93
Views
0
CrossRef citations to date
0
Altmetric
Review

Antimicrobial peptides in bone regeneration: mechanism and potential

, , , , , & ORCID Icon show all
Pages 285-304 | Received 27 Nov 2023, Accepted 26 Mar 2024, Published online: 03 Apr 2024

References

  • Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 2018;233(4):2937–2948. doi: 10.1002/jcp.26042
  • Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998;355:S7–S21. doi: 10.1097/00003086-199810001-00003
  • Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: current concepts and future directions. BMC Med. 2011;9(1):66. doi: 10.1186/1741-7015-9-66
  • Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Advanced Drug Delivery Reviews query. 2015;94:53–62. doi: 10.1016/j.addr.2015.03.013
  • Ho-Shui-Ling A, Bolander J, Rustom LE, et al. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells Current stage and future perspectives. Biomaterials. 2018;180:143–162. doi: 10.1016/j.biomaterials.2018.07.017
  • Méndez-Samperio P. Recent advances in the field of antimicrobial peptides in inflammatory diseases. Adv Biomed Res. 2013;2(1):50. doi: 10.4103/2277-9175.114192
  • Diamond G, Beckloff N, Weinberg A, et al. The roles of antimicrobial peptides in innate Host defense. Curr Pharm Des. 2009;15(21):2377–2392. doi: 10.2174/138161209788682325
  • Reddy KVR, Yedery RD, Aranha C. Antimicrobial peptides: premises and promises. Int J Antimicrob Agents. 2004;24(6):536–547. doi: 10.1016/j.ijantimicag.2004.09.005
  • Huan Y, Kong Q, Mou H, et al. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. 2020;11:582779. doi: 10.3389/fmicb.2020.582779
  • Sierra JM, Fusté E, Rabanal F, et al. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther. 2017;17(6):663–676. doi: 10.1080/14712598.2017.1315402
  • Ahmed TAE, Hammami R. Recent insights into structure-function relationships of antimicrobial peptides. J Food Biochem. 2019;43(1):e12546. doi: 10.1111/jfbc.12546
  • Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 2018;8(1):4. doi: 10.3390/biom8010004
  • Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27–55. doi: 10.1124/pr.55.1.2
  • Park J, Kang HK, Choi M-C, et al. Antibacterial activity and mechanism of action of analogues derived from the antimicrobial peptide mBjamp1 isolated from Branchiostoma Japonicum. J Antimicrob Chemother. 2018;73(8):2054–2063. doi: 10.1093/jac/dky144
  • Zong L, Teng D, Wang X, et al. Mechanism of action of a novel recombinant peptide, MP1102, against Clostridium Perfringens type C. Appl Microbiol Biotechnol. 2016;100(11):5045–5057. doi: 10.1007/s00253-016-7387-x
  • Kamal I, Ashfaq UA, Hayat S, et al. Prospects of antimicrobial peptides as an alternative to chemical preservatives for food safety. Biotechnol Lett. 2023;45(2):137–162. doi: 10.1007/s10529-022-03328-w
  • Bechinger B, Gorr S-U. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res. 2017;96(3):254–260. doi: 10.1177/0022034516679973
  • Luo Y, Song Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int J Mol Sci. 2021;22(21):11401.
  • Chen N, Jiang C. Antimicrobial Peptides: Structure, Mechanism, and Modification. Eur J Med Chem. 2023;255115377. doi: 10.1016/j.ejmech.2023.115377
  • Xuan J, Feng W, Wang J, et al. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist Updat. 2023;68100954. doi: 10.1016/j.drup.2023.100954
  • Avram S, Halip L, Curpan R, et al. Novel Drug Targets in 2020. Nat Rev Drug Discovery. 2021;20(5):333–333. doi: 10.1038/d41573-021-00057-z
  • Roudi R, Syn NL, Roudbary M. Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: a comprehensive overview. Front Immunol. 2017;8:1320. doi: 10.3389/fimmu.2017.01320
  • Harahsheh AS, Krishnan A, DeBiasi RL, et al. Cardiac echocardiogram findings of severe acute respiratory syndrome coronavirus-2-associated multi-system inflammatory syndrome in children – CORRIGENDUM. Cardiol Young. 2022;32(5):727–727. doi: 10.1017/S1047951121003735
  • Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 2018;9:281. doi: 10.3389/fphar.2018.00281
  • Zhou W, Bai T, Wang L, et al. Biomimetic AgNPs@antimicrobial Peptide/Silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration. Bioact Mater. 2023;20:64–80. doi: 10.1016/j.bioactmat.2022.05.015
  • Liu Z, Yuan X, Liu M, et al. Antimicrobial peptide combined with BMP2-modified mesenchymal stem cells promotes calvarial repair in an osteolytic model. Mol Ther. 2018;26(1):199–207. doi: 10.1016/j.ymthe.2017.09.011
  • Maruyama M, Rhee C, Utsunomiya T, et al. Modulation of the inflammatory response and bone healing. Front Endocrinol. 2020;11:386. doi: 10.3389/fendo.2020.00386
  • Julier Z, Park AJ, Briquez PS, et al. Promoting tissue regeneration by modulating the immune system. Acta Biomaterialia. 2017;53:13–28. doi: 10.1016/j.actbio.2017.01.056
  • Chen D, Yu C, Ying Y, et al. Study of the osteoimmunomodulatory properties of curcumin-modified copper-bearing titanium. Molecules. 2022;27(10):3205. doi: 10.3390/molecules27103205
  • Valparaiso AP, Vicente DA, Bograd BA, et al. Modeling acute traumatic injury. J Surg Res. 2015;194(1):220–232. doi: 10.1016/j.jss.2014.10.025
  • Lenz A, Franklin GA, Cheadle WG. Systemic inflammation after trauma. Injury. 2007;38(12):1336–1345. doi: 10.1016/j.injury.2007.10.003
  • Osta B, Benedetti G, Miossec P. Classical and paradoxical effects of TNF-α on bone homeostasis. Front Immunol. 2014;5:48. doi: 10.3389/fimmu.2014.00048
  • Raetz CRH, Whitfield C. Lipopolysaccharide Endotoxins. Annu Rev Biochem. 2002;71:635–700. doi: 10.1146/annurev.biochem.71.110601.135414
  • Ryu J-K, Kim SJ, Rah S-H, et al. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity. 2017;46(1):38–50. doi: 10.1016/j.immuni.2016.11.007
  • Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-Induced pro-inflammatory signaling. Cell Mol Life Sci. 2021;78(4):1233–1261. doi: 10.1007/s00018-020-03656-y
  • Płóciennikowska A, Hromada-Judycka A, Borzęcka K, et al. Co-operation of TLR4 and raft proteins in LPS-Induced pro-inflammatory signaling. Cell Mol Life Sci. 2015;72(3):557–581. doi: 10.1007/s00018-014-1762-5
  • Lu Y-C, Yeh W-C, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42(2):145–151. doi: 10.1016/j.cyto.2008.01.006
  • Strålberg F, Kassem A, Kasprzykowski F, et al. Inhibition of lipopolysaccharide-induced osteoclast formation and bone resorption in vitro and in vivo by cysteine proteinase inhibitors. J Leukoc Biol. 2017;101(5):1233–1243. doi: 10.1189/jlb.3A1016-433R
  • Hao Z, Chen R, Chai C, et al. Antimicrobial peptides for bone tissue engineering: diversity, effects and applications. Front Bioeng Biotechnol. 2022;101030162. doi: 10.3389/fbioe.2022.1030162
  • van Os N, Javed A, Broere F, et al. Novel insights in antimicrobial and immunomodulatory mechanisms of action of PepBiotics CR-163 and CR-172. J Glob Antimicrob Resist. 2022;30:406–413. doi: 10.1016/j.jgar.2022.07.009
  • Hong L, Gontsarik M, Amenitsch H, et al. Human antimicrobial peptide triggered colloidal transformations in bacteria membrane lipopolysaccharides. Small. 2022;18(5):e2104211. doi: 10.1002/smll.202104211
  • Nan YH, Bang J-K, Jacob B, et al. Prokaryotic selectivity and LPS-Neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37. Peptides. 2012;35(2):239–247. doi: 10.1016/j.peptides.2012.04.004
  • Lee EK, Kim Y-C, Nan YH, et al. Cell selectivity, mechanism of action and LPS-Neutralizing activity of bovine myeloid antimicrobial peptide-18 (BMAP-18) and its analogs. Peptides. 2011;32(6):1123–1130. doi: 10.1016/j.peptides.2011.03.024
  • Rosenfeld Y, Lev N, Shai Y. Effect of the hydrophobicity to net positive charge ratio on antibacterial and anti-endotoxin activities of structurally similar antimicrobial peptides. Biochemistry. 2010;49(5):853–861. doi: 10.1021/bi900724x
  • Lyu Y, Tan M, Xue M, et al. Broad-spectrum hybrid antimicrobial peptides derived from PMAP-23 with potential LPS binding ability. Biochem Pharmacol. 2023;210:115500. doi: 10.1016/j.bcp.2023.115500
  • Yang H, Wang L, Yuan L, et al. Antimicrobial peptides with rigid linkers against gram-negative bacteria by targeting Lipopolysaccharide. J Agric Food Chem. 2022;70(50):15903–15916. doi: 10.1021/acs.jafc.2c05921
  • Nagaoka I, Hirota S, Niyonsaba F, et al. Augmentation of the lipopolysaccharide-neutralizing activities of human cathelicidin CAP18/LL-37-Derived antimicrobial peptides by replacement with hydrophobic and cationic amino acid residues. Clin Vaccine Immunol. 2002;9(5):972–982. doi: 10.1128/CDLI.9.5.972-982.2002
  • Gan BH, Gaynord J, Rowe SM, et al. The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. Chem Soc Rev. 2021;50(13):7820–7880. doi: 10.1039/D0CS00729C
  • Wang Q, Jin L, Wang H, et al. AWRK6, a synthetic cationic peptide derived from antimicrobial peptide dybowskin-2CDYa, inhibits lipopolysaccharide-induced inflammatory response. Int J Mol Sci. 2018;19(2):600. doi: 10.3390/ijms19020600
  • Wu R, Dong X, Wang Q, et al. D1018 with higher stability and excellent lipopolysaccharide binding affinity has potent anti-bacterial and anti-inflammatory activity. Front Microbiol. 2022;131010017. doi: 10.3389/fmicb.2022.1010017
  • Jiang M, Chen R, Zhang J, et al. A novel antimicrobial peptide Spampcin56-86 from Scylla paramamosain exerting rapid bactericidal and anti-biofilm activity in vitro and anti-infection in vivo. Int J Mol Sci. 2022;23(21):13316.
  • Lesiuk M, Paduszyńska M, Greber KE. Synthetic antimicrobial immunomodulatory peptides: ongoing studies and clinical trials. Antibiotics. 2022;11(8):1062. doi: 10.3390/antibiotics11081062
  • Taniguchi M, Ochiai A, Namae T, et al. The antimicrobial and anti-endotoxic peptide AmyI-1-18 from rice α-amylase and its [N3L] analog promote angiogenesis and cell migration. Peptides. 2018;104:78–84. doi: 10.1016/j.peptides.2018.04.017
  • Xiao X, Lu H, Zhu W, et al. A novel antimicrobial peptide derived from bony fish IFN1 exerts potent antimicrobial and anti-inflammatory activity in mammals. Microbiol Spectr. 2022;10(2):e0201321. doi: 10.1128/spectrum.02013-21
  • Tian M, Wang K, Liang Y, et al. The first brevinin-1 antimicrobial peptide with LPS-Neutralizing and anti-inflammatory activities in vitro and in vivo. Front Microbiol. 2023;14:1102576. doi: 10.3389/fmicb.2023.1102576
  • Júnior PHDH V, Simon KS, De Castro RJA, et al. Peptides ToAP3 and ToAP4 decrease release of inflammatory cytokines through TLR-4 blocking. Biomed Pharmacother. 2019;118109152. doi: 10.1016/j.biopha.2019.109152
  • Abu-Amer Y. NF-κB signaling and bone resorption. Osteoporos Int. 2013;24(9):2377–2386. doi: 10.1007/s00198-013-2313-x
  • Hayden MS, Ghosh S. Regulation of NF-κB by TNF family cytokines. Semin Immunol. 2014;26(3):253–266. doi: 10.1016/j.smim.2014.05.004
  • Jimi E, Ghosh S. Role of nuclear factor-κB in the immune system and bone. Immunological Reviews. 2005;208(1):80–87. doi: 10.1111/j.0105-2896.2005.00329.x
  • Karnes JM, Daffner SD, Watkins CM. Multiple roles of tumor necrosis factor-alpha in fracture healing. Bone. 2015;20:87–93. doi: 10.1016/j.bone.2015.05.001
  • Lin T, Tamaki Y, Pajarinen J, et al. Chronic inflammation in biomaterial-induced periprosthetic osteolysis: NF-κB as a therapeutic target. Acta Biomaterialia. 2014;10(1):1–10. doi: 10.1016/j.actbio.2013.09.034
  • Li Y, Li A, Strait K, et al. Endogenous TNFα lowers maximum peak bone Mass and inhibits osteoblastic smad activation through NF-κB. J Bone Miner Res. 2007;22(5):646–655. doi: 10.1359/jbmr.070121
  • Jimi E, Hirata S, Shin M, et al. Molecular mechanisms of BMP-Induced bone formation: cross-talk between BMP and NF-κB signaling pathways in osteoblastogenesis. Japan Dent Sci Rev. 2010;46(1):33–42. doi: 10.1016/j.jdsr.2009.10.003
  • Gilbert LC, Rubin J, Nanes MS. The P55 TNF receptor mediates TNF inhibition of osteoblast differentiation independently of apoptosis. Am J Physiol Endocrinol Metab. 2005;288(5):E1011–E1018. doi: 10.1152/ajpendo.00534.2004
  • Eliseev R, Schwarz E, Zuscik M, et al. Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NFκB. Exp Cell Res. 2006;312(1):40–50. doi: 10.1016/j.yexcr.2005.09.016
  • Yamazaki M, Fukushima H, Shin M, et al. Tumor necrosis factor α represses bone morphogenetic protein (BMP) signaling by interfering with the DNA binding of smads through the activation of NF-κB. J Biol Chem. 2009;284(51):35987–35995. doi: 10.1074/jbc.M109.070540
  • Lu X, Gilbert L, He X, et al. Transcriptional Regulation of the Osterix (osx, Sp7) promoter by tumor necrosis factor identifies disparate effects of mitogen-activated protein kinase and NFκB pathways. J Biol Chem. 2006;281(10):6297–6306. doi: 10.1074/jbc.M507804200
  • Wang H, Lin L, Fu W, et al. Preventive effects of the novel antimicrobial peptide nal-P-113 in a rat periodontitis model by limiting the growth of porphyromonas gingivalis and modulating IL-1β and TNF-α production. BMC Complement Altern Med. 2017;17(1):426. doi: 10.1186/s12906-017-1931-9
  • Medzhitov R, Preston-Hurlburt P, Kopp E, et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell. 1998;2(2):253–258. doi: 10.1016/s1097-2765(00)80136-7
  • Su B-C, Chen J-Y. Antimicrobial peptide epinecidin-1 modulates MyD88 protein levels via the proteasome degradation pathway. Mar Drugs. 2017;15(11):362. doi: 10.3390/md15110362
  • Wei X, Zhang L, Zhang R, et al. A novel cecropin-LL37 hybrid peptide protects mice against EHEC infection-mediated changes in gut microbiota, intestinal inflammation, and impairment of mucosal barrier functions. Front Immunol. 2020;11:1361. doi: 10.3389/fimmu.2020.01361
  • Semple F, MacPherson H, Webb S, et al. Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF. Eur J Immunol. 2011;41(11):3291–3300. doi: 10.1002/eji.201141648
  • Zong X, Song D, Wang T, et al. LFP-20, a porcine lactoferrin peptide, ameliorates LPS-Induced inflammation via the MyD88/NF-κB and MyD88/MAPK signaling pathways. Dev Comp Immunol. 2015;52(2):123–131. doi: 10.1016/j.dci.2015.05.006
  • Blancas-Luciano BE, Becker-Fauser I, Zamora-Chimal J, et al. Antimicrobial and anti-inflammatory activity of cystatin C on human gingival fibroblast incubated with Porphyromonas Gingivalis. PeerJ. 2022;10:e14232. doi: 10.7717/peerj.14232
  • Saikh KU. MyD88 and beyond: a perspective on MyD88-targeted therapeutic approach for modulation of Host immunity. Immunol Res. 2021;69(2):117–128. doi: 10.1007/s12026-021-09188-2
  • Xuan M, Yan X, Liu X, et al. IRF1 negatively regulates nf-κb signaling by targeting MYD88 for degradation in teleost fish. Dev Comp Immunol. 2020;110103709. doi: 10.1016/j.dci.2020.103709
  • Suzuki J-I, Kodera Y, Miki S, et al. Anti-inflammatory action of cysteine derivative S-1-Propenylcysteine by inducing MyD88 degradation. Sci Rep. 2018;8(1):14148. doi: 10.1038/s41598-018-32431-0
  • Wu G, Khodaparast L, Khodaparast L, et al. Investigating the mechanism of action of aggregation-inducing antimicrobial pept-ins. Cell Chem Biol. 2021;28(4):524–536.e4. doi: 10.1016/j.chembiol.2020.12.008
  • Pane K, Sgambati V, Zanfardino A, et al. A new cryptic cationic antimicrobial peptide from human apolipoprotein E with antibacterial activity and immunomodulatory effects on human cells. FEBS J. 2016;283(11):2115–2131. doi: 10.1111/febs.13725
  • Baldwin AS. The NF-κB and IκB PROTEINS: new discoveries and insights. Annu Rev Immunol query. 1996;14(1):649–681. doi: 10.1146/annurev.immunol.14.1.649
  • Zhang Q, Yu S, Hu M, et al. Antibacterial and anti-inflammatory properties of peptide KN-17. Microorganisms. 2022;10(11):2114. doi: 10.3390/microorganisms10112114
  • Yu S, Zhang Q, Hu M, et al. Study on optimizing novel antimicrobial peptides with bifunctional activity to prevent and treat peri-implant disease. Antibiotics. 2022;11(11):1482. doi: 10.3390/antibiotics11111482
  • Kell DB, Heyden EL, Pretorius E. The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Front Immunol. 2020;11:1221. doi: 10.3389/fimmu.2020.01221
  • Gruden Š, Poklar Ulrih N. Diverse mechanisms of antimicrobial activities of Lactoferrins, Lactoferricins, and other lactoferrin-derived peptides. IJMS. 2021;22(20):11264. doi: 10.3390/ijms222011264
  • Sill C, Biehl R, Hoffmann B, et al. Structure and domain dynamics of human lactoferrin in solution and the influence of Fe(III)-ion ligand binding. BMC Biophys. 2016;9(1):7. doi: 10.1186/s13628-016-0032-3
  • Wang X, Peng H, Huang Y, et al. Post-translational modifications of IκBα: the state of the art. Front Cell Dev Biol. 2020;8574706. doi: 10.3389/fcell.2020.574706
  • Danks L, Takayanagi H. Immunology and bone. J Biochem. 2013;154(1):29–39. doi: 10.1093/jb/mvt049
  • Zhang D, Dang Y, Deng R, et al. Research progress of macrophages in bone regeneration. J Tissue Eng Regen Med. 2023;2023:1–13. doi: 10.1155/2023/1512966
  • Xiong Y, Mi B-B, Lin Z, et al. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Military Med Res. 2022;9:65. doi:10.1186/s40779-022-00426-8
  • Cui Y, Chen J, Zhang Z, et al The role of AMPK in macrophage metabolism, function and polarisation. J Transl Med. 2023;21(1):892. doi: 10.1186/s12967-023-04772-6
  • Iaquinta MR, Mazzoni E, Bononi I, et al. Adult stem cells for bone regeneration and repair. Front Cell Dev Biol. 2019;7:268. doi: 10.3389/fcell.2019.00268
  • Li J, Tan J, Martino MM, et al. Regulatory T-Cells: potential regulator of tissue repair and regeneration. Front Immunol. 2018;9. doi: 10.3389/fimmu.2018.00585
  • Pountos I, Panteli M, Lampropoulos A, et al. The role of peptides in bone healing and regeneration: a systematic review. BMC Med. 2016;14(1):103. doi: 10.1186/s12916-016-0646-y
  • Gaudino SJ, Kumar P. Cross-talk between antigen presenting cells and T cells impacts intestinal homeostasis, bacterial infections, and Tumorigenesis. Front Immunol. 2019;10:360. doi: 10.3389/fimmu.2019.00360
  • Srivastava A, Sharma H, Khanna S, et al. Interleukin-6 induced proliferation is attenuated by transforming growth factor-β-induced signaling in human hepatocellular carcinoma cells. Front Oncol. 2022;11:11. doi: 10.3389/fonc.2021.811941
  • Colamatteo A, Carbone F, Bruzzaniti S, et al. Molecular mechanisms controlling Foxp3 expression in health and autoimmunity: from epigenetic to post-translational regulation. Front Immunol. 2020;10:10. doi: 10.3389/fimmu.2019.03136
  • Lal G, Bromberg JS. Epigenetic mechanisms of regulation of Foxp3 expression. Blood. 2009;114(18):3727–3735. doi: 10.1182/blood-2009-05-219584
  • Duarte J, Agua-Doce A, Oliveira VG, et al. Modulation of IL-17 and Foxp3 expression in the prevention of autoimmune arthritis in mice. PLoS One. 2010;5(5):e10558. doi: 10.1371/journal.pone.0010558
  • Lochner M, Peduto L, Cherrier M, et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. J Exp Med. 2008;205(6):1381–1393. doi: 10.1084/jem.20080034
  • Yoshimura A, Wakabayashi Y, Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-β. J Biochem. 2010;147(6):781–792. doi: 10.1093/jb/mvq043
  • Sadowska JM, Ginebra M-P. Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B. 2020;8(41):9404–9427. doi: 10.1039/D0TB01379J
  • Zhang Q-Y, Yan Z-B, Meng Y-M, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 2021;8(1):48. doi: 10.1186/s40779-021-00343-2
  • Thalhamer T, McGrath MA, Harnett MM. Mapks and their relevance to arthritis and inflammation. Rheumatology. 2008;47(4):409–414. doi: 10.1093/rheumatology/kem297
  • Ma N, Teng X, Zheng Q, et al. The regulatory mechanism of P38/MAPK in the chondrogenic differentiation from bone marrow mesenchymal stem cells. J Orthop Surg Res. 2019;14(1):434. doi: 10.1186/s13018-019-1505-2
  • Li L, Jiang H, Chen R, et al. Human β-defensin 3 gene modification promotes the osteogenic differentiation of human periodontal ligament cells and bone repair in periodontitis. Int J Oral Sci. 2020;12(1):13. doi: 10.1038/s41368-020-0078-6
  • Yu X, Quan J, Long W, et al. LL-37 inhibits LPS-Induced inflammation and stimulates the osteogenic differentiation of BMSCs via P2X7 receptor and MAPK signaling pathway. Exp Cell Res. 2018;372(2):178–187. doi: 10.1016/j.yexcr.2018.09.024
  • Lee SM, Son K-N, Shah D, et al. Histatin-1 attenuates LPS-Induced inflammatory signaling in RAW264.7 macrophages. Int J Mol Sci. 2021;22(15):7856. doi: 10.3390/ijms22157856
  • Orvalho JM, Fernandes JCH, Moraes Castilho R, et al. ThE macrophage’s role on bone remodeling and osteogenesis: a systematic review. Clinic Rev Bone Miner Metab. 2023;21(1):1–13.
  • Ho C-H, Liao P-W, Fan C-K, et al. RNase 7 inhibits uropathogenic Escherichia Coli-induced inflammation in bladder cells under a high-glucose environment by regulating the JAK/STAT signaling pathway. Int J Mol Sci. 2022;23(9):5156. doi: 10.3390/ijms23095156
  • Damerau A, Gaber T, Ohrndorf S, et al. JAK/STAT activation: a general mechanism for bone development, homeostasis, and regeneration. Int J Mol Sci. 2020;21(23):9004. doi: 10.3390/ijms21239004
  • Sarapultsev A, Gusev E, Komelkova M, et al. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. Mol Biomed. 2023;4(1):40. doi: 10.1186/s43556-023-00151-1
  • Bjarnsholt T, Whiteley M, Rumbaugh KP, et al. The importance of understanding the infectious microenvironment. Lancet Infect Dis. 2022;22(3):e88–e92. doi: 10.1016/S1473-3099(21)00122-5
  • Kim Y-W, West XZ, Byzova TV. Inflammation and oxidative stress in angiogenesis and vascular disease. J Mol Med. 2013;91(3):323–328. doi: 10.1007/s00109-013-1007-3
  • Jeong J-H, Ojha U, Lee YM. Pathological angiogenesis and inflammation in tissues. Arch Pharm Res. 2021;44(1):1–15. doi: 10.1007/s12272-020-01287-2
  • Bonnet CS, Walsh DA. Osteoarthritis, angiogenesis and inflammation. Rheumatology. 2005;44(1):7–16. doi: 10.1093/rheumatology/keh344
  • Yoshimoto T, Kittaka M, Doan AAP, et al. Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection. Nat Commun. 2022;13(1):6648. doi: 10.1038/s41467-022-34352-z
  • Choi JUA, Kijas AW, Lauko J, et al. The mechanosensory role of osteocytes and implications for bone health and disease states. Front Cell Dev Biol. 2022;9:9. doi: 10.3389/fcell.2021.770143
  • Zhou M, Graves DT. Impact of the host response and osteoblast lineage cells on periodontal disease. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.998244
  • Imperlini E, Massaro F, Buonocore F. Antimicrobial peptides against bacterial pathogens: innovative delivery nanosystems for pharmaceutical applications. Antibiotics. 2023;12(1):184. doi: 10.3390/antibiotics12010184
  • Nayab S, Aslam MA, Ur RS, et al. A review of antimicrobial peptides: its function, mode of action and therapeutic potential. Int J Pept Res Ther. 2022;28(1):46.
  • Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. Osteoblast: relationship and consequences in osteomyelitis. Front Cell Infect Microbiol. 2015;5:85. doi: 10.3389/fcimb.2015.00085
  • Buccini DF, Cardoso MH, Franco OL. Antimicrobial peptides and cell-penetrating peptides for treating intracellular bacterial infections. Front Cell Infect Microbiol. 2021;10:612931. doi: 10.3389/fcimb.2020.612931
  • Stegen S, Carmeliet G. The skeletal vascular system – breathing life into bone tissue. Bone. 2018;115:50–58. doi: 10.1016/j.bone.2017.08.022
  • Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone. 2015;70:19–27. doi: 10.1016/j.bone.2014.09.017
  • Giannoni P, Scaglione S, Daga A, et al. Short-time survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration. Tissue Eng Part A. 2010;16(2):489–499. doi: 10.1089/ten.TEA.2009.0041
  • Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004;86(7):1541–1558. doi: 10.2106/00004623-200407000-00029
  • Nomi M, Atala A, Coppi PD, et al. Principals of neovascularization for tissue engineering. Mol Aspects Med. 2002;23(6):463–483. doi: 10.1016/s0098-2997(02)00008-0
  • Umehara Y, Takahashi M, Yue H, et al. The antimicrobial peptides human β-defensins induce the secretion of Angiogenin in human dermal fibroblasts. IJMS. 2022;23(15):8800. doi: 10.3390/ijms23158800
  • Zhou L, Han Y, Ding J, et al. Regulation of an Antimicrobial Peptide GL13K-Modified Titanium Surface on Osteogenesis, Osteoclastogenesis, and angiogenesis base on osteoimmunology. ACS Biomater Sci Eng. 2021;7(9):4569–4580. doi: 10.1021/acsbiomaterials.1c00639
  • Jin S, Yang R, Hu C, et al. Plant-derived polyphenol and LL-37 peptide-modified nanofibrous scaffolds for promotion of antibacterial activity, anti-inflammation, and type-H vascularized bone regeneration. ACS Appl Mater Interfaces. 2023;15(6):7804–7820. doi: 10.1021/acsami.2c20776
  • Peng Y, Wu S, Li Y, et al. Type H Blood vessels in bone modeling and remodeling. Theranostics. 2020;10(1):426–436. doi: 10.7150/thno.34126
  • Xu R, Yallowitz A, Qin A, et al. Targeting skeletal endothelium to ameliorate bone loss. Nat Med. 2018;24(6):823–833. doi: 10.1038/s41591-018-0020-z
  • Yang Y, Choi H, Seon M, et al. LL-37 stimulates the functions of adipose-derived stromal/stem cells via early growth response 1 and the MAPK pathway. Stem Cell Res Ther. 2016;7(1):58. doi: 10.1186/s13287-016-0313-4
  • Koczulla R, Von Degenfeld G, Kupatt C, et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest. 2003;111(11):1665–1672. doi: 10.1172/JCI17545
  • Torres P, Díaz J, Arce M, et al. The salivary peptide histatin-1 promotes endothelial cell adhesion, migration, and angiogenesis. FASEB J. 2017;31(11):4946–4958. doi: 10.1096/fj.201700085R
  • De Yang D, Chen Q, Schmidt AP, et al. Ll-37, the neutrophil granule–and epithelial cell–derived cathelicidin, utilizes formyl peptide receptor–like 1 (Fprl1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. 2000;192(7):1069–1074.
  • Karar J, Maity A. PI3K/AKT/mTOR Pathway in angiogenesis. Front Mol Neurosci. 2011;4:51. doi: 10.3389/fnmol.2011.00051
  • Guo H, Zhou H, Lu J, et al. Vascular endothelial growth factor: an attractive target in the treatment of Hypoxic/Ischemic brain injury. Neural Regen Res. 2016;11(1):174–179. doi: 10.4103/1673-5374.175067
  • D’Alessio S, Blasi F. The urokinase receptor as an entertainer of signal transduction. Front Biosci (Landmark Ed). 2009;14(12):4575–4587. doi: 10.2741/3550
  • Yu M, Qi B, Xiaoxiang W, et al. Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed Pharmacother. 2017;90677–90685. doi: 10.1016/j.biopha.2017.04.001
  • Maeda S, Omata M. Inflammation and cancer: role of nuclear factor-kappaB activation. Cancer Sci. 2008;99(5):836–842. doi: 10.1111/j.1349-7006.2008.00763.x
  • Guo Y-J, Pan W-W, Liu S-B, et al. ERK/MAPK signalling pathway and tumorigenesis (review). Exp Ther Med. 2020;19(3):1997–2007. doi: 10.3892/etm.2020.8454
  • Yanagisawa T, Ishii M, Takahashi M, et al. Human cathelicidin antimicrobial peptide LL-37 promotes Lymphangiogenesis in lymphatic endothelial cells through the ERK and akt signaling pathways. Mol Biol Rep. 2020;47(9):6841–6854. doi: 10.1007/s11033-020-05741-8
  • Idiiatullina E, Al-Azab M, Walana W, et al. EnDuo, a novel derivative of endostar, inhibits the migration of colon cancer cells, suppresses matrix metalloproteinase-2/9 expression and impedes AKT/ERK activation. Biomed Pharmacother. 2021;134111136. doi: 10.1016/j.biopha.2020.111136
  • Li Q, Li Z, Luo T, et al. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. Mol Biomed. 2022;3(1):47. doi: 10.1186/s43556-022-00110-2
  • Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146(6):873–887. doi: 10.1016/j.cell.2011.08.039
  • Phng L-K, Gerhardt H. Angiogenesis: a team effort coordinated by notch. Dev Cell. 2009;16(2):196–208. doi: 10.1016/j.devcel.2009.01.015
  • Maes C, Coenegrachts L, Stockmans I, et al. Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair. J Clin Invest. 2006;116(5):1230–1242.
  • Fernandez-Borja M. A tale of three GTPases and a RIN in endothelial cell adhesion. Cell Res. 2012;22(10):1426–1428. doi: 10.1038/cr.2012.118
  • Sandri C, Caccavari F, Valdembri D, et al. The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac Signaling. Cell Res. 2012;22(10):1479–1501. doi: 10.1038/cr.2012.110
  • Agerberth B, Charo J, Werr J, et al. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood. 2000;96(9):3086–3093.
  • Xin P, Xu X, Deng C, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol. 2020;80:106210. doi: 10.1016/j.intimp.2020.106210
  • Takahashi M, Umehara Y, Yue H, et al. The antimicrobial peptide human β-defensin-3 accelerates wound healing by promoting angiogenesis, cell migration, and proliferation through the FGFR/JAK2/STAT3 signaling pathway. Front Immunol. 2021;12712781. doi: 10.3389/fimmu.2021.712781
  • Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 2018;27(12):1984–2009. doi: 10.1002/pro.3519
  • Coffelt SB, Marini FC, Watson K, et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci U S A. 2009;106(10):3806–3811. doi: 10.1073/pnas.0900244106
  • Tamama K, Barbeau DJ. Early growth response genes signaling supports strong paracrine capability of mesenchymal stem cells. Stem Cells International. 2012;2012:1–7. doi: 10.1155/2012/428403
  • Tarcic G, Avraham R, Pines G, et al. EGR1 and the ERK-ERF axis drive mammary cell migration in response to EGF. FASEB J. 2012;26(4):1582–1592. doi: 10.1096/fj.11-194654
  • Zhao X, Patil S, Xu F, et al. Role of biomolecules in osteoclasts and their therapeutic potential for osteoporosis. Biomolecules. 2021;11(5):747. doi: 10.3390/biom11050747
  • Chen G, Deng C, Li Y-P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci query. 2012;8(2):272–288. doi: 10.7150/ijbs.2929
  • Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res. 2022;10(1):1–19. doi: 10.1038/s41413-022-00219-8
  • Du J, Yang J, He Z, et al. Osteoblast and osteoclast activity affect bone remodeling upon regulation by mechanical loading-induced leukemia inhibitory factor expression in osteocytes. Front Mol Biosci. 2020;7:585056. doi: 10.3389/fmolb.2020.585056
  • Wang L, You X, Zhang L, et al. Mechanical regulation of bone remodeling. Bone Res. 2022;10(1):1–15. doi: 10.1038/s41413-022-00190-4
  • Wada T, Nakashima T, Hiroshi N, et al. RANKL-RANK signaling in Osteoclastogenesis and bone disease. Trends Mol Med. 2006;12(1):17–25.
  • Epsley S, Tadros S, Farid A, et al. The effect of inflammation on bone. Front Physiol. 2020;11:11511799. doi: 10.3389/fphys.2020.511799
  • Zhang Y, Liang J, Liu P, et al. The RANK/RANKL/OPG system and tumor bone metastasis: potential mechanisms and therapeutic strategies. Front Endocrinol. 2022;131063815. doi: 10.3389/fendo.2022.1063815
  • Wang Y, Zhang J, Gao T, et al. Covalent immobilization of DJK-5 peptide on porous titanium for enhanced antibacterial effects and restrained inflammatory osteoclastogenesis. Colloids Surf B Biointerfaces. 2021;202:111697. doi: 10.1016/j.colsurfb.2021.111697
  • Sun Y, Li J, Xie X, et al. Macrophage-osteoclast associations: origin, polarization, and subgroups. Front Immunol. 2021;12:778078. doi: 10.3389/fimmu.2021.778078
  • Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev cell. 2002;3(6):889–901. doi: 10.1016/S1534-5807(02)00369-6
  • Kim JH, Kim N. Regulation of NFATc1 in osteoclast differentiation. J Bone Metab. 2014;21(4):233–241. doi: 10.11005/jbm.2014.21.4.233
  • Choe J-Y, Kim S-K. Melittin inhibits osteoclast formation through the Downregulation of the RANKL-RANK Signaling Pathway and the inhibition of interleukin-1β in murine macrophages. Int J Mol Med. 2017;39(3):539–548. doi: 10.3892/ijmm.2017.2876
  • Lee J-H, Jin H, Shim H-E, et al. Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaB signal. Mol Pharmacol. 2010;77(1):17–25.
  • Park S-H, Kim J-Y, Cheon Y-H, et al. Protocatechuic acid attenuates osteoclastogenesis by downregulating JNK/c-Fos/NFATc1 signaling and prevents inflammatory bone loss in mice. Phytother Res. 2016;30(4):604–612. doi: 10.1002/ptr.5565
  • Kim MH, Lee H, Ha IJ, et al. Zanthoxylum piperitum alleviates the bone loss in osteoporosis via inhibition of RANKL-Induced c-Fos/NFATc1/NF-κB pathway. Phytomedicine. 2021;80:153397. doi: 10.1016/j.phymed.2020.153397
  • Schalasta G, Doppler C. Inhibition of C-Fos transcription and phosphorylation of the serum response factor by an inhibitor of phospholipase C-Type reactions. Mol Cell Biol. 1990;10(10):5558–5561. doi: 10.1128/MCB.10.10.5558
  • Nakamura Y, Fukami K. Regulation and physiological functions of mammalian phospholipase C. J Biochem. 2017;161(4):315–321. doi: 10.1093/jb/mvw094
  • Datta S, Roy A. Antimicrobial peptides as potential therapeutic agents: a review. Int J Pept Res Ther. 2021;27(1):555–577. doi: 10.1007/s10989-020-10110-x
  • Evans KE, Fox SW. Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus. BMC Cell Biol. 2007;8:4. doi: 10.1186/1471-2121-8-4
  • Kim J-M, Lin C, Stavre Z, et al. Osteoblast-osteoclast communication and bone homeostasis. Cells. 2020;9(9):2073. doi: 10.3390/cells9092073
  • Kang Z, Wu B, Zhang L, et al. Metabolic regulation by biomaterials in osteoblast. Front Bioeng Biotechnol. 2023;11:1184463. doi: 10.3389/fbioe.2023.1184463
  • O’Neill E, Awale G, Daneshmandi L, et al. The roles of ions on bone regeneration. Drug Discovery Today. 2018;23(4):879–890. doi: 10.1016/j.drudis.2018.01.049
  • Rahman MS, Akhtar N, Jamil HM, et al. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 2015;3:15005. doi: 10.1038/boneres.2015.5
  • Salhotra A, Shah HN, Levi B, et al. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696–711. doi: 10.1038/s41580-020-00279-w
  • Wang RN, Green J, Wang Z, et al. Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis. 2014;1(1):87–105. doi: 10.1016/j.gendis.2014.07.005
  • Li H, Nie B, Du Z, et al. Bacitracin promotes osteogenic differentiation of human bone marrow mesenchymal stem cells by stimulating the bone morphogenetic protein-2/Smad axis. Biomed Pharmacother. 2018;103588–103597. doi: 10.1016/j.biopha.2018.04.084
  • Lee Y-S, Feng C-W, Peng M-Y, et al. Antiosteoporosis effects of a Marine antimicrobial peptide pardaxin via regulation of the osteogenesis pathway. Peptides. 2022;148:170686. doi: 10.1016/j.peptides.2021.170686
  • Wu WKK, Sung JJY, To KF, et al. The Host Defense peptide LL-37 activates the tumor-suppressing bone morphogenetic protein signaling via inhibition of proteasome in gastric cancer cells. J Cell Physiol. 2010;223(1):178–186.
  • Braicu C, Buse M, Busuioc C, et al. A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers (Basel). 2019;11(10):1618.
  • Brägelmann J, Lorenz C, Borchmann S, et al. MAPK-Pathway inhibition mediates inflammatory reprogramming and sensitizes tumors to targeted activation of innate immunity sensor RIG-I. Nat Commun. 2021;12(1):5505. doi: 10.1038/s41467-021-25728-8
  • Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Sig Transduct Target Ther. 2022;7(1):1–23. doi: 10.1038/s41392-021-00762-6
  • Dinić M, Jakovljević S, Đokić J, et al. Probiotic-mediated P38 MAPK immune signaling prolongs the survival of Caenorhabditis elegans exposed to pathogenic bacteria. Sci Rep. 2021;11(1):21258. doi: 10.1038/s41598-021-00698-5
  • Wang P, Jia X, Lu B, et al. Erianin suppresses constitutive activation of MAPK signaling pathway by inhibition of CRAF and MEK1/2. Sig Transduct Target Ther. 2023;8(1):1–15. doi: 10.1038/s41392-023-01329-3
  • Torres P, Hernández N, Mateluna C, et al. Histatin‐1 is a novel osteogenic factor that promotes bone cell adhesion, migration, and differentiation. J Tissue Eng Regen Med. 2021;15(4):336–346.
  • Mills R, Cheng TL, Mikulec K, et al. CSA-90 promotes bone formation and mitigates methicillin-resistant staphylococcus aureus infection in a rat open fracture model. Clin Orthop Relat Res. 2018;476(6):1311–1323. doi: 10.1097/01.blo.0000533624.79802.e1
  • Gudivada VN, Huang C-J, Luo Y-H, et al. A cyclic BMP-2 peptide upregulates BMP-2 protein-induced cell signaling in myogenic cells. Polymers. 2021;13(15):2549. doi: 10.3390/polym13152549
  • Ono M, Inkson CA, Kilts TM, et al. WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity. J Bone Miner Res. 2011;26(1):193–208. doi: 10.1002/jbmr.205
  • Zou M-L, Chen Z-H, Teng Y-Y, et al. The smad dependent TGF-β and BMP signaling pathway in bone remodeling and therapies. Front Mol Biosci. 2021;8:593310. doi: 10.3389/fmolb.2021.593310
  • Li H, Zhang S, Nie B, et al. The antimicrobial peptide KR-12 promotes the osteogenic differentiation of human bone marrow stem cells by stimulating BMP/SMAD signaling. RSC Adv. 2018;8(28):15547–15557. doi: 10.1039/C8RA00750K
  • Fu L, Jin P, Hu Y, et al. KR‑12‑a6 promotes the osteogenic differentiation of human bone marrow mesenchymal stem cells via BMP/SMAD signaling. Mol Med Rep. 2019. doi: 10.3892/mmr.2019.10843
  • Li H, Zhang S, Nie B, et al. KR-12-A5 reverses adverse effects of lipopolysaccharides on HBMSC osteogenic differentiation by influencing BMP/Smad and P38 MAPK signaling pathways. Front Pharmacol. 2019;10639. doi: 10.3389/fphar.2019.00639
  • Yakymovych I, Souchelnytskyi S. Regulation of smad function by phosphorylation. In: Dijke PT Heldin C-H, editors. Smad signal transduction. Dordrecht, Vol. 5. Netherlands: Proteins and Cell Regulation; Springer, 2006:p. 235–252. doi:10.1007/1-4020-4709-6_12
  • Imamura T, Oshima Y, Hikita A. Regulation of TGF- Family signalling by ubiquitination and deubiquitination. J Biochem. 2013;154(6):481–489. doi: 10.1093/jb/mvt097
  • Cui D, Lyu J, Li H, et al. Human β-defensin 3 inhibits periodontitis development by suppressing inflammatory responses in macrophages. Mol Immunol. 2017;91:65–74. doi: 10.1016/j.molimm.2017.08.012
  • Zhou J, Zhang Y, Li L, et al. Human β-defensin 3-combined gold nanoparticles for enhancement of osteogenic differentiation of human periodontal ligament cells in inflammatory microenvironments. IJN. 2018;13:555–567. doi: 10.2147/IJN.S150897
  • Yang Y, Wu J, Li Q, et al. A non-bactericidal cathelicidin provides prophylactic efficacy against bacterial infection by driving phagocyte influx. Elife. 2022;11:e72849. doi: 10.7554/eLife.72849
  • Pena OM, Afacan N, Pistolic J, et al. Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation. PloS One. 2013;8(1):e52449. doi: 10.1371/journal.pone.0052449
  • Choe H, Narayanan AS, Gandhi DA, et al. Immunomodulatory peptide IDR-1018 decreases implant infection and preserves osseointegration. Clin Orthop. 2015;473(9):2898–2907. doi: 10.1007/s11999-015-4301-2
  • Kim WH, Lillehoj HS, Min W. Evaluation of the immunomodulatory activity of the chicken NK-Lysin-derived peptide cNK-2. Sci Rep. 2017;7(1):45099. doi: 10.1038/srep45099
  • Zhuo H, Zhang X, Li M, et al. Antibacterial and anti-inflammatory properties of a novel antimicrobial peptide derived from LL-37. Antibiotics. 2022;11(6):754. doi: 10.3390/antibiotics11060754
  • van Zyl EM, Coburn JM. Functionalization of bacterial cellulose with the antimicrobial peptide KR-12 via chimerical cellulose-binding peptides. IJMS. 2024;25(3):1462. doi: 10.3390/ijms25031462
  • Li C, Xu X, Gao J, et al. 3D printed scaffold for repairing bone defects in apical periodontitis. BMC Oral Health. 2022;22(1):327. doi: 10.1186/s12903-022-02362-4
  • Bernegossi J, Calixto GMF, da S SP, et al. Peptide KSL-W-Loaded mucoadhesive liquid crystalline vehicle as an alternative treatment for multispecies oral biofilm. Molecules. 2016;21(1):37.
  • Cheng Y, Qin J, Huang Y, et al. The antimicrobial effects of PLGA microspheres containing the antimicrobial peptide OP-145 on clinically isolated pathogens in bone infections. Sci Rep. 2022;12(1):14541. doi: 10.1038/s41598-022-18690-y
  • Ming L, Huang J-A. The antibacterial effects of antimicrobial peptides OP-145 against clinically isolated multi-resistant strains. Jpn J Infect Dis. 2017;70(6):601–603. doi: 10.7883/yoken.JJID.2017.090
  • He Y, Jin Y, Ying X, et al. Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair. Regen Biomater. 2020;7(5):515–525. doi: 10.1093/rb/rbaa015
  • Hu Q, Chen C, Lin Z, et al. The antimicrobial peptide Esculentin-1a(1–21)NH2 stimulates wound healing by promoting angiogenesis through the PI3K/AKT pathway. Biol Pharm Bull. 2023;46(3):382–393. doi: 10.1248/bpb.b22-00098
  • Lee TW, Heo SC, Kwon YW, et al. The anti-microbial peptide SR-0379 stimulates human endothelial progenitor cell-mediated repair of peripheral artery diseases. BMB Rep. 2017;50(10):504–509.
  • Kanazawa K, Okumura K, Ogawa H, et al. An antimicrobial peptide with angiogenic properties, AG-30/5C, activates human mast cells through the MAPK and NF-κB pathways. Immunol Res. 2016;64(2):594–603. doi: 10.1007/s12026-015-8759-5
  • Tripathi JK, Pal S, Awasthi B, et al. Variants of self-assembling peptide, KLD-12 that show both rapid fracture healing and antimicrobial properties. Biomaterials. 2015;56:92–103. doi: 10.1016/j.biomaterials.2015.03.046
  • Park O-J, Kim J, Ahn KB, et al. Human β-defensins differently affect proliferation, differentiation, and mineralization of osteoblast-like MG63 Cells. J Mol Med. 2017;95(12):1315–1325.
  • Sun P, Shi A, Shen C, et al. Human salivary Histatin‐1 (Hst1) promotes bone morphogenetic protein 2 (BMP2)‐induced Osteogenesis and angiogenesis. FEBS Open Bio. 2020;10(8):1503–1515. doi: 10.1002/2211-5463.12906
  • Structure‐activity analysis of Histatin, a potent wound healing peptide from human saliva: cyclization of Histatin potentiates molar activity 1000‐fold. doi:10.1096/fj.09-137588
  • Torres P, Díaz J, Arce M, et al. The salivary peptide Histatin‐1 promotes endothelial cell adhesion, migration, and angiogenesis. FASEB J. 2017;31(11):4946–4958. doi: 10.1096/fj.201700085R
  • Van Dijk IA, Beker AF, Jellema W, et al. Histatin 1 enhances cell adhesion to titanium in an implant integration Model. J Dent Res. 2017;96(4):430–436. doi: 10.1177/0022034516681761
  • Torres P, Hernández N, Mateluna C, et al. Histatin-1 is a novel osteogenic factor that promotes bone cell adhesion, migration, and differentiation. J Tissue Eng Regen Med. 2021;15(4):336–346.
  • Lu R-J, Xing H-L, Liu C-J, et al. Antibacterial peptides inhibit MC3T3-E1 cells apoptosis induced by TNF-α through P38 MAPK pathway. Ann Transl Med. 2020;8(15):943–943. doi: 10.21037/atm-20-5338
  • Horibe K, Nakamichi Y, Uehara S, et al. Roles of cathelicidin-related antimicrobial peptide in murine osteoclastogenesis. immunology. 2013;140(3):344–351.
  • Makeudom A, Supanchart C, Montreekachon P, et al. The antimicrobial peptide, human β-defensin-1, potentiates in vitro osteoclastogenesis via activation of the P44/42 mitogen-activated protein kinases. Peptides. 2017;95:33–39. doi: 10.1016/j.peptides.2017.07.004
  • Chen X, Zhou XC, Liu S, et al. In vivo osseointegration of dental implants with an antimicrobial peptide coating. J Mater Sci Mater Med. 2017;28(5):76. doi: 10.1007/s10856-017-5885-8
  • Yuan X, Ouyang L, Luo Y, et al. Multifunctional sulfonated polyetheretherketone coating with beta-defensin-14 for yielding durable and broad-spectrum antibacterial activity and osseointegration. Acta Biomaterialia. 2019;86:323–337. doi: 10.1016/j.actbio.2019.01.016
  • Makihira S, Shuto T, Nikawa H, et al. Titanium immobilized with an antimicrobial peptide derived from histatin accelerates the differentiation of osteoblastic cell line, MC3T3-E1. IJMS. 2010;11(4):1458–1470. doi: 10.3390/ijms11041458
  • Wang B, Bian A, Jia F, et al. “Dual-functional” strontium titanate nanotubes designed based on fusion peptides simultaneously enhancing anti-infection and osseointegration. Biomater Sci. 2022;133:112650. doi: 10.1016/j.msec.2022.112650
  • Chen L, Shao L, Wang F, et al. Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. RSC Adv. 2019;9(19):10494–10507. doi: 10.1039/C8RA08788A
  • Li X, Contreras-Garcia A, LoVetri K, et al. Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces: Dual function biomimetic peptide p15-csp. J Biomed Mater Res. 2015;103(12):3736–3746. doi: 10.1002/jbm.a.35511
  • Yang G, Huang T, Wang Y, et al. Sustained release of antimicrobial peptide from self-assembling hydrogel enhanced osteogenesis. J Biomater Sci Polym Ed. 2018;29(15):1812–1824. doi: 10.1080/09205063.2018.1504191
  • Castelletto V, Seitsonen J, Ruokolainen J, et al. Alpha helical surfactant-like peptides self-assemble into pH-dependent nanostructures. Soft Matter. 2021;17(11):3096–3104. doi: 10.1039/D0SM02095H
  • Castelletto V, Seitsonen J, Ruokolainen J, et al. Peptide nanotubes self-assembled from leucine-rich alpha helical surfactant-like peptides. Chem Commun. 2020;56(80):11977–11980. doi: 10.1039/D0CC04299D
  • Miller RE, Grodzinsky AJ, Vanderploeg EJ, et al. Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair. Osteoarthritis Cartilage. 2010;18(12):1608–1619. doi: 10.1016/j.joca.2010.09.004
  • Hong S, Jiang W, Ding Q, et al. The Current progress of tetrahedral DNA nanostructure for antibacterial application and bone tissue regeneration. IJN. 2023;18:3761–3780. doi: 10.2147/IJN.S403882
  • Li M, Bai J, Tao H, et al. Rational Integration of Defense and repair synergy on PEEK osteoimplants via biomimetic peptide clicking strategy. Bioact Mater. 2022;8309–8324. doi: 10.1016/j.bioactmat.2021.07.002
  • Li N, Bai J, Wang W, et al. Facile and versatile surface functional polyetheretherketone with enhanced bacteriostasis and osseointegrative capability for implant application. ACS Appl Mater Interfaces. 2021;13(50):59731–59746. doi: 10.1021/acsami.1c19834
  • Boto AC, González C, Hernández D, et al. Site-selective modification of peptide backbones. Org Chem Front. 2021;8(23):6720–6759. doi: 10.1039/D1QO00892G
  • Cardoso P, Glossop H, Meikle TG, et al. Molecular engineering of antimicrobial peptides: microbial Targets,Peptide motifs and translation opportunities. Biophys Rev. 2021;13(1):35–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.