104
Views
0
CrossRef citations to date
0
Altmetric
Review

Monoclonal antibodies for dyslipidemia in adults: a focus on vulnerable patients groups

, , &
Pages 157-169 | Received 21 Nov 2023, Accepted 15 Feb 2024, Published online: 23 Feb 2024

References

  • Arvanitis M, Lowenstein CJ. Dyslipidemia. Ann Intern Med. 2023 Jun;176(6):ITC81–ITC96. doi: 10.7326/AITC202306200
  • Pirillo A, Casula M, Olmastroni E, et al. Global epidemiology of dyslipidaemias. Nat Rev Cardiol. 2021 Oct;18(10):689–700. doi: 10.1038/s41569-021-00541-4
  • Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers.2019 Aug 16;5(1):56. doi: 10.1038/s41572-019-0106-z
  • Reiner Z. Hypertriglyceridaemia and risk of coronary artery disease. Nat Rev Cardiol. 2017 Jul;14(7):401–411. doi: 10.1038/nrcardio.2017.31
  • Tenenbaum A, Klempfner R, Fisman EZ. Hypertriglyceridemia: a too long unfairly neglected major cardiovascular risk factor. Cardiovasc Diabetol. 2014 Dec 4;13(1):159. doi: 10.1186/s12933-014-0159-y
  • Arnett DK, Blumenthal RS, Albert MA, et al. ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. Circulation. 2019 [2019 Sep 10];140(11):e596–e646. doi: 10.1161/CIR.0000000000000678
  • Muscoli S, Ifrim M, Russo M, et al. Current options and future perspectives in the treatment of dyslipidemia. J Clin Med. 2022 Aug 12;11(16):4716. doi: 10.3390/jcm11164716
  • Posner J, Barrington P, Brier T, et al. Monoclonal Antibodies: Past, Present and Future. Handb Exp Pharmacol. 2019;260:81–141. doi: 10.1007/164_2019_323
  • Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect. 2019 Dec;7(6):e00535. doi: 10.1002/prp2.535
  • Mercep I, Strikic D, Sliskovic AM, et al. New therapeutic approaches in treatment of dyslipidaemia—A narrative review. Pharmaceuticals (Basel). 2022 Jul 7;15(7):839. doi: 10.3390/ph15070839
  • Atherosclerosis, Coronary Heart Disease Working Group of Chinese Society of C, Editorial Board of Chinese Journal of C. [Chinese expert consensus on lipid management of very high-risk atherosclerotic cardiovascular disease patients]. Zhonghua Xin Xue Guan Bing Za Zhi. 2020 Apr 24;48(4):280–286. doi: 10.3760/cma.j.cn112148-20200121-00036
  • Grundy SM, Stone NJ, Bailey AL, et al. AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. Circulation. 2018 [2019 Jun 18];139(25):e1082–e1143. doi: 10.1161/CIR.0000000000000625
  • Jellinger PS, Handelsman Y, Rosenblit PD, et al. American association of clinical endocrinologists and American college of endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr Pract. 2017 Apr;23(Suppl 2):1–87 doi: 10.4158/EP171764.APPGL
  • Mach F, Baigent C, Catapano AL. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020 [2020 Jan 1];41(1):111–188. doi: 10.1093/eurheartj/ehz455
  • Kosmas CE, Pantou D, Sourlas A, et al. New and emerging lipid-modifying drugs to lower LDL cholesterol. Drugs Context. 2021;10:1–22. doi: 10.7573/dic.2021-8-3
  • Banach M, Penson PE, Farnier M, et al. Bempedoic acid in the management of lipid disorders and cardiovascular risk. 2023 position paper of the international lipid expert panel (ILEP). Prog Cardiovasc Dis. 2023 Jul;79:2–11 doi: 10.1016/j.pcad.2023.03.001
  • Nissen SE, Lincoff AM, Brennan D, et al. Bempedoic Acid and Cardiovascular Outcomes in Statin-Intolerant Patients. N Engl J Med.2023 Apr 13;388(15):1353–1364. doi: 10.1056/NEJMoa2215024
  • Nissen SE, Menon V, Nicholls SJ, et al. Bempedoic Acid for Primary Prevention of Cardiovascular Events in Statin-Intolerant Patients. JAMA.2023 Jul 11;330(2):131–140. doi: 10.1001/jama.2023.9696
  • Hess CN, Low Wang CC, Hiatt WR. PCSK9 inhibitors: mechanisms of action, metabolic effects, and clinical outcomes. Annu Rev Med. 2018 Jan 29;69(1):133–145. doi: 10.1146/annurev-med-042716-091351
  • Tikka A, Jauhiainen M. The role of ANGPTL3 in controlling lipoprotein metabolism. Endocrine. 2016 May;52(2):187–93. doi: 10.1007/s12020-015-0838-9
  • Stein EA, Mellis S, Yancopoulos GD, et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med.2012 Mar 22;366(12):1108–18. doi: 10.1056/NEJMoa1105803
  • Koren MJ, Scott R, Kim JB, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 2012 Dec 8;380(9858):1995–2006. doi: 10.1016/s0140-6736(12)61771-1
  • Sabatine MS. PCSK9 inhibitors: clinical evidence and implementation. Nat Rev Cardiol. 2019 Mar;16(3):155–165. doi: 10.1038/s41569-018-0107-8
  • Lan NSR, Bajaj A, Watts GF, et al. Recent advances in the management and implementation of care for familial hypercholesterolaemia. Pharmacol Res. 2023 Aug;194:106857 doi: 10.1016/j.phrs.2023.106857
  • Reeskamp LF, Nurmohamed NS, Bom MJ, et al. Marked plaque regression in homozygous familial hypercholesterolemia. Atherosclerosis. 2021 Jun;327:13–17. doi: 10.1016/j.atherosclerosis.2021.04.014
  • Rosenson RS, Burgess LJ, Ebenbichler CF, et al. Evinacumab in patients with refractory hypercholesterolemia. N Engl J Med.2020 Dec 10;383(24):2307–2319. doi: 10.1056/NEJMoa2031049
  • Gaudet D, Gipe DA, Pordy R, et al. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N Engl J Med. 2017 Jul 20;377(3):296–297. doi: 10.1056/NEJMc1705994
  • Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989 Apr;79(4):733–43. doi: 10.1161/01.cir.79.4.733
  • Waxman S, Ishibashi F, Muller JE. Detection and treatment of vulnerable plaques and vulnerable patients: novel approaches to prevention of coronary events. Circulation. 2006 Nov 28;114(22):2390–411. doi: 10.1161/CIRCULATIONAHA.105.540013
  • Gaba P, Gersh BJ, Muller J, et al. Evolving concepts of the vulnerable atherosclerotic plaque and the vulnerable patient: implications for patient care and future research. Nat Rev Cardiol. 2023 Mar;20(3):181–196. doi: 10.1038/s41569-022-00769-8
  • Virmani R, Burke AP, Farb A, et al. Pathology of the vulnerable plaque. J Am Coll Cardiol.2006 Apr 18;47(8 Suppl):C13–8. doi: 10.1016/j.jacc.2005.10.065
  • Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation.2003 Oct 14;108(15):1772–8. doi: 10.1161/01.CIR.0000087481.55887.C9
  • Tomaniak M, Katagiri Y, Modolo R, et al. Vulnerable plaques and patients: state-of-the-art. Eur Heart J. 2020 Aug 14;41(31):2997–3004. doi: 10.1093/eurheartj/ehaa227
  • Drakopoulou M, Toutouzas K, Michelongona A, et al. Statins and vulnerable plaque. Curr Pharm Des. 2017 Oct 19. doi: 10.2174/1381612823666171019161609
  • Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA.2004 Mar 3;291(9):1071–80. doi: 10.1001/jama.291.9.1071
  • Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA.2006 Apr 5;295(13):1556–65. doi: 10.1001/jama.295.13.jpc60002
  • Kini AS, Baber U, Kovacic JC, et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressive lipid-lowering therapy). J Am Coll Cardiol. 2013 Jul 2;62(1):21–9. doi: 10.1016/j.jacc.2013.03.058
  • Tsujita K, Sugiyama S, Sumida H, et al. Impact of dual lipid-lowering strategy with ezetimibe and atorvastatin on coronary plaque regression in patients with percutaneous coronary intervention: the multicenter randomized controlled PRECISE-IVUS trial. J Am Coll Cardiol. 2015 Aug 4;66(5):495–507. doi: 10.1016/j.jacc.2015.05.065
  • Habara M, Nasu K, Terashima M, et al. Impact on optical coherence tomographic coronary findings of fluvastatin alone versus fluvastatin + ezetimibe. Am J Cardiol. 2014 Feb 15;113(4):580–7. doi: 10.1016/j.amjcard.2013.10.038
  • Suzuki N, Yokoi T, Kimura T, et al. Risk factors for vulnerable plaque detected using near-infrared spectroscopy in patients receiving statin therapy with No history of coronary artery disease. Int Heart J. 2023;64(4):577–583. doi: 10.1536/ihj.23-011
  • Zhang L, Song K, Zhu M, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in lipid metabolism, atherosclerosis and ischemic stroke. Int J Neurosci. 2016 Aug;126(8):675–680. doi: 10.3109/00207454.2015.1057636
  • Stoekenbroek RM, Lambert G, Cariou B, et al. Inhibiting PCSK9 - biology beyond LDL control. Nat Rev Endocrinol. 2018 Dec;15(1):52–62. doi: 10.1038/s41574-018-0110-5
  • Maxwell KN, Breslow JL. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci U S A. 2004 May 4;101(18):7100–5. doi: 10.1073/pnas.0402133101
  • Ferri N, Tibolla G, Pirillo A, et al. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis. 2012 Feb;220(2):381–6. doi: 10.1016/j.atherosclerosis.2011.11.026
  • Ferri N, Marchiano S, Tibolla G, et al. PCSK9 knock-out mice are protected from neointimal formation in response to perivascular carotid collar placement. Atherosclerosis. 2016 Oct;253:214–224. doi: 10.1016/j.atherosclerosis.2016.07.910
  • Ding Z, Pothineni NVK, Goel A, et al. PCSK9 and inflammation: role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovasc Res. 2020 Apr 1;116(5):908–915. doi: 10.1093/cvr/cvz313
  • Giunzioni I, Tavori H, Covarrubias R, et al. Local effects of human PCSK9 on the atherosclerotic lesion. J Pathol. 2016 Jan;238(1):52–62 doi: 10.1002/path.4630
  • Guo Y, Tang Z, Yan B, et al. PCSK9 (proprotein convertase subtilisin/kexin type 9) triggers vascular smooth muscle cell senescence and apoptosis: implication of its direct role in degenerative vascular disease. Arterioscler Thromb Vasc Biol. 2022 Jan;42(1):67–86 doi: 10.1161/atvbaha.121.316902
  • Gouni-Berthold I, Schwarz J, Berthold HK. PCSK9 monoclonal antibodies: new developments and their relevance in a nucleic acid-based therapy era. Curr Atheroscler Rep. 2022 Oct;24(10):779–790. doi: 10.1007/s11883-022-01053-3
  • Bellino M, Galasso G, Silverio A, et al. Soluble PCSK9 inhibition: indications, clinical impact, new molecular insights and practical approach—where do we stand? JCM. 2023 Apr 18;12(8):2922. doi: 10.3390/jcm12082922
  • Ugovsek S, Sebestjen M. Non-lipid effects of PCSK9 monoclonal antibodies on vessel wall. J Clin Med. 2022 Jun 23;11(13):3625. doi: 10.3390/jcm11133625
  • Cao YX, Liu HH, Li S, et al. A meta-analysis of the effect of PCSK9-monoclonal antibodies on circulating lipoprotein (a) levels. Am J Cardiovasc Drugs. 2019 Feb;19(1):87–97. doi: 10.1007/s40256-018-0303-2
  • Watts GF, Chan DC, Somaratne R, et al. Controlled study of the effect of proprotein convertase subtilisin-kexin type 9 inhibition with evolocumab on lipoprotein(a) particle kinetics. Eur Heart J. 2018 Jul 14;39(27):2577–2585. doi: 10.1093/eurheartj/ehy122
  • Watts GF, Chan DC, Pang J, et al. PCSK9 inhibition with alirocumab increases the catabolism of lipoprotein(a) particles in statin-treated patients with elevated lipoprotein(a). Metabolism. 2020 Jun;107:154221. doi: 10.1016/j.metabol.2020.154221
  • Puccini M, Landmesser U, Rauch U. Pleiotropic effects of PCSK9: focus on thrombosis and Haemostasis. Metabolites. 2022 Mar 4;12(3):226. doi: 10.3390/metabo12030226
  • Blanchard V, Chemello K, Hollstein T, et al. The size of apolipoprotein (a) is an independent determinant of the reduction in lipoprotein (a) induced by PCSK9 inhibitors. Cardiovasc Res. 2022 Jul 20;118(9):2103–2111. doi: 10.1093/cvr/cvab247
  • Chang YC, Hsu LA, Ko YL. Exploring PCSK9 genetic impact on lipoprotein(a) via dual approaches: association and Mendelian randomization. Int J Mol Sci. 2023 Sep 28;24(19):14668. doi: 10.3390/ijms241914668
  • Omori H, Ota H, Hara M, et al. Effect of PCSK-9 inhibitors on lipid-rich vulnerable coronary plaque assessed by near-infrared spectroscopy. JACC Cardiovasc Imaging. 2020 Jul;13(7):1639–1641. doi: 10.1016/j.jcmg.2020.02.019
  • Basiak M, Kosowski M, Cyrnek M, et al. Pleiotropic Effects of PCSK-9 Inhibitors. Int J Mol Sci. 2021 Mar 19;22(6):3144. doi: 10.3390/ijms22063144
  • Ma M, Hou C, Liu J. Effect of PCSK9 on atherosclerotic cardiovascular diseases and its mechanisms: focus on immune regulation. Front Cardiovasc Med. 2023;10:1148486. doi: 10.3389/fcvm.2023.1148486
  • Zhu L, Giunzioni I, Tavori H, et al. Loss of macrophage low-density lipoprotein receptor-related protein 1 confers resistance to the antiatherogenic effects of tumor necrosis factor-alpha inhibition. Arterioscler Thromb Vasc Biol. 2016 Aug;36(8):1483–1495. doi: 10.1161/ATVBAHA.116.307736
  • Canuel M, Sun X, Asselin MC, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS One. 2013;8(5):e64145. doi: 10.1371/journal.pone.0064145
  • Scalise V, Sanguinetti C, Neri T, et al. PCSK9 induces tissue factor expression by activation of TLR4/NFkB signaling. Int J Mol Sci. 2021 Nov 23;22(23):12640. doi: 10.3390/ijms222312640
  • Artin J, Elsabagh YA, Rashed L, et al. Proprotein convertase subtilisin/kexin 9 (PCSK9) in patients with diffuse systemic sclerosis: a marker of disease activity and severe disease manifestations with potential therapeutic implementations. Arch Rheumatol. 2023 Jun;38(2):249–256. doi: 10.46497/ArchRheumatol.2023.9638
  • Nicholls SJ, Puri R, Anderson T, et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA. 2016 Dec 13;316(22):2373–2384. doi: 10.1001/jama.2016.16951
  • Ako J, Hibi K, Tsujita K, et al. Effect of alirocumab on coronary atheroma volume in Japanese patients with acute coronary syndrome - the ODYSSEY J-IVUS trial. Circ J.2019 Sep 25;83(10):2025–2033. doi: 10.1253/circj.CJ-19-0412
  • Nicholls SJ, Kataoka Y, Nissen SE, et al. Effect of evolocumab on coronary plaque phenotype and burden in statin-treated patients following myocardial infarction. JACC Cardiovasc Imaging. 2022 Jul;15(7):1308–1321. doi: 10.1016/j.jcmg.2022.03.002
  • Räber L, Ueki Y, Otsuka T, et al. Effect of Alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction: the PACMAN-AMI randomized clinical trial. JAMA. 2022 May 10;327(18):1771–1781. doi: 10.1001/jama.2022.5218
  • Gupta K, Balachandran I, Foy J, et al. Highlights of cardiovascular disease prevention studies presented at the 2023 American college of cardiology conference. Curr Atheroscler Rep. 2023 Jun;25(6):309–321. doi: 10.1007/s11883-023-01103-4
  • de Isla L P, Diaz-Diaz JL, Romero MJ, et al. Alirocumab and coronary atherosclerosis in asymptomatic patients with familial hypercholesterolemia: the ARCHITECT study. Circulation.2023 May 9;147(19):1436–1443. doi: 10.1161/CIRCULATIONAHA.122.062557
  • Rrapo-Kaso E, Loffler AI, Petroni GR, et al. Alirocumab and plaque volume, calf muscle blood flow, and walking performance in peripheral artery disease: A randomized clinical trial. Vasc Med. 2023 Aug;28(4):282–289. doi: 10.1177/1358863X231169324
  • Chen J, Zhao F, Lei C, et al. Effect of evolocumab on the progression of intraplaque neovascularization of the carotid based on contrast-enhanced ultrasonography (EPIC study): A prospective single-arm, open-label study. Front Pharmacol. 2022;13:999224. doi: 10.3389/fphar.2022.999224
  • Wu L, Kong Q, Huang H, et al. Effect of PCSK9 inhibition in combination with statin therapy on intracranial atherosclerotic stenosis: a high-resolution MRI study. Front Aging Neurosci. 2023;15:1127534. doi: 10.3389/fnagi.2023.1127534
  • Akers EJ, Nicholls SJ, Di Bartolo BA. Plaque Calcification: Do Lipoproteins Have a Role? Arterioscler Thromb Vasc Biol. 2019 Oct;39(10):1902–1910. doi: 10.1161/ATVBAHA.119.311574
  • Ferreira JP, Xhaard C, Lamiral Z, et al. PCSK9 protein and rs562556 polymorphism are associated with arterial plaques in healthy middle-aged population: the STANISLAS cohort. J Am Heart Assoc. 2020 Apr 7;9(7):e014758. doi: 10.1161/JAHA.119.014758
  • Marfella R, Prattichizzo F, Sardu C, et al. Evidence of an anti-inflammatory effect of PCSK9 inhibitors within the human atherosclerotic plaque. Atherosclerosis. 2023 Aug;378:117180. doi: 10.1016/j.atherosclerosis.2023.06.971
  • Biccire FG, Haner J, Losdat S, et al. Concomitant coronary atheroma regression and stabilization in response to lipid-lowering therapy. J Am Coll Cardiol. 2023 Oct 31;82(18):1737–1747. doi: 10.1016/j.jacc.2023.08.019
  • Karatasakis A, Danek BA, Karacsonyi J. et al. Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: a meta-analysis of 35 randomized controlled trials. J Am Heart Assoc. 2017 Dec 9;6(12). doi: 10.1161/JAHA.117.006910
  • Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017 May 4;376(18):1713–1722. doi: 10.1056/NEJMoa1615664
  • Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med. 2018 Nov 29;379(22):2097–2107. doi: 10.1056/NEJMoa1801174
  • O’Donoghue ML, Giugliano RP, Wiviott SD, et al. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation.2022 Oct 11;146(15):1109–1119. doi: 10.1161/CIRCULATIONAHA.122.061620
  • Sabatine MS, De Ferrari GM, Giugliano RP, et al. Clinical benefit of evolocumab by severity and extent of coronary artery disease: analysis from FOURIER. Circulation.2018 Aug 21;138(8):756–766. doi: 10.1161/CIRCULATIONAHA.118.034309
  • Diaz R, Li QH, Bhatt DL, et al. Intensity of statin treatment after acute coronary syndrome, residual risk, and its modification by alirocumab: insights from the ODYSSEY OUTCOMES trial. Eur J Prev Cardiol. 2021 Mar 23;28(1):33–43. doi: 10.1177/2047487320941987
  • Ogata A, Oho K, Matsumoto N, et al. Stabilization of vulnerable carotid plaques with proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab. Acta Neurochir (Wien). 2019 Mar;161(3):597–600. doi: 10.1007/s00701-019-03825-4
  • Huang YT, Ho LT, Hsu HY, et al. Efficacy and safety of proprotein convertase subtilisin/kexin type 9 inhibitors as adjuvant treatments for patients with hypercholesterolemia treated with statin: a systematic review and network meta-analysis. Front Pharmacol. 2022;13:832614. doi: 10.3389/fphar.2022.832614
  • Yu Z, Hu L, Sun C, et al. Effect of different types and dosages of proprotein convertase subtilisin/kexin type 9 inhibitors on lipoprotein(a) levels: a network meta-analysis. J Cardiovasc Pharmacol. 2023 Jun 1;81(6):445–453. doi: 10.1097/FJC.0000000000001419
  • Zenti MG, Altomari A, Lupo MG, et al. From lipoprotein apheresis to proprotein convertase subtilisin/kexin type 9 inhibitors: Impact on low-density lipoprotein cholesterol and C-reactive protein levels in cardiovascular disease patients. Eur J Prev Cardiol. 2018 Nov;25(17):1843–1851 doi: 10.1177/2047487318792626
  • Ruscica M, Watts GF, Sirtori CR. PCSK9 monoclonal antibodies and lipoprotein apheresis for lowering lipoprotein(a): making choices in an era of RNA-based therapies. Eur J Prev Cardiol. 2019 Jun;26(9):998–1000. doi: 10.1177/2047487319833504
  • Ridker PM, Tardif JC, Amarenco P, et al. Lipid-reduction variability and antidrug-antibody formation with Bococizumab. N Engl J Med.2017 Apr 20;376(16):1517–1526. doi: 10.1056/NEJMoa1614062
  • Nishikido T. Clinical potential of inclisiran for patients with a high risk of atherosclerotic cardiovascular disease. Cardiovasc Diabetol. 2023 Jan 30;22(1):20. doi: 10.1186/s12933-023-01752-4
  • Chen PY, Gao WY, Liou JW, et al. Angiopoietin-Like Protein 3 (ANGPTL3) Modulates Lipoprotein Metabolism and Dyslipidemia. Int J Mol Sci. 2021 Jul 7;22(14):7310. doi: 10.3390/ijms22147310
  • Luo F, Das A, Khetarpal SA, et al. ANGPTL3 inhibition, dyslipidemia, and cardiovascular diseases. Trends Cardiovasc Med. 2023 Feb 5. doi: 10.1016/j.tcm.2023.01.008
  • Mohamed F, Mansfield BS, Raal FJ. ANGPTL3 as a drug target in hyperlipidemia and atherosclerosis. Curr Atheroscler Rep. 2022 Dec;24(12):959–967. doi: 10.1007/s11883-022-01071-1
  • Burks KH, Basu D, Goldberg IJ, et al. Angiopoietin-like 3: An important protein in regulating lipoprotein levels. Best Pract Res Clin Endocrinol Metab. 2023 May;37(3):101688 doi: 10.1016/j.beem.2022.101688
  • Raal FJ, Rosenson RS, Reeskamp LF, et al. Evinacumab for Homozygous Familial Hypercholesterolemia. N Engl J Med.2020 Aug 20;383(8):711–720. doi: 10.1056/NEJMoa2004215
  • Gusarova V, Alexa CA, Wang Y, et al. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J Lipid Res. 2015 Jul;56(7):1308–17 doi: 10.1194/jlr.M054890
  • Dewey FE, Gusarova V, Dunbar RL, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 2017 Jul 20;377(3):211–221. doi: 10.1056/NEJMoa1612790
  • Fazio S, Minnier J, Shapiro MD, et al. Threshold effects of circulating angiopoietin-like 3 levels on plasma lipoproteins. J Clin Endocrinol Metab. 2017 Sep 1;102(9):3340–3348. doi: 10.1210/jc.2016-4043
  • Rosenson RS, Gaudet D, Ballantyne CM, et al. Evinacumab in severe hypertriglyceridemia with or without lipoprotein lipase pathway mutations: a phase 2 randomized trial. Nat Med. 2023 Mar;29(3):729–737. doi: 10.1038/s41591-023-02222-w
  • Kleindorfer DO, Towfighi A, Chaturvedi S, et al. Guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American heart association/American stroke association. Stroke. 2021 Jul;52(7):e364–e467. doi: 10.1161/STR.0000000000000375
  • Parikh NS, Merkler AE, Iadecola C. Inflammation, autoimmunity, infection, and stroke: epidemiology and lessons from therapeutic intervention. Stroke. 2020 Mar;51(3):711–718. doi: 10.1161/STROKEAHA.119.024157
  • Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med.2017 Sep 21;377(12):1119–1131. doi: 10.1056/NEJMoa1707914
  • Ridker PM, Everett BM, Pradhan A, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med.2019 Feb 21;380(8):752–762. doi: 10.1056/NEJMoa1809798
  • Kelly PJ, Lemmens R, Tsivgoulis G. Inflammation and Stroke Risk: A New Target for Prevention. Stroke. 2021 Aug;52(8):2697–2706. doi: 10.1161/STROKEAHA.121.034388
  • Puig N, Sole A, Aguilera-Simon A, et al. Novel therapeutic approaches to prevent atherothrombotic ischemic stroke in patients with carotid atherosclerosis. Int J Mol Sci. 2023 Sep 20;24(18):14325. doi: 10.3390/ijms241814325

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.