-approved-fda-treatment-wet/.
  • Ross EL, Hutton DW, Stein JD, et al. Cost-effectiveness of aflibercept, bevacizumab, and ranibizumab for diabetic macular edema treatment: analysis from the diabetic retinopathy clinical research network comparative effectiveness trial. JAMA Ophthalmol. 2016;134(8):888–896. doi: 10.1001/jamaophthalmol.2016.1669
  • Ciulla TA, Pollack JS, Williams DF. Visual acuity outcomes and anti-VEGF therapy intensity in diabetic macular oedema: a real-world analysis of 28 658 patient eyes. Br J Ophthalmol. 2021;105(2):216–221. doi: 10.1136/bjophthalmol-2020-315933
  • Ciulla TA, Bracha P, Pollack J, et al. Real-world outcomes of anti–vascular endothelial growth factor therapy in diabetic macular edema in the United States. Ophthalmol Retina. 2018;2(12):1179–1187. doi: 10.1016/j.oret.2018.06.004
  • Ciulla TA, Hussain RM, Taraborelli D, et al. Longer-Term Anti-VEGF Therapy Outcomes in Neovascular Age-Related Macular Degeneration, Diabetic Macular Edema, and Vein Occlusion-Related Macular Edema. Ophthalmology Retina. 2022;6(9):796–806. doi:10.1016/j.oret.2022.03.021
  • Ghasemi Falavarjani K, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond). 2013;27(7):787–794. doi: 10.1038/eye.2013.107
  • Dugel PU, Singh RP, Koh A, et al. HAWK and HARRIER: ninety-six-week outcomes from the Phase 3 trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmol. 2021;128(1):89–99. doi: 10.1016/j.ophtha.2020.06.028
  • Kuo BL, Singh RP. Brolucizumab for the treatment of diabetic macular edema. Curr Opin Ophthalmol. 2022;33(3):167. doi: 10.1097/ICU.0000000000000849
  • Brown DM, Emanuelli A, Bandello F, et al. KESTREL and KITE: 52-week results from two phase III Pivotal trials of brolucizumab for diabetic macular edema. Am J Ophthalmol. 2022;238:157–172. doi: 10.1016/j.ajo.2022.01.004
  • Baumal CR, Spaide RF, Vajzovic L, et al. Retinal vasculitis and intraocular inflammation after intravitreal injection of brolucizumab. Ophthalmol. 2020;127(10):1345–1359. doi: 10.1016/j.ophtha.2020.04.017
  • Baumal CR, Bodaghi B, Singer M, et al. Expert opinion on management of intraocular inflammation, retinal vasculitis, and vascular occlusion after brolucizumab treatment. Ophthalmol Retina. 2021;5(6):519–527. doi: 10.1016/j.oret.2020.09.020
  • Cai S, Yang Q, Li X, et al. The efficacy and safety of aflibercept and conbercept in diabetic macular edema. Drug Des Devel Ther. 2018;12:3471–3483. doi: 10.2147/DDDT.S177192
  • Liu K, Wang H, He W, et al. Intravitreal conbercept for diabetic macular oedema: 2-year results from a randomised controlled trial and open-label extension study. Br J Ophthalmol. 2022;106(10):1436–1443. doi: 10.1136/bjophthalmol-2020-318690
  • Liang H, Huang X, Ngo W, et al. KSI-301: an anti-VEGF antibody biopolymer conjugate with extended half-life for treatment of neovascular retinal diseases. Invest Ophthalmol Visual Sci. 2018;59:211.
  • Kodiak sciences announces top-line results from its initial Phase 2b/3 study of KSI-301 in patients with neovascular (Wet) age-related macular degeneration | kodiak sciences Inc. [cited 2023 Jan 10]; Available from: https://ir.kodiak.com/news-releases/news-release-details/kodiak-sciences-announces-top-line-results-its-initial-phase-2b3/.
  • Kodiak Sciences, Inc. Kodiak sciences reports Positive topline results from BEACON Phase 3 study of tarcocimab tedromer (KSI-301) in patients with retinal vein occlusion. [cited 2023 Jan 15]; Available from: https://www.prnewswire.com/news-releases/kodiak-sciences-reports-positive-topline-results-from-beacon-phase-3-study-of-tarcocimab-tedromer-ksi-301-in-patients-with-retinal-vein-occlusion-301601194.html.
  • Ophthea Limited. Opthea reports Positive Phase 2a trial results of OPT-302 in diabetic macular edema [Internet]. GlobeNewswire News Room. 2020 [cited 2023 Jul 25]; Available from: https://www.globenewswire.com/en/news-release/2020/06/09/2045972/0/en/Opthea-Reports-Positive-Phase-2a-Trial-Results-of-OPT-302-in-Diabetic-Macular-Edema.html.
  • Cébe-Suarez S, Zehnder-Fjällman A, Ballmer-Hofer K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci. 2006;63(5):601. doi: 10.1007/s00018-005-5426-3
  • Gupta N, Mansoor S, Sharma A, et al. Diabetic retinopathy and VEGF. Open Ophthalmol J. 2013;7:4–10. doi: 10.2174/1874364101307010004
  • Cabral T, Lima LH, Mello LGM, et al. Bevacizumab injection in patients with neovascular age-related macular degeneration increases angiogenic biomarkers. Ophthalmol Retina. 2018;2(1):31–37. doi: 10.1016/j.oret.2017.04.004
  • Bendell JC, Patel MR, Moore KN, et al. Phase I, first‐in‐human, dose‐escalation study to evaluate the safety, tolerability, and pharmacokinetics of vorolanib in patients with advanced solid tumors. Oncology. 2019;24:455–e121. doi: 10.1634/theoncologist.2018-0740
  • Kaiser PK, Ciulla T, Kansara V. Suprachoroidal CLS-AX (axitinib injectable suspension), as a potential long-acting therapy for neovascular age-related macular degeneration (nAMD). Invest Ophthalmol Vis Sci. 2020;61:3977.
  • Clearside Biomedical, Inc. Clearside Biomedical announces Positive results in safety, durability and Biologic Effect in OASIS Phase 1/2a clinical trial of suprachoroidal CLS-AX (axitinib injectable suspension) in wet AMD patients [Internet]. GlobeNewswire News Room. 2022 [cited 2023 Jan 15]; Available from: https://www.globenewswire.com/en/news-release/2022/11/09/2551845/0/en/Clearside-Biomedical-Announces-Positive-Results-in-Safety-Durability-and-Biologic-Effect-in-OASIS-Phase-1-2a-Clinical-Trial-of-Suprachoroidal-CLS-AX-axitinib-injectable-suspension-.html.
  • Wong JG, Chang A, Guymer RH, et al. Phase 1 study of an intravitreal axitinib hydrogel-based implant for the treatment of Neovascular Age-Related Macular Degeneration (nAMD). Invest Ophthalmol Visual Sci. 2021;62:218.
  • Heier JS, Singh RP, Wykoff CC, et al. The angiopoietin/tie pathway in retinal vascular diseases: a review. Retina. 2021;41(1):1. doi: 10.1097/IAE.0000000000003003
  • Sahni J, Patel SS, Dugel PU, et al. Simultaneous inhibition of angiopoietin-2 and vascular endothelial growth factor-A with faricimab in diabetic macular edema: BOULEVARD phase 2 randomized trial. Ophthalmol. 2019;126(8):1155–1170. doi: 10.1016/j.ophtha.2019.03.023
  • Heier JS, Khanani AM, Quezada Ruiz C, et al. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): two randomised, double-masked, phase 3, non-inferiority trials. Lancet. 2022;399(10326):729–740. doi: 10.1016/S0140-6736(22)00010-1
  • Wykoff CC, Abreu F, Adamis AP, et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. Lancet. 2022;399(10326):741–755. doi: 10.1016/S0140-6736(22)00018-6
  • Taylor L, {CM~Basel}. FDA approves Roche’s vabysmo, the first bispecific antibody for the eye, to treat two leading causes of vision loss. 2022.
  • Van Hove I, Hu T-T, Beets K, et al. Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res. 2021;85:100966. doi: 10.1016/j.preteyeres.2021.100966
  • Bhatwadekar AD, Kansara V, Luo Q, et al. Anti-integrin therapy for retinovascular diseases. Expert Opin Investig Drugs. 2020;29(9):935–945. doi: 10.1080/13543784.2020.1795639
  • Shaw LT, Mackin A, Shah R, et al. Risuteganib—a novel integrin inhibitor for the treatment of non-exudative (dry) age-related macular degeneration and diabetic macular edema. Expert Opin Investig Drugs. 2020;29(6):547–554. doi: 10.1080/13543784.2020.1763953
  • Quiroz-Mercado H, Boyer DS, Campochiaro PA, et al. Randomized, prospective, Double-masked, controlled Phase 2b trial to evaluate the safety & efficacy of ALG-1001 (Luminate®) in diabetic macular edema. Invest Ophthalmol Visual Sci. 2018;59:1960.
  • Khanani AM, Patel SS, Gonzalez VH, et al. Phase 1 study of THR-687, a novel, highly potent integrin antagonist for the treatment of diabetic macular edema. Ophthalmol Sci. 2021;1(3):100040. doi: 10.1016/j.xops.2021.100040
  • Kuppermann BD, Group on behalf of the OS. Inhibition of 5β1 integrin in neovascular AMD - A Phase 1 study. Invest Ophthalmol Visual Sci. 2010; 51:1252.
  • Cherukury M, Wu A, Chang B, et al. AG-73305, a novel multi-specific Fc-fusion protein for the treatment of diabetic macular edema. Invest Ophthalmol Visual Sci. 2019;60:3663.
  • Askew BC, Furuya T, Edwards DS. Ocular distribution and pharmacodynamics of SF0166, a topically administered αvβ3 integrin antagonist, for the treatment of retinal diseases. J Pharmacol Exp Ther. 2018;366(2):244–250. doi: 10.1124/jpet.118.248427
  • Edwards D, Boyer DS, Kaiser PK, et al. First-in human study of SF0166 topical ophthalmic solution in patients with diabetic macular edema. Invest Ophthalmol Visual Sci. 2018;59:1961.
  • Boyer DS, Kaiser PK, Magrath GN, et al. The safety and biological activity of OTT166, a novel topical selective integrin inhibitor for the treatment of diabetic eye disease: a phase 1b study. Ophthalmic Surg Lasers Imaging Retina. 2022;53(10):553–560. doi: 10.3928/23258160-20220923-02
  • Ciulla T, Pennesi ME, Kiss S, et al. DNA- and RNA-based gene therapies in Ophthalmology. Int Ophthalmol Clin. 2021;61(3):3–16. doi: 10.1097/IIO.0000000000000359
  • Shughoury A, Ciulla TA, Bakall B, et al. Genes and gene therapy in inherited retinal disease. Int Ophthalmol Clin. 2021;61(4):3. doi: 10.1097/IIO.0000000000000377
  • Khanani AM, Thomas MJ, Aziz AA, et al. Review of gene therapies for age-related macular degeneration. Eye. 2022;36(2):303–311. doi: 10.1038/s41433-021-01842-1
  • Buggage RR, Bordet T. Gene therapy for uveitis. Int Ophthalmol Clin. 2021;61(4):249. doi: 10.1097/IIO.0000000000000369
  • Wang J-H, Roberts GE, Liu G-S. Updates on gene therapy for diabetic retinopathy. Curr Diab Rep. 2020;20(7):22. doi: 10.1007/s11892-020-01308-w
  • Maguire AM, Russell S, Chung DC, et al. Durability of voretigene neparvovec for biallelic RPE65-mediated inherited retinal disease: phase 3 results at 3 and 4 years. Ophthalmol. 2021 [cited 2021 Jul 17];128(10):1460–1468. doi: 10.1016/j.ophtha.2021.03.031
  • Klufas M. Suprachoroidal delivery of RGX-314 for diabetic retinopathy without CI-DME: results from the Phase II ALTITUDE study. Angiogenesis Exudation Degeneration. 2022.
  • Maulik N. Redox signaling of angiogenesis. Antioxid Redox Signaling. 2002;4(5):805–815. doi: 10.1089/152308602760598963
  • Hartman GD, Lambert-Cheatham NA, Kelley MR, et al. Inhibition of APE1/Ref-1 for neovascular eye diseases: from biology to therapy. Int J Mol Sci. 2021;22(19):10279. doi: 10.3390/ijms221910279
  • Li Y, Liu X, Zhou T, et al. Inhibition of APE1/Ref-1 redox activity rescues human retinal pigment epithelial cells from oxidative stress and reduces choroidal neovascularization. Redox Biol. 2014;2:485–494. doi: 10.1016/j.redox.2014.01.023
  • Pasha SPBS, Sishtla K, Sulaiman RS, et al. Ref-1/APE1 inhibition with novel small molecules blocks ocular neovascularization. J Pharmacol Exp Ther. 2018;367(1):108–118. doi: 10.1124/jpet.118.248088
  • Ocuphire announces topline results from ZETA-1 Phase 2 trial of oral APX3330 in diabetic retinopathy and plans for end-of-phase 2 meeting with FDA [Internet]. Ocuphire Pharma, Inc. 2023 [cited 2023 Mar 15]; Available from: https://www.ocuphire.com/news-media/press-releases/detail/395/ocuphire-announces-topline-results-from-zeta-1-phase-2.
  • Nourinia R, Nakao S, Zandi S, et al. ROCK inhibitors for the treatment of ocular diseases. Br J Ophthalmol. 2018;102(1):1–5. doi: 10.1136/bjophthalmol-2017-310378
  • Hahn MG, Lampe T, El Sheikh S, et al. Discovery of the soluble guanylate cyclase activator runcaciguat (BAY 1101042). J Med Chem. 2021;64(9):5323–5344. doi: 10.1021/acs.jmedchem.0c02154
  • Kumawat VS, Kaur G. Therapeutic potential of cannabinoid receptor 2 in the treatment of diabetes mellitus and its complications. Eur J Pharmacol. 2019;862:172628. doi: 10.1016/j.ejphar.2019.172628
  • Mugisho OO, Aryal J, Shorne A, et al. Orally delivered Connexin43 hemichannel blocker, tonabersat, inhibits vascular breakdown and inflammasome activation in a mouse model of diabetic retinopathy. Int J Mol Sci. 2023;24:3876. doi: 10.3390/ijms24043876
  • Martinez-Zapata MJ, Martí-Carvajal AJ, Solà I, et al. Anti-vascular endothelial growth factor for proliferative diabetic retinopathy. Cochrane Database Syst Rev. 2014;2014:CD008721. doi: 10.1002/14651858.CD008721.pub2
  • Gross JG, Glassman AR, Jampol LM, et al.; Writing Committee for the Diabetic Retinopathy Clinical Research Network. Panretinal photocoagulation vs Intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA. 2015;314(20):2137–2146.
  • Gao S, Lin Z, Shen X. Anti-vascular endothelial growth factor therapy as an alternative or adjunct to Pan-retinal photocoagulation in treating proliferative diabetic retinopathy: meta-analysis of randomized trials. Front Pharmacol. 2020 [cited 2023 Jan 8];11. doi: 10.3389/fphar.2020.00849
  • Obeid A, Gao X, Ali FS, et al. Loss to follow-up in patients with proliferative diabetic retinopathy after panretinal photocoagulation or intravitreal anti-VEGF injections. Ophthalmol. 2018;125:1386–1392.
  • Jhaveri CD, Glassman AR, Ferris FL, et al. Aflibercept monotherapy or bevacizumab first for diabetic macular edema. N Engl J Med. 2022;387(8):692–703. doi: 10.1056/NEJMoa2204225
  • Tomita Y, Lee D, Tsubota K, et al. Updates on the current treatments for diabetic retinopathy and possibility of future oral therapy. J Clin Med. 2021;10:4666. doi: 10.3390/jcm10204666
  • Nian S, Lo ACY, Mi Y, et al. Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets. Eye and Vision. 2021;8:15.
  • Mboussou, Y. Histology of Macula in OCT. 2017 [cited 2023 Mar 23]; Available from: https://commons.wikimedia.org/wiki/File:Macula_Histology_OCT.jpg.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.