66
Views
0
CrossRef citations to date
0
Altmetric
Review

The future of cancer vaccines against colorectal cancer

, , , &
Pages 269-284 | Received 25 Dec 2023, Accepted 08 Apr 2024, Published online: 21 Apr 2024

References

  • Huang J, Lucero-Prisno DE 3rd, Zhang L, et al. Updated epidemiology of gastrointestinal cancers in East Asia. Nat Rev Gastroenterol Hepatol. 2023;20:271–287. doi: 10.1038/s41575-022-00726-3
  • Lenz H-J, van Cutsem E, Luisa Limon M, et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J Clin Oncol. 2022;40(2):161–170. doi: 10.1200/JCO.21.01015
  • André T, Shiu K-K, Kim TW, et al. Pembrolizumab in microsatellite-Instability–High advanced colorectal cancer. N Engl J Med. 2020;383(23):2207–2218. doi: 10.1056/NEJMoa2017699
  • Hosseinalizadeh H, Rahmati M, Ebrahimi A, et al. Current status and challenges of vaccination therapy for glioblastoma. Mol Cancer Ther. 2023;22(4):435–446. doi: 10.1158/1535-7163.MCT-22-0503
  • Butterfield LH. Cancer vaccines. BMJ. 2015;350:h988–h988. doi: 10.1136/bmj.h988
  • Saxena M, van Der Burg SH, Melief CJM, et al. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21(6):360–378. doi: 10.1038/s41568-021-00346-0
  • Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science. 2018;359:1355–1360. doi: 10.1126/science.aar7112
  • Adamik J, Butterfield LH. What’s next for cancer vaccines. Sci Transl Med. 2022;14(670):eabo4632. doi: 10.1126/scitranslmed.abo4632
  • Liu X, Huang P, Yang R, et al. mRNA cancer vaccines: construction and boosting strategies. ACS Nano. 2023;17(20):19550–19580. doi: 10.1021/acsnano.3c05635
  • Jia W, Zhang T, Huang H, et al. Colorectal cancer vaccines: the current scenario and future prospects. Front Immunol. 2022;13:942235. doi: 10.3389/fimmu.2022.942235
  • Kim S, Kim BJ, Kim I, et al. A phase II study of chemotherapy in combination with telomerase peptide vaccine (GV1001) as second-line treatment in patients with metastatic colorectal cancer. J Cancer. 2022;13(4):1363–1369. doi: 10.7150/jca.70385
  • Hubbard JM, Tőke ER, Moretto R, et al. Safety and activity of PolyPEPI1018 combined with maintenance therapy in metastatic colorectal cancer: an open-label, multicenter, phase ib study. Clin Cancer Res Off J Am Assoc Cancer Res. 2022;28(13):2818–2829. doi: 10.1158/1078-0432.CCR-22-0112
  • Belnoue E, Mayol J-F, Carboni S, et al. Targeting self- and neoepitopes with a modular self-adjuvanting cancer vaccine. JCI Insight. 2019;4(11):e127305. doi: 10.1172/jci.insight.127305
  • Pascolutti R, Yeturu L, Philippin G, et al. ATP128 clinical therapeutic cancer vaccine activates NF-κB and IRF3 pathways through TLR4 and TLR2 in human monocytes and dendritic cells. Cancers (Basel). 2022;14(20):14. doi: 10.3390/cancers14205134
  • Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–226. doi: 10.1038/nature23003
  • Yu Y-J, Shan N, Li L-Y, et al. Preliminary clinical study of personalized neoantigen vaccine therapy for microsatellite stability (MSS)-advanced colorectal cancer. Cancer Immunol Immunother CII. 2023;72(7):2045–2056. doi: 10.1007/s00262-023-03386-7
  • Lim C-Y, Kim D-S, Kang Y, et al. Immune responses to plant-derived recombinant colorectal cancer glycoprotein EpCAM-FcK fusion protein in mice. Biomol Ther. 2022;30(6):546–552. doi: 10.4062/biomolther.2022.103
  • Park SH, Ji K-Y, Park SY, et al. Immunotherapeutic effects of recombinant colorectal cancer antigen produced in tomato fruits. Sci Rep. 2022;12(1):9723. doi: 10.1038/s41598-022-13839-1
  • Harari A, Graciotti M, Bassani-Sternberg M, et al. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov. 2020;19(9):635–652. doi: 10.1038/s41573-020-0074-8
  • Small EJ, Schellhammer PF, Higano CS, et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 2006;24(19):3089–3094. doi: 10.1200/JCO.2005.04.5252
  • Español-Rego M, Fernández-Martos C, Elez E, et al. A phase I-II multicenter trial with Avelumab plus autologous dendritic cell vaccine in pre-treated mismatch repair-proficient (MSS) metastatic colorectal cancer patients; GEMCAD 1602 study. Cancer Immunol Immunother CII. 2023;72(4):827–840. doi: 10.1007/s00262-022-03283-5
  • McCormick AL, Anderson TS, Daugherity EA, et al. Targeting the pericyte antigen DLK1 with an alpha type-1 polarized dendritic cell vaccine results in tumor vascular modulation and protection against colon cancer progression. Front Immunol. 2023;14:1241949. doi: 10.3389/fimmu.2023.1241949
  • Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017;5(1):3–8. doi: 10.1158/2326-6066.CIR-16-0297
  • Jordan KR, Kapoor P, Spongberg E, et al. Immunosuppressive myeloid-derived suppressor cells are increased in splenocytes from cancer patients. Cancer Immunol Immunother. 2017;66(4):503–513. doi: 10.1007/s00262-016-1953-z
  • Huang L, Ding Z, Zhang Y. CD24 (+) MDSC-DCs Induced by CCL5-deficiency showed improved antitumor activity as tumor vaccines. Glob Med Genet. 2022;9(2):097–109. doi: 10.1055/s-0042-1743569
  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872. doi: 10.1016/j.cell.2007.11.019
  • Xue D, Lu S, Zhang H, et al. Induced pluripotent stem cell-derived engineered T cells, natural killer cells, macrophages, and dendritic cells in immunotherapy. Trends Biotechnol. 2023;41(7):907–922. doi: 10.1016/j.tibtech.2023.02.003
  • Maruoka S, Ojima T, Iwamoto H, et al. Tumor RNA transfected DCs derived from iPS cells elicit cytotoxicity against cancer cells induced from colorectal cancer patients in vitro. Sci Rep. 2022;12(1):3295. doi: 10.1038/s41598-022-07305-1
  • Wang R, Zhu T, Hou B, et al. An iPSC-derived exosome-pulsed dendritic cell vaccine boosts antitumor immunity in melanoma. Mol Ther J Am Soc Gene Ther. 2023;31(8):2376–2390. doi: 10.1016/j.ymthe.2023.06.005
  • Yarchoan M, Huang C, Zhu Q, et al. A phase 2 study of GVAX colon vaccine with cyclophosphamide and pembrolizumab in patients with mismatch repair proficient advanced colorectal cancer. Cancer Med. 2020;9(4):1485–1494. doi: 10.1002/cam4.2763
  • Harris JE, Ryan L, Hoover HC, et al. Adjuvant active specific immunotherapy for stage II and III colon cancer with an autologous tumor cell vaccine: eastern cooperative oncology group study E5283. J Clin Oncol. 2000;18(1):148–148. doi: 10.1200/JCO.2000.18.1.148
  • Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–1059. doi: 10.1038/nm1622
  • Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13(1):54–61. doi: 10.1038/nm1523
  • Tesniere A, Schlemmer F, Boige V, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29(4):482–491. doi: 10.1038/onc.2009.356
  • Fucikova J, Kralikova P, Fialova A, et al. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res. 2011;71(14):4821–4833. doi: 10.1158/0008-5472.CAN-11-0950
  • Lei J, Zhou Z, Fang J, et al. Aspirin induces immunogenic cell death and enhances cancer immunotherapy in colorectal cancer. Int Immunopharmacol. 2023;121:110350. doi: 10.1016/j.intimp.2023.110350
  • Hufnagel S, Xu H, Colemam MF, et al. 4-(N)-Docosahexaenoyl 2’, 2’-difluorodeoxycytidine induces immunogenic cell death in colon and pancreatic carcinoma models as a single agent. Cancer Chemother Pharmacol. 2022;89:59–69. doi: 10.1007/s00280-021-04367-2
  • Wang Z, Li W, Park J, et al. Camptothesome elicits immunogenic cell death to boost colorectal cancer immune checkpoint blockade. J Control Release Off J Control Release Soc. 2022;349:929–939. doi: 10.1016/j.jconrel.2022.07.042
  • Qin X, Yang T, Xu H, et al. Dying tumor cells-inspired vaccine for boosting humoral and cellular immunity against cancer. J Control Release Off J Control Release Soc. 2023;359:359–372. doi: 10.1016/j.jconrel.2023.05.044
  • Hao Y, Gu Z, Yu Z, et al. Photodynamic therapy in combination with the hepatitis b core virus-like particles (HBc VLPs) to prime anticancer immunity for colorectal cancer treatment. Cancers (Basel). 2022;14(11):14. doi: 10.3390/cancers14112724
  • Wang X, Ren L, Ye L, et al. Photodynamic therapy augments oxaliplatin-induced immunogenic cell death in colorectal cancer. Cent-Eur J Immunol. 2023;48(3):189–202. doi: 10.5114/ceji.2023.132053
  • Sun Z, Zhao M, Wang W, et al. 5-ALA mediated photodynamic therapy with combined treatment improves anti-tumor efficacy of immunotherapy through boosting immunogenic cell death. Cancer Lett. 2023;554:216032. doi: 10.1016/j.canlet.2022.216032
  • Remic T, Sersa G, Levpuscek K, et al. Tumor cell-based vaccine contributes to local tumor irradiation by eliciting a tumor model-dependent systemic immune response. Front Immunol. 2022;13:974912. doi: 10.3389/fimmu.2022.974912
  • Chai C, Zhang J, Zhou Y, et al. The effects of oncolytic pseudorabies virus vaccine strain inhibited the growth of colorectal cancer HCT-8 cells in vitro and in vivo. Anim Open Access J MDPI. 2022;12(18):12. doi: 10.3390/ani12182416
  • Zhang Y, Gabere M, Taylor MA, et al. Repurposing live attenuated trivalent MMR vaccine as cost-effective cancer immunotherapy. Front Oncol. 2022;12:1042250. doi: 10.3389/fonc.2022.1042250
  • Gögenur M, Balsevicius L, Bulut M, et al. Neoadjuvant intratumoral influenza vaccine treatment in patients with proficient mismatch repair colorectal cancer leads to increased tumor infiltration of CD8+ T cells and upregulation of PD-L1: a phase 1/2 clinical trial. J Immunother Cancer. 2023;11(5):11. doi: 10.1136/jitc-2023-006774
  • Huang K-Y, Lai C-Y, Hung W-Z, et al. A novel engineered AAV-based neoantigen vaccine in combination with radiotherapy eradicates tumors. Cancer Immunol Res. 2023;11(1):123–136. doi: 10.1158/2326-6066.CIR-22-0318
  • Morse MA, Chaudhry A, Gabitzsch ES, et al. Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients. Cancer Immunol Immunother. 2013;62(8):1293–1301. doi: 10.1007/s00262-013-1400-3
  • Palmer CD, Rappaport AR, Davis MJ, et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results. Nat Med. 2022;28(8):1619–1629. doi: 10.1038/s41591-022-01937-6
  • Redman JM, Tsai Y-T, Weinberg BA, et al. A randomized phase II trial of mFOLFOX6 + bevacizumab alone or with AdCEA vaccine + avelumab immunotherapy for untreated metastatic colorectal cancer. Oncology. 2022;27(3):198–209. doi: 10.1093/oncolo/oyab046
  • Nguyen H-M, Gaikwad S, Oladejo M, et al. Targeting ubiquitin-like protein, ISG15, as a novel tumor associated antigen in colorectal cancer. Cancers (Basel). 2023;15(4):15. doi: 10.3390/cancers15041237
  • Anderson TS, McCormick AL, Daugherity EA, et al. Listeria-based vaccination against the pericyte antigen RGS5 elicits anti-vascular effects and colon cancer protection. Oncoimmunology. 2023;12(1):2260620. doi: 10.1080/2162402X.2023.2260620
  • Morse MA, Hobeika AC, Osada T, et al. An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of tregs to induce immune responses in humans with advanced cancer. J Clin Invest. 2010;120(9):3234–3241. doi: 10.1172/JCI42672
  • Flickinger JCJ, Singh J, Yarman Y, et al. T-Cell responses to immunodominant listeria epitopes limit vaccine-directed responses to the colorectal cancer antigen, guanylyl cyclase C. Front Immunol. 2022;13:855759. doi: 10.3389/fimmu.2022.855759
  • Snook AE, Baybutt TR, Xiang B, et al. Split tolerance permits safe Ad5-GUCY2C-PADRE vaccine-induced T-cell responses in colon cancer patients. J Immunother Cancer. 2019;7(1):104. doi: 10.1186/s40425-019-0576-2
  • Morse M, Niedzwiecki D, Marshall J, et al. Survival rates among patients vaccinated following resection of colorectal cancer metastases in a phase II randomized study compared with contemporary controls. J Clin Oncol. 2011;29(15_suppl):3557–3557. doi: 10.1200/jco.2011.29.15_suppl.3557
  • Harrop R, Connolly N, Redchenko I, et al. Vaccination of colorectal cancer patients with modified vaccinia ankara delivering the tumor antigen 5T4 (TroVax) induces immune responses which correlate with disease control: a phase I/II trial. Clin Cancer Res. 2006;12(11):3416–3424. doi: 10.1158/1078-0432.CCR-05-2732
  • Zhao T, Cai Y, Jiang Y, et al. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther. 2023;8(1):283. doi: 10.1038/s41392-023-01557-7
  • Turley JL, Lavelle EC. Resolving adjuvant mode of action to enhance vaccine efficacy. Curr Opin Immunol. 2022;77:102229. doi: 10.1016/j.coi.2022.102229
  • Le Naour J, Galluzzi L, Zitvogel L, et al. Trial watch: TLR3 agonists in cancer therapy. Oncoimmunology. 2020;9(1):1771143. doi: 10.1080/2162402X.2020.1771143
  • Wang W, Zhu Q, Jin Y, et al. Self-immolated nanoadjuvant for in situ vaccination immunotherapy of colorectal cancer. Adv Healthc Mater. 2023;12(23):e2300524. doi: 10.1002/adhm.202300524
  • Guo Z, Noh I, Zhu AT, et al. Cancer Cell Membrane Nanodiscs for Antitumor Vaccination. Nano Lett. 2023;23(17):7941–7949. doi: 10.1021/acs.nanolett.3c01775
  • Okada H, Takahashi K, Yaku H, et al. In situ vaccination using unique TLR9 ligand K3-SPG induces long-lasting systemic immune response and synergizes with systemic and local immunotherapy. Sci Rep. 2022;12(1):2132. doi: 10.1038/s41598-022-05702-0
  • Paladhi A, Daripa S, Mondal I, et al. Targeting thymidine phosphorylase alleviates resistance to dendritic cell immunotherapy in colorectal cancer and promotes antitumor immunity. Front Immunol. 2022;13:988071. doi: 10.3389/fimmu.2022.988071
  • Eini L, Naseri M, Karimi-Busheri F, et al. Preventive cancer stem cell-based vaccination modulates tumor development in syngeneic colon adenocarcinoma murine model. J Cancer Res Clin Oncol. 2023;149(7):4101–4116. doi: 10.1007/s00432-022-04303-8
  • Luchner M, Reinke S, Milicic A. TLR agonists as vaccine adjuvants targeting cancer and infectious diseases. Pharmaceutics. 2021;13(2):142. doi: 10.3390/pharmaceutics13020142
  • Dranoff G. GM‐CSF‐based cancer vaccines. Immunol Rev. 2002;188(1):147–154. doi: 10.1034/j.1600-065X.2002.18813.x
  • Duinkerken S, Horrevorts SK, Kalay H, et al. Glyco-dendrimers as intradermal anti-tumor vaccine targeting multiple skin DC subsets. Theranostics. 2019;9(20):5797–5809. doi: 10.7150/thno.35059
  • Chen X. Emerging adjuvants for intradermal vaccination. Int J Pharm. 2023;632:122559. doi: 10.1016/j.ijpharm.2022.122559
  • Sun Z, Jiang J, Chen X. Evaluation of therapeutic equivalence for the follow-on version of intravenously administered non-biological complex drugs. Clin Pharmacokinet. 2020;59(8):995–1004. doi: 10.1007/s40262-020-00889-9
  • Kanasty R, Dorkin JR, Vegas A, et al. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12(11):967–977. doi: 10.1038/nmat3765
  • Ghaemi A, Vakili-Azghandi M, Abnous K, et al. Oral non-viral gene delivery platforms for therapeutic applications. Int J Pharm. 2023;642:123198. doi: 10.1016/j.ijpharm.2023.123198
  • Alias NAR, Hoo WPY, Siak PY, et al. Effect of secretion efficiency of mutant KRAS neoantigen by Lactococcus lactis on the immune response of a mucosal vaccine delivery vehicle targeting colorectal cancer. Int J Mol Sci. 2023;24(10):24. doi: 10.3390/ijms24108928
  • Zhu S, Zhang T, Zheng L, et al. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol OncolJ Hematol Oncol. 2021;14(1):156. doi: 10.1186/s13045-021-01164-5
  • Li Y, Zhu X, You J, et al. Efficacy of bivalent CEACAM6/4-1BBL genetic vaccine combined with anti-PD1 antibody in MC38 tumor model of mice. Heliyon. 2022;8(10):e10775. doi: 10.1016/j.heliyon.2022.e10775
  • Mougel A, Terme M, Tanchot C. Therapeutic cancer vaccine and combinations with antiangiogenic therapies and immune checkpoint blockade. Front Immunol. 2019;10:467. doi: 10.3389/fimmu.2019.00467
  • Huinen ZR, Huijbers EJM, Van Beijnum JR, et al. Anti-angiogenic agents — overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat Rev Clin Oncol. 2021;18(8):527–540. doi: 10.1038/s41571-021-00496-y
  • Mougel A, Méjean F, Tran T, et al. Synergistic effect of combining sunitinib with a peptide-based vaccine in cancer treatment after microenvironment remodeling. Oncoimmunology. 2022;11(1):2110218. doi: 10.1080/2162402X.2022.2110218
  • Tan X, Xu L, Jian X, et al. Pgnneo: a proteogenomics-based neoantigen prediction pipeline in noncoding regions. Cells. 2023;12(5):12. doi: 10.3390/cells12050782
  • Yu Y, Zhang J, Ni L, et al. Neoantigen-reactive T cells exhibit effective anti-tumor activity against colorectal cancer. Hum Vaccines Immunother. 2022;18(1):1–11. doi: 10.1080/21645515.2021.1891814
  • Ajiro M, Awaya T, Kim YJ, et al. Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia. Nat Commun. 2021;12(1):4507. doi: 10.1038/s41467-021-24705-5
  • Matsushima S, Ajiro M, Iida K, et al. Chemical induction of splice-neoantigens attenuates tumor growth in a preclinical model of colorectal cancer. Sci Transl Med. 2022;14(673):eabn6056. doi: 10.1126/scitranslmed.abn6056
  • Charneau J, Suzuki T, Shimomura M, et al. Development of antigen-prediction algorithm for personalized neoantigen vaccine using human leukocyte antigen transgenic mouse. Cancer Sci. 2022;113(4):1113–1124. doi: 10.1111/cas.15291
  • Ke C-H, Wang Y-S, Chiang H-C, et al. Xenograft cancer vaccines prepared from immunodeficient mice increase tumor antigen diversity and host T cell efficiency against colorectal cancers. Cancer Lett. 2022;526:66–75. doi: 10.1016/j.canlet.2021.11.012
  • Cleyle J, Hardy M-P, Minati R, et al. Immunopeptidomic analyses of colorectal cancers with and without microsatellite instability. Mol Cell Proteomics Mcp. 2022;21:100228. doi: 10.1016/j.mcpro.2022.100228
  • Wang Q, Wang Z, Sun X, et al. Lymph node-targeting nanovaccines for cancer immunotherapy. J Controlled Release. 2022;351:102–122. doi: 10.1016/j.jconrel.2022.09.015
  • Li T, Qian C, Gu Y, et al. Current progress in the development of prophylactic and therapeutic vaccines. Sci China Life Sci. 2023;66(4):679–710. doi: 10.1007/s11427-022-2230-4
  • Azharuddin M, Zhu GH, Sengupta A, et al. Nano toolbox in immune modulation and nanovaccines. Trends Biotechnol. 2022;40(10):1195–1212. doi: 10.1016/j.tibtech.2022.03.011
  • Su T, Liu X, Lin S, et al. Ionizable polymeric nanocarriers for the codelivery of bi-adjuvant and neoantigens in combination tumor immunotherapy. Bioact Mater. 2023;26:169–180. doi: 10.1016/j.bioactmat.2023.02.016
  • Chen F, Li T, Zhang H, et al. Acid-ionizable iron nanoadjuvant augments sting activation for personalized vaccination immunotherapy of cancer. Adv Mater Deerfield Beach Fla. 2023;35(10):e2209910. doi: 10.1002/adma.202209910
  • Huang F, Zhang Q, Xiao J, et al. Cancer cell membrane-coated gambogic acid nanoparticles for effective anticancer vaccination by activating dendritic cells. Int J Nanomedicine. 2023;18:2261–2273. doi: 10.2147/IJN.S408521
  • Huang Y, Nahar S, Alam MM, et al. Reactive oxygen species-sensitive biodegradable mesoporous silica nanoparticles harboring TheraVac elicit tumor-specific immunity for colon tumor treatment. ACS Nano. 2023;17(20):19740–19752. doi: 10.1021/acsnano.3c03195
  • Dejea CM, Fathi P, Craig JM, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359(6375):592–597. doi: 10.1126/science.aah3648
  • Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature. 2020;580(7802):269–273. doi: 10.1038/s41586-020-2080-8
  • Tong Y, Lu G, Wang Z, et al. Tubeimuside I improves the efficacy of a therapeutic Fusobacterium nucleatum dendritic cell-based vaccine against colorectal cancer. Front Immunol. 2023;14:1154818. doi: 10.3389/fimmu.2023.1154818
  • Holt RA. Oncomicrobial vaccines: The potential for a Fusobacterium nucleatum vaccine to improve colorectal cancer outcomes. Cell Host Microbe. 2023;31(1):141–145.
  • Padma S, Patra R, Sen Gupta PS, et al. Cell surface fibroblast activation protein-2 (Fap2) of Fusobacterium nucleatum as a vaccine candidate for therapeutic intervention of human colorectal cancer: an immunoinformatics approach. Vaccines. 2023;11(3):11. doi: 10.3390/vaccines11030525
  • Zhang X, Wang Y, Fan R, et al. Quantitative proteomic analysis of outer membrane vesicles from Fusobacterium nucleatum cultivated in the mimic cancer environment. Microbiol Spectr. 2023;11(4):e0039423. doi: 10.1128/spectrum.00394-23
  • Khan S, Aziz S, Waqas M, et al. Targeted vaccine development against Bilophila wadsworthia to curb colon diseases: a multiepitope approach based on reverse vaccinology and computational analysis. Int J Biol Macromol. 2023;250:126002. doi: 10.1016/j.ijbiomac.2023.126002
  • Motamedi H, Ari MM, Shahlaei M, et al. Designing multi-epitope vaccine against important colorectal cancer (CRC) associated pathogens based on immunoinformatics approach. BMC Bioinf. 2023;24(1):65. doi: 10.1186/s12859-023-05197-0
  • Priyamvada P, Ramaiah S. Pan-genome and reverse vaccinology approaches to design multi-epitope vaccine against Epstein-Barr virus associated with colorectal cancer. Immunol Res. 2023;71(6):887–908. doi: 10.1007/s12026-023-09403-2
  • Frick C, Rumgay H, Vignat J, et al. Quantitative estimates of preventable and treatable deaths from 36 cancers worldwide: a population-based study. Lancet Glob Health. 2023;11(11):e1700–e1712. doi: 10.1016/S2214-109X(23)00406-0
  • Bolivar AM, Duzagac F, Sinha KM, et al. Advances in vaccine development for cancer prevention and treatment in lynch syndrome. Mol Aspects Med. 2023;93:101204. doi: 10.1016/j.mam.2023.101204
  • Solomon A, Alteber Z, Bassan D, et al. On the development of a neoantigen vaccine for the prevention of lynch syndrome. Int J Cancer. 2022;151(1):107–119. doi: 10.1002/ijc.33971
  • Gebert J, Gelincik O, Oezcan-Wahlbrink M, et al. Recurrent frameshift neoantigen vaccine elicits protective immunity with reduced tumor burden and improved overall survival in a lynch syndrome mouse model. Gastroenterology. 2021;161(4):1288–1302.e13. doi: 10.1053/j.gastro.2021.06.073
  • Jackson K, Samaddar S, Markiewicz MA, et al. Vaccination-Based Immunoprevention of Colorectal Tumors: a primer for the clinician. J Clin Gastroenterol. 2023;57(3):246–252. doi: 10.1097/MCG.0000000000001808
  • Kijima T, Hazama S, Tsunedomi R, et al. MicroRNA-6826 and −6875 in plasma are valuable non-invasive biomarkers that predict the efficacy of vaccine treatment against metastatic colorectal cancer. Oncol Rep. 2017;37(1):23–30. doi: 10.3892/or.2016.5267
  • Shindo Y, Hazama S, Nakamura Y, et al. miR-196b, miR-378a and miR-486 are predictive biomarkers for the efficacy of vaccine treatment in colorectal cancer. Oncol Lett. 2017;14(2):1355–1362. doi: 10.3892/ol.2017.6303
  • Alahdal M, Elkord E. Non-coding RNAs in cancer immunotherapy: predictive biomarkers and targets. Clin Transl Med. 2023;13(9):e1425. doi: 10.1002/ctm2.1425
  • Tanaka H, Hazama S, Iida M, et al. miR-125b-1 and miR-378a are predictive biomarkers for the efficacy of vaccine treatment against colorectal cancer. Cancer Sci. 2017;108(11):2229–2238. doi: 10.1111/cas.13390
  • Hao Y-J, Yang C-Y, Chen M-H, et al. Potential values of circulating microRNA-21 to predict early recurrence in patients with colorectal cancer after treatments. J Clin Med. 2022;11(9):2400. doi: 10.3390/jcm11092400

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.