166
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging anti-spike monoclonal antibodies against SARS-CoV-2

ORCID Icon & ORCID Icon
Pages 191-201 | Received 15 Dec 2023, Accepted 29 Feb 2024, Published online: 26 Mar 2024

References

  • Jering KS, McGrath MM, Mc Causland FR, et al. Excess mortality in solid organ transplant recipients hospitalized with COVID-19: a large-scale comparison of SOT recipients hospitalized with or without COVID-19. Clin Transplant. 2022 Jan;36(1):e14492.
  • World Health Organization. WHO Coronavirus (COVID19) Dashboard 2023. [cited 2023 Nov 22]. Available from: https://covid19.who.int/
  • Li G, Hilgenfeld R, Whitley R, et al. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov. 2023 Jun;22(6):449–475.
  • Razonable RR. Neutralizing anti-spike monoclonal antibodies for COVID-19 in vulnerable populations: lessons learned and future directions. Expert Opin Biol Ther. 2023 Jul;23(7):619–631. doi: 10.1080/14712598.2023.2226326
  • Ketkar A, Willey V, Pollack M, et al. Assessing the risk and costs of COVID-19 in immunocompromised populations in a large United States commercial insurance health plan: the EPOCH-US study. Curr Med Res Opin. 2023 Aug;39(8):1103–1118.
  • Kates OS, Haydel BM, Florman SS, et al. Coronavirus disease 2019 in solid organ transplant: a multicenter cohort study. Clin Infect Dis. 2021 Dec 6;73(11):e4090–e4099. doi: 10.1093/cid/ciaa1097
  • Mehta V, Goel S, Kabarriti R, et al. Case fatality rate of cancer patients with COVID-19 in a New York Hospital System. Cancer Discov. 2020 Jul;10(7):935–941.
  • Trougakos IP, Terpos E, Alexopoulos H, et al. Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol Med. 2022 Jul;28(7):542–554.
  • Lee A, Wong SY, Chai LYA, et al. Efficacy of COVID-19 vaccines in immunocompromised patients: systematic review and meta-analysis. BMJ. 2022 Mar 2;376:e068632. doi: 10.1136/bmj-2021-068632
  • Yang CY, Chen YH, Liu PJ, et al. The emerging role of miRnas in the pathogenesis of COVID-19: protective effects of nutraceutical polyphenolic compounds against SARS-CoV-2 infection. Int J Med Sci. 2022;19(8):1340–1356. doi: 10.7150/ijms.76168
  • Cele S, Gazy I, Jackson L, et al. Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature. 2021 May;593(7857):142–146.
  • Chen P, Nirula A, Heller B, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with covid-19. N Engl J Med. 2021 Jan 21;384(3):229–237. doi: 10.1056/NEJMoa2029849
  • Dougan M, Nirula A, Azizad M, et al. Bamlanivimab plus etesevimab in mild or moderate covid-19. N Engl J Med. 2021 Oct 7;385(15):1382–1392. doi: 10.1056/NEJMoa2102685
  • Cohen MS, Nirula A, Mulligan MJ, et al. Effect of Bamlanivimab vs placebo on incidence of COVID-19 among residents and staff of skilled nursing and assisted living facilities: a randomized clinical trial. JAMA. 2021 Jul 6;326(1):46–55. doi: 10.1001/jama.2021.8828
  • Dougan M, Azizad M, Chen P, et al. Bebtelovimab, alone or together with bamlanivimab and etesevimab, as a broadly neutralizing monoclonal antibody treatment for mild to moderate, ambulatory COVID-19. medRxiv. 2022. doi: 10.1101/2022.03.10.22272100
  • Weinreich DM, Sivapalasingam S, Norton T, et al. REGN-COV2, a neutralizing antibody cocktail, in Outpatients with COVID-19. N Engl J Med. 2021 Jan 21;384(3):238–251. doi: 10.1056/NEJMoa2035002
  • Weinreich DM, Sivapalasingam S, Norton T, et al. REGEN-COV antibody combination and outcomes in outpatients with COVID-19. N Engl J Med. 2021 Dec 2;385(23):e81. doi: 10.1056/NEJMoa2108163
  • O’Brien MP, Forleo-Neto E, Musser BJ, et al. Subcutaneous REGEN-COV antibody combination to prevent COVID-19. N Engl J Med. 2021 Sep 23;385(13):1184–1195. doi: 10.1056/NEJMoa2109682
  • Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Early treatment for covid-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N Engl J Med. 2021 Nov 18;385(21):1941–1950. doi: 10.1056/NEJMoa2107934
  • Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Effect of Sotrovimab on hospitalization or death among high-risk patients with mild to moderate COVID-19: a randomized clinical trial. JAMA. 2022 Apr 5;327(13):1236–1246. doi: 10.1001/jama.2022.2832
  • Levin MJ, Ustianowski A, De Wit S, et al. Intramuscular AZD7442 (tixagevimab-cilgavimab) for prevention of COVID-19. N Engl J Med. 2022 Jun 9;386(23):2188–2200. doi: 10.1056/NEJMoa2116620
  • Razonable RR, Tulledge-Scheitel SM, Hanson SN, et al. Real-world clinical outcomes of Bebtelovimab and sotrovimab treatment of high-risk persons with coronavirus disease 2019 during the omicron epoch. Open Forum Infect Dis. 2022 Oct;9(10):ofac411.
  • Group A-TL-CS, Lundgren JD, Grund B, et al. A neutralizing monoclonal antibody for hospitalized patients with COVID-19. N Engl J Med. 2021 Mar 11;384(10):905–914.
  • Bamlanivimab and etesevimab for post-exposure prophylaxis of COVID-19. Med Lett Drugs Ther 2021 Oct 18;63(1635):163–164.
  • McCreary EK, Kip KE, Collins K, et al. Evaluation of Bebtelovimab for treatment of COVID-19 during the SARS-CoV-2 omicron variant era. Open Forum Infect Dis. 2022 Oct;9(10):ofac517.
  • Planas D, Saunders N, Maes P, et al. Considerable escape of SARS-CoV-2 omicron to antibody neutralization. Nature. 2022 Feb;602(7898):671–675.
  • Ordaya EE, Vergidis P, Razonable RR, et al. Genotypic and predicted phenotypic analysis of SARS-COV-2 omicron subvariants in immunocompromised patients with COVID-19 following tixagevimab-cilgavimab prophylaxis. J Clin Virol. 2023 Mar;160:105382. doi: 10.1016/j.jcv.2023.105382
  • Aggarwal A, Stella AO, Walker G, et al. Platform for isolation and characterization of SARS-CoV-2 variants enables rapid characterization of omicron in Australia. Nat Microbiol. 2022 Jun;7(6):896–908.
  • Cao Y, Jian F, Wang J, et al. Imprinted SARS-CoV-2 humoral immunity induces convergent omicron RBD evolution. Nature. 2023 Feb;614(7948):521–529.
  • U.S. Food & Drug Administration. FDA announces evusheld is not currently authorized for emergency use in the U.S. 2023. [cited 2023 Sep 8]. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-announces-evusheld-not-currently-authorized-emergency-use-us
  • Yetmar ZA, Razonable RR. No patient left behind: a multilayered approach to mitigate COVID-19 in transplant recipients. Transpl Infect Dis. 2023 Feb;25(1):e13956. doi: 10.1111/tid.13956
  • Shebley M, Wang S, Ali I, et al. Phase 1 study of safety, pharmacokinetics, and antiviral activity of SARS-CoV-2 neutralizing monoclonal antibody ABBV-47D11 in patients with COVID-19. Pharmacol Res Perspect. 2023 Feb;11(1):e01036.
  • Cobb RR, Nkolola J, Gilchuk P, et al. A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med. 2022 Mar 11;3(3):188–203 e4. doi: 10.1016/j.medj.2022.01.004
  • Ison MG, Popejoy M, Evgeniev N, et al. Efficacy and safety of adintrevimab (ADG20) for the treatment of high-risk ambulatory patients with mild or moderate coronavirus disease 2019: results from a phase 2/3, randomized, placebo-controlled trial (STAMP) conducted during delta predominance and early emergence of omicron. Open Forum Infect Dis. 2023 Jun;10(6):ofad279.
  • Ison MG, Weinstein DF, Dobryanska M, et al. Prevention of COVID-19 following a Single Intramuscular Administration of Adintrevimab: results from a phase 2/3 randomized, double-blind, placebo-controlled trial (EVADE). Open Forum Infect Dis. 2023 Jul;10(7):ofad314.
  • Moullan N, Asiago J, Stecco K, et al. A first-in-human study of safety, PK, neutralization and upper airway penetration of two investigational long-acting anti-SARS-CoV-2 monoclonal antibodies. Infect Dis Ther. 2023 Nov;10(Suppl 2):ofad500.430.
  • Francica JR, Cai Y, Diallo S, et al. The SARS-CoV-2 monoclonal antibody AZD3152 potently neutralizes historical and emerging variants and is being developed for the prevention and treatment of COVID-19 in high-risk individuals. Open Forum Infect Dis. 2023 Nov;10(Suppl 2):ofad500.1192.
  • Webber CBR, Thomas S, Chang LJ, et al. Trial in progress: a phase I/III, randomised, modified double-blind, placebo-and active-controlled pre-exposure prophylaxis study of the SARS-CoV-2–neutralising antibody AZD3152 (SUPERNOVA). 33rd European Congress of Clinical Microbiology & Infectious Diseases (ECCMID); 17 Apr 2023; Copenhagen, Denmark 2023.
  • Seo JM, Kang B, Song R, et al. Preclinical assessment and randomized phase I study of CT-P63, a broadly neutralizing antibody targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerg Microbes Infect. 2022 Dec;11(1):2315–2325. doi: 10.1080/22221751.2022.2117094
  • Li S, Wu X, Li N, et al. Safety, tolerability, pharmacokinetics, and immunogenicity of an anti-SARS-CoV-2 monoclonal antibody HFB30132A after single dose intravenous administration in healthy Chinese subjects: a phase 1, randomized, double-blind, placebo-controlled study. Front Pharmacol. 2023;14:1117293. doi: 10.3389/fphar.2023.1117293
  • Maranda B, Labbe SM, Lurquin M, et al. Safety and efficacy of inhaled IBIO123 for mild-to-moderate COVID-19: a randomised, double-blind, dose-ascending, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2023 Aug 21;24(1):25–35. doi: 10.1016/S1473-3099(23)00393-6
  • West B, Wec AZ, Doyle M, et al. NVD200 potently neutralises omicron and its sublineages. 33rd European Congress of Clinical Microbiology & Infectious Diseases (ECCMID); 16 Apr 2023 Copenhagen, Denmark 2023.
  • Invivyd announces additional positive initial data from ongoing phase 1 clinical trial of VYD222, a monoclonal antibody Candidate in development for the prevention of symptomatic COVID-19 in immunocompromised people [internet]. 2023; [cited 2023 Jul 17. Available from: https://investors.invivyd.com/news-releases/news-release-details/invivyd-announces-additional-positive-initial-data-ongoing-phase
  • Rappazzo CG, Tse LV, Kaku CI, et al. Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science. 2021 Feb 19;371(6531):823–829. doi: 10.1126/science.abf4830
  • Liu C, Ginn HM, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell. 2021 Aug 5;184(16):4220–4236 e13. doi: 10.1016/j.cell.2021.06.020
  • Dejnirattisai W, Huo J, Zhou D, et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell. 2022 Feb 3;185(3):467–484 e15. doi: 10.1016/j.cell.2021.12.046
  • Zumbrun EE, Kaku CI, Dillinger L, et al. Prophylactic administration of the monoclonal antibody adintrevimab protects against SARS-CoV-2 in hamster and non-human Primate models of COVID-19. Antimicrob Agents Chemother. 2023 Jan 24;67(1):e0135322. doi: 10.1128/aac.01353-22
  • Schmidt P, Gong J, Narayan K, et al. Safety, pharmacokinetics, serum neutralizing titers, and immunogenicity of Adintrevimab, a monoclonal antibody targeting SARS-CoV-2: a randomized, double-blind, placebo-controlled, phase 1 dose-escalation study in healthy adults. Infect Dis Ther. 2023 May;12(5):1365–1377.
  • Das NC, Chakraborty P, Bayry J, et al. Comparative binding ability of human monoclonal antibodies against omicron variants of SARS-CoV-2: an in silico investigation. Antibodies (Basel). 2023 Feb 23;12(1):17. doi: 10.3390/antib12010017
  • Francica RJ, Cai Y, Diallo, et al. The SARS-CoV-2 monoclonal antibody AZD3152 potently neutralises historical and currently circulating variants. 33rd European Congress of Clinical Microbiology & Infectious Diseases (ECCMID); 17 Apr 2023; Copenhagen, Denmark, 2023.
  • Chen Y, Prevost J, Ullah I, et al. Molecular basis for antiviral activity of two pediatric neutralizing antibodies targeting SARS-CoV-2 Spike RBD. iScience. 2023 Jan 20;26(1):105783. doi: 10.1016/j.isci.2022.105783
  • Li W, Chen Y, Prevost J, et al. Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Rep. 2022 Jan 11;38(2):110210. doi: 10.1016/j.celrep.2021.110210
  • Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun. 2020 May 4;11(1):2251. doi: 10.1038/s41467-020-16256-y
  • Fedry J, Hurdiss DL, Wang C, et al. Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11. Sci Adv. 2021 Jun;7(23):eabf5632. doi: 10.1126/sciadv.abf5632
  • Tenforde MW, Link-Gelles R. Reduction in COVID-19-related mortality over time but disparities across population subgroups. Lancet Public Health. 2023 May;8(5):e327–e328. doi: 10.1016/S2468-2667(23)00078-6
  • Centers for Disease Control and Prevention (CDC). Underlying Medical Conditions Associated with Higer Risk for Severe COVID-19: Information for Healthcare Professionals. [accessed 2023 Dec 10]. available at https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html
  • National Institutes of Health (NIH) - COVID-19 Treatment Guidelines. Prioritization of Anti-SARS-CoV-2 Therapies for the Treatment of COVID-19 in Nonhospitalized Patients When There are Logistic Constraints. [accessed 2023 Dec 10]. available at https://www.covid19treatmentguidelines.nih.gov/overview/prioritization-of-therapeutics/
  • Focosi D, Maggi F, D’Abramo A, et al. Antiviral combination therapies for persistent COVID-19 in immunocompromised patients. Int J Infect Dis. 2023 Dec;137:55–59. doi: 10.1016/j.ijid.2023.09.021
  • Mikulska M, Sepulcri C, Dentone C, et al. Triple combination therapy with 2 antivirals and monoclonal antibodies for persistent or relapsed severe acute respiratory syndrome coronavirus 2 infection in immunocompromised patients. Clin Infect Dis. 2023 Jul 26;77(2):280–286. doi: 10.1093/cid/ciad181
  • Sandhu R, Sood SK, Kaur G. An intelligent system for predicting and preventing MERS-CoV infection outbreak. J Supercomput. 2016;72(8):3033–3056. doi: 10.1007/s11227-015-1474-0
  • da Silva Neto SR, Tabosa Oliveira T, Teixeira IV, et al. Machine learning and deep learning techniques to support clinical diagnosis of arboviral diseases: A systematic review. PLoS Negl Trop Dis. 2022 Jan;16(1):e0010061.
  • Brownstein JS, Rader B, Astley CM, et al. Advances in artificial intelligence for infectious-disease surveillance. N Engl J Med. 2023 Apr 27;388(17):1597–1607. doi: 10.1056/NEJMra2119215
  • Thadani NN, Gurev S, Notin P, et al. Learning from prepandemic data to forecast viral escape. Nature. 2023 Oct;622(7984):818–825.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.