131
Views
0
CrossRef citations to date
0
Altmetric
Review

Cancer drugs with high repositioning potential for Alzheimer’s disease

, , , , , , , & show all
Pages 311-332 | Received 25 Aug 2023, Accepted 13 Dec 2023, Published online: 26 Dec 2023

References

  • Nandi A, Counts N, Chen S, et al. Global and regional projections of the economic burden of Alzheimer’s disease and related dementias from 2019 to 2050: a value of statistical life approach. EClinicalMedicine. 2022 Sep;51:101580.
  • 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 Apr;19(4):1598–1695. doi: 10.1002/alz.13016
  • Zetterberg H, Bendlin BB. Biomarkers for Alzheimer’s disease-preparing for a new era of disease-modifying therapies. Mol Psychiatry. 2021 Jan;26(1):296–308. doi: 10.1038/s41380-020-0721-9
  • Hampel H, Vassar R, De Strooper B, et al. The beta-secretase BACE1 in Alzheimer’s disease. Biol Psychiatry. 2021 Apr 15;89(8):745–756. doi: 10.1016/j.biopsych.2020.02.001
  • Decourt B, D’Souza GX, Shi J, et al. The cause of Alzheimer’s disease: the theory of multipathology convergence to chronic neuronal stress. Aging Dis. 2022 Feb;13(1):37–60. doi: 10.14336/AD.2021.0529
  • Decourt B, Boumelhem F, Pope ED 3rd, et al. Critical appraisal of amyloid lowering agents in AD. Curr Neurol Neurosci Rep. 2021 Jun 10;21(8):39. doi: 10.1007/s11910-021-01125-y
  • van Bokhoven P, de Wilde A, Vermunt L, et al. The Alzheimer’s disease drug development landscape. Alzheimers Res Ther. 2021 Nov 11;13(1):186. doi: 10.1186/s13195-021-00927-z
  • Cummings J, Zhou Y, Lee G, et al. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement (N Y). 2023 Apr;9(2):e12385.
  • Atri A. Current and Future Treatments in Alzheimer’s Disease. Semin Neurol. 2019 Apr;39(2):227–240. doi: 10.1055/s-0039-1678581
  • Majidazar R, Rezazadeh-Gavgani E, Sadigh-Eteghad S, et al. Pharmacotherapy of Alzheimer’s disease: an overview of systematic reviews. Eur J Clin Pharmacol. 2022 Oct;78(10):1567–1587.
  • Yiannopoulou KG, Papageorgiou SG. Current and Future Treatments in Alzheimer Disease: An Update. J Cent Nerv Syst Dis. 2020;12:1179573520907397. doi: 10.1177/1179573520907397
  • Mahase E. Alzheimer’s disease: lecanemab gets full FDA approval and black box safety warning. BMJ. 2023 Jul 7;382:1580. doi: 10.1136/bmj.p1580
  • Hampel H, Elhage A, Cho M, et al. Amyloid-related imaging abnormalities (ARIA): radiological, biological and clinical characteristics. Brain. 2023 Jun 6;146(11):4414–4424. doi: 10.1093/brain/awad188
  • Honig LS, Barakos J, Dhadda S, et al. ARIA in patients treated with lecanemab (BAN2401) in a phase 2 study in early Alzheimer’s disease. Alzheimers Dement (N Y). 2023 Jan;9(1):e12377.
  • Knopman DS. Lecanemab reduces brain amyloid-beta and delays cognitive worsening. Cell Rep Med. 2023 Mar 21;4(3):100982. doi: 10.1016/j.xcrm.2023.100982
  • Wang Y. An insider’s perspective on FDA approval of aducanumab. Alzheimers Dement (N Y). 2023 Apr;9(2):e12382. doi: 10.1002/trc2.12382
  • Sims JR, Zimmer JA, Evans CD, et al. Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA. 2023 Aug 8;330(6):512–527. doi: 10.1001/jama.2023.13239
  • Decourt B, Drumm-Gurnee D, Wilson J, et al. Poor safety and tolerability hamper reaching a potentially therapeutic dose in the use of thalidomide for Alzheimer’s disease: results from a double-blind, placebo-controlled trial. Curr Alzheimer Res. 2017;14(4):403–411. doi: 10.2174/1567205014666170117141330
  • Decourt B, Wilson J, Ritter A, et al. MCLENA-1: a Phase II clinical trial for the assessment of safety, tolerability, and efficacy of lenalidomide in patients with mild cognitive impairment due to Alzheimer’s disease. Open Access J Clin Trials. 2020;12:1–13. doi: 10.2147/OAJCT.S221914
  • Fuchs O. Treatment of lymphoid and myeloid malignancies by immunomodulatory drugs. Cardiovasc Hematol Disord Drug Targets. 2019;19(1):51–78. doi: 10.2174/1871529X18666180522073855
  • Andrews PLR, Williams RSB, Sanger GJ. Anti-emetic effects of thalidomide: evidence, mechanism of action, and future directions. Curr Res Pharmacol Drug Discov. 2022;3:100138. doi: 10.1016/j.crphar.2022.100138
  • Vargesson N. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res C Embryo Today. 2015 Jun;105(2):140–156. doi: 10.1002/bdrc.21096
  • Teo S, Resztak KE, Scheffler MA, et al. Thalidomide in the treatment of leprosy. Microbes Infect. 2002 Sep;4(11):1193–1202.
  • Grogan DP, Winston NR. Thalidomide. Treasure Island (FL): StatPearls; 2023.
  • Eleutherakis-Papaiakovou V, Bamias A, Dimopoulos MA. Thalidomide in cancer medicine. Ann Oncol. 2004 Aug;15(8):1151–1160. doi: 10.1093/annonc/mdh300
  • Lonial S, Popat R, Hulin C, et al. Iberdomide plus dexamethasone in heavily pretreated late-line relapsed or refractory multiple myeloma (CC-220-MM-001): a multicentre, multicohort, open-label, phase 1/2 trial. Lancet Haematol. 2022 Nov;9(11):e822–e832.
  • Nastoupil LJ, Kuruvilla J, Chavez JC, et al. Phase Ib study of avadomide (CC-122) in combination with rituximab in patients with relapsed/refractory diffuse large B-cell lymphoma and follicular lymphoma. EJHaem. 2022 May;3(2):394–405.
  • Majumder S, Sreedhara SR, Banerjee S, et al. TNF alpha signaling beholds thalidomide saga: a review of mechanistic role of TNF-alpha signaling under thalidomide. Curr Top Med Chem. 2012;12(13):1456–1467. doi: 10.2174/156802612801784443
  • Moreira AL, Sampaio EP, Zmuidzinas A, et al. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med. 1993 Jun 1;177(6):1675–1680. doi: 10.1084/jem.177.6.1675
  • Bradley JR. TNF-mediated inflammatory disease. J Pathol. 2008 Jan;214(2):149–160. doi: 10.1002/path.2287
  • Bird S, Pawlyn C. IMiD resistance in multiple myeloma: current understanding of the underpinning biology and clinical impact. Blood. 2023 Jul 13;142(2):131–140. doi: 10.1182/blood.2023019637
  • Mercurio A, Adriani G, Catalano A, et al. A mini-review on thalidomide: chemistry, mechanisms of action, therapeutic potential and anti-angiogenic properties in multiple myeloma. Curr Med Chem. 2017;24(25):2736–2744. doi: 10.2174/0929867324666170601074646
  • Martiniani R, Di Loreto V, Di Sano C, et al. Biological activity of lenalidomide and its underlying therapeutic effects in multiple myeloma. Adv Hematol. 2012;2012:842945. doi: 10.1155/2012/842945
  • Chanan-Khan AA, Swaika A, Paulus A, et al. Pomalidomide: the new immunomodulatory agent for the treatment of multiple myeloma. Blood Cancer J. 2013 Sep 6;3(9):e143. doi: 10.1038/bcj.2013.38
  • Ito T, Ando H, Suzuki T, et al. Identification of a primary target of thalidomide teratogenicity. Science. 2010 Mar 12;327(5971):1345–1350. doi: 10.1126/science.1177319
  • Asatsuma-Okumura T, Ito T, Handa H. Molecular mechanisms of the teratogenic effects of thalidomide. Pharmaceuticals (Basel). 2020 May 13;13(5):95. doi: 10.3390/ph13050095
  • Higgins JJ, Pucilowska J, Lombardi RQ, et al. A mutation in a novel ATP-dependent lon protease gene in a kindred with mild mental retardation. Neurology. 2004 Nov 23;63(10):1927–1931. doi: 10.1212/01.WNL.0000146196.01316.A2
  • Ito T, Yamaguchi Y, Handa H. Exploiting ubiquitin ligase cereblon as a target for small-molecule compounds in medicine and chemical biology. Cell Chem Biol. 2021 Jul 15;28(7):987–999. doi: 10.1016/j.chembiol.2021.04.012
  • Costacurta M, He J, Thompson PE, et al. Molecular Mechanisms of Cereblon-Interacting Small Molecules in Multiple Myeloma Therapy. J Pers Med. 2021 Nov 11;11(11):1185. doi: 10.3390/jpm11111185
  • Lopez-Girona A, Mendy D, Ito T, et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. 2012 Nov;26(11):2326–2335.
  • Barankiewicz J, Salomon-Perzynski A, Misiewicz-Krzeminska I, et al. CRL4(CRBN) E3 ligase complex as a therapeutic target in multiple myeloma. Cancers (Basel). 2022 Sep 16;14(18):4492. doi: 10.3390/cancers14184492
  • Sato T, Ito T, Handa H. Cereblon-based small-molecule compounds to control neural stem cell proliferation in regenerative medicine. Front Cell Dev Biol. 2021;9:629326. doi: 10.3389/fcell.2021.629326
  • Kronke J, Fink EC, Hollenbach PW, et al. Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature. 2015 Jul 9;523(7559):183–188. doi: 10.1038/nature14610
  • Raedler LA. Revlimid (lenalidomide) Now FDA approved as first-line therapy for patients with multiple myeloma. Am Health Drug Benefits. 2016 Mar;9(Spec Feature):140–143.
  • Talati C, Sallman D, List A. Lenalidomide: myelodysplastic syndromes with del(5q) and beyond. Semin Hematol. 2017 Jul;54(3):159–166. doi: 10.1053/j.seminhematol.2017.06.003
  • Fotiou D, Gavriatopoulou M, Terpos E, et al. Pomalidomide- and dexamethasone-based regimens in the treatment of refractory/relapsed multiple myeloma. Ther Adv Hematol. 2022;13:20406207221090089. doi: 10.1177/20406207221090089
  • Ramaswami R, Polizzotto MN, Lurain K, et al. Safety, activity, and long-term outcomes of pomalidomide in the treatment of Kaposi sarcoma among individuals with or without HIV infection. Clin Cancer Res. 2022 Mar 1;28(5):840–850. doi: 10.1158/1078-0432.CCR-21-3364
  • Jung YJ, Tweedie D, Scerba MT, et al. Neuroinflammation as a factor of neurodegenerative disease: thalidomide analogs as treatments. Front Cell Dev Biol. 2019;7:313. doi: 10.3389/fcell.2019.00313
  • Jung YJ, Tweedie D, Scerba MT, et al. Repurposing Immunomodulatory Imide Drugs (IMiDs) in Neuropsychiatric and Neurodegenerative Disorders. Front Neurosci. 2021;15:656921. doi: 10.3389/fnins.2021.656921
  • Kopp KO, Greer ME, Glotfelty EJ, et al. A New generation of IMiDs as treatments for neuroinflammatory and neurodegenerative disorders. Biomolecules. 2023 Apr 26;13(5):747. doi: 10.3390/biom13050747
  • Alkam T, Nitta A, Mizoguchi H, et al. Restraining tumor necrosis factor-alpha by thalidomide prevents the amyloid beta-induced impairment of recognition memory in mice. Behav Brain Res. 2008 May 16;189(1):100–106. doi: 10.1016/j.bbr.2007.12.014
  • He P, Cheng X, Staufenbiel M, et al. Long-term treatment of thalidomide ameliorates amyloid-like pathology through inhibition of beta-secretase in a mouse model of Alzheimer’s disease. PLoS One. 2013;8(2):e55091. doi: 10.1371/journal.pone.0055091
  • Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 May;7(3):270–279.
  • Sekeres MA, Swern AS, Giagounidis A, et al. The impact of lenalidomide exposure on response and outcomes in patients with lower-risk myelodysplastic syndromes and del(5q). Blood Cancer J. 2018 Sep 21;8(10):90. doi: 10.1038/s41408-018-0126-z
  • Cruz MP. Lenalidomide (Revlimid): a thalidomide analogue in combination with dexamethasone for the treatment of all patients with multiple myeloma. P T. 2016 May;41(5):308–313. doi: 10.1111/j.1365-2710.2008.00920.x
  • Crescioli G, Bonaiuti R, Corradetti R, et al. Pharmacovigilance and pharmacoepidemiology as a guarantee of patient safety: the role of the clinical Pharmacologist. J Clin Med. 2022 Jun 20;11(12):3552. doi: 10.3390/jcm11123552
  • Dawson MI, Xia Z. The retinoid X receptors and their ligands. Biochim Biophys Acta. 2012 Jan;1821(1):21–56. doi: 10.1016/j.bbalip.2011.09.014
  • Watanabe M, Kakuta H. Retinoid X receptor antagonists. Int J Mol Sci. 2018 Aug 10;19(8):2354. doi: 10.3390/ijms19082354
  • Mangelsdorf DJ, Ong ES, Dyck JA, et al. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature. 1990 May 17;345(6272):224–229. doi: 10.1038/345224a0
  • Aranda A, Pascual A. Nuclear hormone receptors and gene expression. Physiol Rev. 2001 Jul;81(3):1269–1304. doi: 10.1152/physrev.2001.81.3.1269
  • de Lera AR, Bourguet W, Altucci L, et al. Design of selective nuclear receptor modulators: RAR and RXR as a case study. Nat Rev Drug Discov. 2007 Oct;6(10):811–820.
  • Osz J, McEwen AG, Poussin-Courmontagne P, et al. Structural basis of natural promoter recognition by the retinoid X nuclear receptor. Sci Rep. 2015 Feb 3;5(1):8216. doi: 10.1038/srep08216
  • Sharma S, Shen T, Chitranshi N, et al. Retinoid X Receptor: Cellular and Biochemical Roles of Nuclear Receptor with a Focus on Neuropathological Involvement. Mol Neurobiol. 2022 Apr;59(4):2027–2050. doi: 10.1007/s12035-021-02709-y
  • de Almeida NR, Conda-Sheridan M. A review of the molecular design and biological activities of RXR agonists. Med Res Rev. 2019 Jul;39(4):1372–1397. doi: 10.1002/med.21578
  • Hurst RE. Bexarotene ligand pharmaceuticals. Curr Opin Invest Drugs. 2000 Dec;1(4):514–523.
  • Dragnev KH, Petty WJ, Shah SJ, et al. A proof-of-principle clinical trial of bexarotene in patients with non-small cell lung cancer. Clin Cancer Res. 2007 Mar 15;13(6):1794–1800. doi: 10.1158/1078-0432.CCR-06-1836
  • Esteva FJ, Glaspy J, Baidas S, et al. Multicenter phase II study of oral bexarotene for patients with metastatic breast cancer. J Clin Oncol. 2003 Mar 15;21(6):999–1006. doi: 10.1200/JCO.2003.05.068
  • Shen D, Yu X, Wu Y, et al. Emerging roles of bexarotene in the prevention, treatment and anti-drug resistance of cancers. Expert Rev Anticancer Ther. 2018 May;18(5):487–499.
  • Wu J, Wang X, Zhang M, et al. RXR agonists enhance lenalidomide anti-myeloma activity and T cell functions while retaining glucose-lowering effect. Cells. 2023 Aug 3;12(15):1993. doi: 10.3390/cells12151993
  • Martino OD, Welch JS. Retinoic Acid Receptors in Acute Myeloid Leukemia Therapy. Cancers (Basel). 2019 Dec 1;11(12):1915. doi: 10.3390/cancers11121915
  • Cramer PE, Cirrito JR, Wesson DW, et al. ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science. 2012 Mar 23;335(6075):1503–1506. doi: 10.1126/science.1217697
  • Fitz NF, Cronican AA, Lefterov I, et al. Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science. 2013 May 24;340(6135):924–c. doi: 10.1126/science.1235809
  • Price AR, Xu G, Siemienski ZB, et al. Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science. 2013 May 24;340(6135):924–d. doi: 10.1126/science.1234089
  • Tesseur I, Lo AC, Roberfroid A, et al. Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science. 2013 May 24;340(6135):924–e. doi: 10.1126/science.1233937
  • Veeraraghavalu K, Zhang C, Miller S, et al. Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science. 2013 May 24;340(6135):924–f. doi: 10.1126/science.1235505
  • LaClair KD, Manaye KF, Lee DL, et al. Treatment with bexarotene, a compound that increases apolipoprotein-E, provides no cognitive benefit in mutant APP/PS1 mice. Mol Neurodegener. 2013 Jun 13;8(1):18. doi: 10.1186/1750-1326-8-18
  • Tai LM, Koster KP, Luo J, et al. Amyloid-beta pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo. J Biol Chem. 2014 Oct 31;289(44):30538–30555. doi: 10.1074/jbc.M114.600833
  • Munoz-Cabrera JM, Sandoval-Hernandez AG, Nino A, et al. Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old triple transgenic mice model of Alzheimer s disease. PLoS One. 2019;14(10):e0223578. doi: 10.1371/journal.pone.0223578
  • Cummings JL, Zhong K, Kinney JW, et al. Double-blind, placebo-controlled, proof-of-concept trial of bexarotene in moderate Alzheimer’s disease. Alzheimers Res Ther. 2016 Jan 29;8(1):4. doi: 10.1186/s13195-016-0173-2
  • Kawahara K, Nishi K, Suenobu M, et al. Oral administration of synthetic retinoid Am80 (tamibarotene) decreases brain beta-amyloid peptides in APP23 mice. Biol Pharm Bull. 2009 Jul;32(7):1307–1309.
  • Kawahara K, Suenobu M, Ohtsuka H, et al. Cooperative therapeutic action of retinoic acid receptor and retinoid x receptor agonists in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2014;42(2):587–605. doi: 10.3233/JAD-132720
  • Kitaoka K, Shimizu N, Ono K, et al. The retinoic acid receptor agonist Am80 increases hippocampal ADAM10 in aged SAMP8 mice. Neuropharmacology. 2013 Sep;72:58–65.
  • Qiao A, Li J, Hu Y, et al. Reduction BACE1 expression via suppressing NF-kappaB mediated signaling by Tamibarotene in a mouse model of Alzheimer’s disease. IBRO Neurosci Rep. 2021 Jun;10:153–160.
  • Decourt B, Sabbagh MN. The importance of genomics in advancing the diagnosis and treatment of dementia. Lancet Neurol. 2022 Aug;21(8):676–677. doi: 10.1016/S1474-4422(22)00234-4
  • Michmerhuizen AR, Spratt DE, Pierce LJ, et al. Are we there yet? Understanding androgen receptor signaling in breast cancer. NPJ Breast Cancer. 2020;6(1):47. doi: 10.1038/s41523-020-00190-9
  • Gamat M, McNeel DG. Androgen deprivation and immunotherapy for the treatment of prostate cancer. Endocr Relat Cancer. 2017 Dec;24(12):T297–T310. doi: 10.1530/ERC-17-0145
  • Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: A structural perspective. Protein Sci. 2018 Nov;27(11):1876–1892. doi: 10.1002/pro.3496
  • Klinge CM. Steroid hormone receptors and signal transduction processes. Prin Endocrine Hormone Action. 2018;187–232. https://doi.org/10.1007/978-3-319-44675-2_9
  • Saha S, Dey S, Nath S. Steroid hormone receptors: links with cell cycle machinery and breast cancer progression. Front Oncol. 2021;11:620214. doi: 10.3389/fonc.2021.620214
  • Ganguly S, Naik D, Muskara A, et al. The nexus of endocrine signaling and cancer: how steroid hormones influence genomic stability. Endocrinology. 2021 Jan 1;162(1). doi: 10.1210/endocr/bqaa177
  • Trevino LS, Gorelick DA. The interface of nuclear and membrane steroid signaling. Endocrinology. 2021 Aug 1;162(8). doi: 10.1210/endocr/bqab107
  • Abraham J, Staffurth J. Hormonal therapy for cancer. Medicine. 2016;44(1):30–33. doi: 10.1016/j.mpmed.2015.10.014
  • Tolkach Y, Joniau S, Van Poppel H. Luteinizing hormone-releasing hormone (LHRH) receptor agonists vs antagonists: a matter of the receptors? BJU Int. 2013 Jun;111(7):1021–1030. doi: 10.1111/j.1464-410X.2013.11796.x
  • Ulm M, Ramesh AV, McNamara KM, et al. Therapeutic advances in hormone-dependent cancers: focus on prostate, breast and ovarian cancers. Endocr Connect. 2019 Feb 1;8(2):R10–R26. doi: 10.1530/EC-18-0425
  • Desai K, McManus JM, Sharifi N. Hormonal therapy for prostate cancer. Endocr Rev. 2021 May 25;42(3):354–373. doi: 10.1210/endrev/bnab002
  • Patel R, Klein P, Tiersten A, et al. An emerging generation of endocrine therapies in breast cancer: a clinical perspective. NPJ Breast Cancer. 2023 Apr 5;9(1):20. doi: 10.1038/s41523-023-00523-4
  • Fleshner NE, Alibhai SMH, Connelly KA, et al. Adherence to oral hormonal therapy in advanced prostate cancer: a scoping review. Ther Adv Med Oncol. 2023;15:17588359231152845. doi: 10.1177/17588359231152845
  • Alex AB, Pal SK, Agarwal N. CYP17 inhibitors in prostate cancer: latest evidence and clinical potential. Ther Adv Med Oncol. 2016 Jul;8(4):267–275. doi: 10.1177/1758834016642370
  • Patel V, Liaw B, Oh W. The role of ketoconazole in current prostate cancer care. Nat Rev Urol. 2018 Oct;15(10):643–651. doi: 10.1038/s41585-018-0077-y
  • Chaurasia M, Singh R, Sur S, et al. A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front Pharmacol. 2023;14:1184472. doi: 10.3389/fphar.2023.1184472
  • Lee JH, Byun MS, Yi D. et al. Sex-specific association of sex hormones and gonadotropins, with brain amyloid and hippocampal neurodegeneration. Neurobiol Aging. 2017 Oct;58:34–40.
  • Marriott RJ, Murray K, Flicker L, et al. Lower serum testosterone concentrations are associated with a higher incidence of dementia in men: the UK biobank prospective cohort study. Alzheimers Dement. 2022 Oct;18(10):1907–1918.
  • Bianchi VE. Impact of testosterone on Alzheimer’s disease. World J Mens Health. 2022 Apr;40(2):243–256. doi: 10.5534/wjmh.210175
  • Yeap BB, Flicker L. Testosterone, cognitive decline and dementia in ageing men. Rev Endocr Metab Disord. 2022 Dec;23(6):1243–1257. doi: 10.1007/s11154-022-09728-7
  • Buskbjerg CR, Gravholt CH, Dalby HR, et al. Testosterone supplementation and cognitive functioning in men-a systematic review and meta-analysis. J Endocr Soc. 2019 Aug 1;3(8):1465–1484. doi: 10.1210/js.2019-00119
  • Lyon C, Wong A, DeSanto K. Testosterone replacement and improved memory. Can Fam Physician. 2021 Jan;67(1):e9. doi: 10.46747/cfp.6701e9
  • Irvine K, Laws KR, Gale TM, et al. Greater cognitive deterioration in women than men with Alzheimer’s disease: a meta analysis. J Clin Exp Neuropsychol. 2012;34(9):989–998. doi: 10.1080/13803395.2012.712676
  • Imtiaz B, Tuppurainen M, Rikkonen T, et al. Postmenopausal hormone therapy and Alzheimer disease: a prospective cohort study. Neurology. 2017 Mar 14;88(11):1062–1068. doi: 10.1212/WNL.0000000000003696
  • Pourhadi N, Mørch LS, Holm EA, et al.Menopausal hormone therapy and dementia: nationwide, nested case-control study. BMJ. 2023 Jun 29. 381:1499. doi: 10.1136/bmj.p1499
  • Sung YF, Tsai CT, Kuo CY, et al. Use of hormone replacement therapy and risk of dementia: a nationwide cohort study. Neurology. 2022 Sep 2;99(17). doi: 10.1212/WNL.0000000000200960
  • Saleh RNM, Hornberger M, Ritchie CW, et al. Hormone replacement therapy is associated with improved cognition and larger brain volumes in at-risk APOE4 women: results from the European prevention of Alzheimer’s disease (EPAD) cohort. Alzheimers Res Ther. 2023 Jan 9;15(1):10. doi: 10.1186/s13195-022-01121-5
  • Butler T, Goldberg JD, Galvin JE. et al. Rationale, study design and implementation of the LUCINDA trial: leuprolide plus cholinesterase inhibition to reduce neurologic decline in Alzheimer’s. Contemp Clin Trials. 2021 Aug;107:106488.
  • Casadesus G, Webber KM, Atwood CS, et al. Luteinizing hormone modulates cognition and amyloid-beta deposition in Alzheimer APP transgenic mice. Biochim Biophys Acta. 2006 Apr;1762(4):447–452.
  • Bowen RL, Perry G, Xiong C, et al. A clinical study of lupron depot in the treatment of women with Alzheimer’s disease: preservation of cognitive function in patients taking an acetylcholinesterase inhibitor and treated with high dose lupron over 48 weeks. J Alzheimers Dis. 2015;44(2):549–560. doi: 10.3233/JAD-141626
  • Jayadevappa R, Chhatre S, Malkowicz SB, et al. Association between androgen deprivation therapy use and diagnosis of dementia in men with prostate cancer. JAMA Netw Open. 2019 Jul 3;2(7):e196562. doi: 10.1001/jamanetworkopen.2019.6562
  • Okwuosa TM, Morgans A, Rhee JW, et al. Impact of hormonal therapies for treatment of hormone-dependent cancers (breast and prostate) on the cardiovascular system: effects and modifications: a scientific statement from the American heart association. Circ Genom Precis Med. 2021 Jun;14(3):e000082.
  • Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome. Science. 2002 Dec 6;298(5600):1912–1934. doi: 10.1126/science.1075762
  • Modi V, Dunbrack RL Jr. Defining a new nomenclature for the structures of active and inactive kinases. Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6818–6827. doi: 10.1073/pnas.1814279116
  • Zhang H, Cao X, Tang M, et al. A subcellular map of the human kinome. Elife. 2021 May 14;10. doi: 10.7554/eLife.64943
  • Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010 Jun 25;141(7):1117–1134. doi: 10.1016/j.cell.2010.06.011
  • Pottier C, Fresnais M, Gilon M, et al. Tyrosine kinase inhibitors in cancer: breakthrough and challenges of targeted therapy. Cancers (Basel). 2020 Mar 20;12(3):731. doi: 10.3390/cancers12030731
  • Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021 May 31;6(1):201. doi: 10.1038/s41392-021-00572-w
  • Sudhesh Dev S, Zainal Abidin SA, Farghadani R, et al. Receptor tyrosine kinases and their signaling pathways as therapeutic targets of curcumin in cancer. Front Pharmacol. 2021;12:772510. doi: 10.3389/fphar.2021.772510
  • Wintheiser GA, Silberstein P. Physiology, tyrosine kinase receptors. Treasure Island: (FL): StatPearls; 2023.
  • Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 2018 Feb 19;17(1):58. doi: 10.1186/s12943-018-0782-4
  • Darling TK, Lamb TJ. Emerging Roles for eph receptors and ephrin ligands in immunity. Front Immunol. 2019;10:1473. doi: 10.3389/fimmu.2019.01473
  • Yamaoka T, Kusumoto S, Ando K, et al. Receptor tyrosine kinase-targeted cancer therapy. Int J Mol Sci. 2018 Nov 6;19(11):3491. doi: 10.3390/ijms19113491
  • Johnston SR, Leary A. Lapatinib: a novel EGFR/HER2 tyrosine kinase inhibitor for cancer. Drugs Today (Barc). 2006 Jul;42(7):441–453. doi: 10.1358/dot.2006.42.7.985637
  • Greenblatt K, Khaddour K. Trastuzumab. Treasure Island (FL): StatPearls; 2023.
  • Song JH, Yu DH, Hwang TS, et al. Expression of platelet-derived growth factor receptor-alpha/ss, vascular endothelial growth factor receptor-2, c-Abl, and c-Kit in canine granulomatous meningoencephalitis and necrotizing encephalitis. Vet Med Sci. 2020 Nov;6(4):965–974.
  • Tsygankov AY. Non-receptor protein tyrosine kinases. Front Biosci. 2003 May 1;8(6):s595–635. doi: 10.2741/1106
  • Siveen KS, Prabhu KS, Achkar IW, et al. Role of non receptor tyrosine kinases in hematological malignances and its targeting by natural products. Mol Cancer. 2018 Feb 19;17(1):31. doi: 10.1186/s12943-018-0788-y
  • Pelaz SG, Tabernero A. Src: coordinating metabolism in cancer. Oncogene. 2022 Nov;41(45):4917–4928. doi: 10.1038/s41388-022-02487-4
  • Wang JQ, Derges JD, Bodepudi A, et al. Roles of non-receptor tyrosine kinases in pathogenesis and treatment of depression. J Integr Neurosci. 2022 Jan 28;21(1):25. doi: 10.31083/j.jin2101025
  • Shyam Sunder S, Sharma UC, Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther. 2023 Jul 7;8(1):262. doi: 10.1038/s41392-023-01469-6
  • Irby RB, Yeatman TJ. Role of Src expression and activation in human cancer. Oncogene. 2000 Nov 20;19(49):5636–42. doi: 10.1038/sj.onc.1203912
  • Netzer WJ, Dou F, Cai D, et al. Gleevec inhibits beta-amyloid production but not notch cleavage. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12444–12449. doi: 10.1073/pnas.1534745100
  • Olsson B, Legros L, Guilhot F, et al. Imatinib treatment and Abeta42 in humans. Alzheimers Dement. 2014 Oct;10(5 Suppl):S374–80.
  • Mansour HM, Fawzy HM, El-Khatib AS, et al. Repurposed anti-cancer epidermal growth factor receptor inhibitors: mechanisms of neuroprotective effects in Alzheimer’s disease. Neural Regen Res. 2022 Sep;17(9):1913–1918.
  • Lee HJ, Jeon SG, Kim J, et al. Ibrutinib modulates Abeta/tau pathology, neuroinflammation, and cognitive function in mouse models of Alzheimer’s disease. Aging Cell. 2021 Mar;20(3):e13332.
  • Simic G, Babic Leko M, Wray S, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules. 2016 Jan 6;6(1):6. doi: 10.3390/biom6010006
  • Nygaard HB. Targeting Fyn Kinase in Alzheimer’s Disease. Biol Psychiatry. 2018 Feb 15;83(4):369–376. doi: 10.1016/j.biopsych.2017.06.004
  • Chin J, Palop JJ, Puolivali J, et al. Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer’s disease. J Neurosci. 2005 Oct 19;25(42):9694–9703. doi: 10.1523/JNEUROSCI.2980-05.2005
  • Chin J, Palop JJ, Yu GQ, et al. Fyn kinase modulates synaptotoxicity, but not aberrant sprouting, in human amyloid precursor protein transgenic mice. J Neurosci. 2004 May 12;24(19):4692–4697. doi: 10.1523/JNEUROSCI.0277-04.2004
  • Kaufman AC, Salazar SV, Haas LT, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol. 2015 Jun;77(6):953–971.
  • Snitow ME, Bhansali RS, Klein PS. Lithium and therapeutic targeting of GSK-3. Cells. 2021 Jan 28;10(2):255. doi: 10.3390/cells10020255
  • Noble W, Planel E, Zehr C, et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A. 2005 May 10;102(19):6990–6995. doi: 10.1073/pnas.0500466102
  • Sereno L, Coma M, Rodriguez M, et al. A novel GSK-3beta inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis. 2009 Sep;35(3):359–367.
  • Lovestone S, Boada M, Dubois B, et al. A phase II trial of tideglusib in Alzheimer’s disease. J Alzheimers Dis. 2015;45(1):75–88. doi: 10.3233/JAD-141959
  • Sontag JM, Sontag E. Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front Mol Neurosci. 2014;7:16. doi: 10.3389/fnmol.2014.00016
  • Dubreuil P, Letard S, Ciufolini M, et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One. 2009 Sep 30;4(9):e7258. doi: 10.1371/journal.pone.0007258
  • Klose K, Packeiser EM, Granados-Soler JL, et al. Evaluation of the therapeutic potential of masitinib and expression of its specific targets c-Kit, PDGFR-alpha, PDGFR-beta, and Lyn in canine prostate cancer cell lines. Vet Comp Oncol. 2022 Sep;20(3):641–652.
  • Jones MK, Nair A, Gupta M. Mast Cells in Neurodegenerative Disease. Front Cell Neurosci. 2019;13:171. doi: 10.3389/fncel.2019.00171
  • Ketabforoush A, Chegini R, Barati S. et al. Masitinib: the promising actor in the next season of the amyotrophic lateral sclerosis treatment series. Biomed Pharmacother. 2023 Apr;160:114378.
  • Vermersch P, Brieva-Ruiz L, Fox RJ, et al. Efficacy and safety of masitinib in progressive forms of multiple sclerosis: a randomized, Phase 3, clinical trial. Neurol Neuroimmunol Neuroinflammation. 2022 May;9(3). doi: 10.1212/NXI.0000000000001148
  • Piette F, Belmin J, Vincent H, et al. Masitinib as an adjunct therapy for mild-to-moderate Alzheimer’s disease: a randomised, placebo-controlled phase 2 trial. Alzheimers Res Ther. 2011 Apr 19;3(2):16. doi: 10.1186/alzrt75
  • Dubois B, Lopez-Arrieta J, Lipschitz S, et al. Masitinib for mild-to-moderate Alzheimer’s disease: results from a randomized, placebo-controlled, phase 3, clinical trial. Alzheimers Res Ther. 2023 Feb 28;15(1):39. doi: 10.1186/s13195-023-01169-x
  • Leitinger B. Discoidin domain receptor functions in physiological and pathological conditions. Int Rev Cell Mol Biol. 2014;310:39–87.
  • Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant bcr-Abl. Cancer Cell. 2005 Feb;7(2):129–141.
  • Hijiya N, Zwaan CM, Rizzari C, et al. Pharmacokinetics of nilotinib in pediatric patients with Philadelphia chromosome-positive chronic myeloid leukemia or acute lymphoblastic leukemia. Clin Cancer Res. 2020 Feb 15;26(4):812–820. doi: 10.1158/1078-0432.CCR-19-0090
  • Cheng F, Li Q, Cui Z, et al. Dose optimization strategy of the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib for chronic myeloid leukemia: from clinical trials to real-life settings. Front Oncol. 2023;13:1146108. doi: 10.3389/fonc.2023.1146108
  • Senapati J, Sasaki K, Issa GC, et al. Management of chronic myeloid leukemia in 2023 - common ground and common sense. Blood Cancer J. 2023 Apr 24;13(1):58. doi: 10.1038/s41408-023-00823-9
  • Fowler AJ, Hebron M, Missner AA, et al. Multikinase Abl/DDR/Src inhibition produces optimal effects for tyrosine kinase inhibition in neurodegeneration. Drugs R D. 2019 Jun;19(2):149–166.
  • Turner RS, Hebron ML, Lawler A, et al. Nilotinib effects on safety, tolerability, and biomarkers in Alzheimer’s disease. Ann Neurol. 2020 Jul;88(1):183–194.
  • Haass C, Mandelkow E. Fyn-tau-amyloid: a toxic triad. Cell. 2010 Aug 6;142(3):356–358. doi: 10.1016/j.cell.2010.07.032
  • Smith LM, Zhu R, Strittmatter SM. Disease-modifying benefit of Fyn blockade persists after washout in mouse Alzheimer’s model. Neuropharmacology. 2018 Mar 1;130:54–61. doi: 10.1016/j.neuropharm.2017.11.042
  • Yadikar H, Torres I, Aiello G, et al. Screening of tau protein kinase inhibitors in a tauopathy-relevant cell-based model of tau hyperphosphorylation and oligomerization. PLoS One. 2020;15(7):e0224952. doi: 10.1371/journal.pone.0224952
  • Tang SJ, Fesharaki-Zadeh A, Takahashi H, et al. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic tauopathy. Acta Neuropathol Commun. 2020 Jul 1;8(1):96. doi: 10.1186/s40478-020-00976-9
  • Nygaard HB, Wagner AF, Bowen GS, et al. A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease. Alzheimers Res Ther. 2015;7(1):35. doi: 10.1186/s13195-015-0119-0
  • van Dyck CH, Nygaard HB, Chen K, et al. Effect of AZD0530 on cerebral metabolic decline in Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2019 Oct 1;76(10):1219–1229. doi: 10.1001/jamaneurol.2019.2050
  • Alam JJ. Selective brain-targeted antagonism of p38 MAPKalpha reduces hippocampal IL-1beta levels and improves Morris water maze performance in aged rats. J Alzheimers Dis. 2015;48(1):219–227. doi: 10.3233/JAD-150277
  • Correa SA, Eales KL. The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct. 2012;2012:649079. doi: 10.1155/2012/649079
  • Hideshima T, Akiyama M, Hayashi T, et al. Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood. 2003 Jan 15;101(2):703–705. doi: 10.1182/blood-2002-06-1874
  • Alam J, Blackburn K, Patrick D. Neflamapimod: clinical Phase 2b-ready oral small molecule inhibitor of p38alpha to reverse synaptic dysfunction in early Alzheimer’s disease. J Prev Alzheimers Dis. 2017;4(4):273–278. doi: 10.14283/jpad.2017.41
  • Scheltens P, Prins N, Lammertsma A, et al. An exploratory clinical study of p38alpha kinase inhibition in Alzheimer’s disease. Ann Clin Transl Neurol. 2018 Apr;5(4):464–473.
  • Prins ND, Harrison JE, Chu HM, et al. A phase 2 double-blind placebo-controlled 24-week treatment clinical study of the p38 alpha kinase inhibitor neflamapimod in mild Alzheimer’s disease. Alzheimers Res Ther. 2021 May 27;13(1):106. doi: 10.1186/s13195-021-00843-2
  • Golla SS, Boellaard R, Oikonen V, et al. Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer’s disease patients. J Cereb Blood Flow Metab. 2015 May;35(5):766–772.
  • Hagens MHJ, Golla SV, Wijburg MT, et al. In vivo assessment of neuroinflammation in progressive multiple sclerosis: a proof of concept study with [(18)F]DPA714 PET. J Neuroinflammation. 2018 Nov 13;15(1):314. doi: 10.1186/s12974-018-1352-9
  • Tolea MI, Ezzeddine R, Camacho S, et al. Emerging drugs for dementia with Lewy bodies: a review of Phase II & III trials. Expert Opin Emerg Drugs. 2023 Aug 2;28(3):167–180. doi: 10.1080/14728214.2023.2244425
  • Khoury HJ, Guilhot F, Hughes TP, et al. Dasatinib treatment for Philadelphia chromosome-positive leukemias: practical considerations. Cancer. 2009 Apr 1;115(7):1381–1394. doi: 10.1002/cncr.24155
  • Brave M, Goodman V, Kaminskas E, et al. Sprycel for chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant to or intolerant of imatinib mesylate. Clin Cancer Res. 2008 Jan 15;14(2):352–359. doi: 10.1158/1078-0432.CCR-07-4175
  • Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020 Nov;288(5):518–536. doi: 10.1111/joim.13141
  • Srivastava AK. Inhibition of phosphorylase kinase, and tyrosine protein kinase activities by quercetin. Biochem Biophys Res Commun. 1985 Aug 30;131(1):1–5. doi: 10.1016/0006-291X(85)91761-9
  • Musi N, Valentine JM, Sickora KR, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018 Dec;17(6):e12840.
  • Zhang P, Kishimoto Y, Grammatikakis I, et al. Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci. 2019 May;22(5):719–728.
  • Krzystyniak A, Wesierska M, Petrazzo G, et al. Combination of dasatinib and quercetin improves cognitive abilities in aged male wistar rats, alleviates inflammation and changes hippocampal synaptic plasticity and histone H3 methylation profile. Aging. 2022 Jan 18;14(2):572–595. doi: 10.18632/aging.203835
  • Gonzales MM, Garbarino VR, Marques Zilli E, et al. Senolytic therapy to modulate the progression of Alzheimer’s disease (SToMP-AD): a pilot clinical trial. J Prev Alzheimers Dis. 2022;9(1):22–29. doi: 10.14283/jpad.2021.62
  • Lamb YN. Pexidartinib: First Approval. Drugs. 2019 Nov;79(16):1805–1812. doi: 10.1007/s40265-019-01210-0
  • Cannarile MA, Weisser M, Jacob W, et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017 Jul 18;5(1):53. doi: 10.1186/s40425-017-0257-y
  • Bhardwaj A, Kaur J, Wuest M, et al. In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nat Commun. 2017 Feb 23;8(1):1. doi: 10.1038/s41467-016-0009-6
  • Elmore MR, Najafi AR, Koike MA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron. 2014 Apr 16;82(2):380–397. doi: 10.1016/j.neuron.2014.02.040
  • Dagher NN, Najafi AR, Kayala KM, et al. Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation. 2015 Aug 1;12(1):139. doi: 10.1186/s12974-015-0366-9
  • Spangenberg EE, Lee RJ, Najafi AR, et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain. 2016 Apr;139(Pt 4):1265–1281.
  • Sosna J, Philipp S, Albay R 3rd, et al. Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer’s disease. Mol Neurodegener. 2018 Mar 1;13(1):11. doi: 10.1186/s13024-018-0244-x
  • Bennett RE, Bryant A, Hu M, et al. Partial reduction of microglia does not affect tau pathology in aged mice. J Neuroinflammation. 2018 Nov 9;15(1):311. doi: 10.1186/s12974-018-1348-5
  • Shankarappa PS, Peer CJ, Odabas A, et al. Cerebrospinal fluid penetration of the colony-stimulating factor-1 receptor (CSF-1R) inhibitor, pexidartinib. Cancer Chemother Pharmacol. 2020 May;85(5):1003–1007.
  • Lewis JH, Gelderblom H, van de Sande M, et al. Pexidartinib long-term hepatic safety profile in patients with tenosynovial giant cell tumors. Oncology. 2021 May;26(5):e863–e873.
  • Rodriguez S, Hug C, Todorov P, et al. Machine learning identifies candidates for drug repurposing in Alzheimer’s disease. Nat Commun. 2021 Feb 15;12(1):1033. doi: 10.1038/s41467-021-21330-0
  • Bieber T, Feist E, Irvine AD, et al. A review of safety outcomes from clinical trials of Baricitinib in rheumatology, dermatology and COVID-19. Adv Ther. 2022 Nov;39(11):4910–4960.
  • Advani D, Kumar P. Therapeutic targeting of repurposed anticancer drugs in Alzheimer’s disease: using the multiomics approach. ACS Omega. 2021 Jun 1;6(21):13870–13887. doi: 10.1021/acsomega.1c01526
  • Leavy O. Therapeutic antibodies: past, present and future. Nat Rev Immunol. 2010 May;10(5):297. doi: 10.1038/nri2763
  • Wang B, Yang C, Jin X, et al. Regulation of antibody-mediated complement-dependent cytotoxicity by modulating the intrinsic affinity and binding valency of IgG for target antigen. MAbs. 2020 Jan;12(1):1690959.
  • Wang W, Erbe AK, Hank JA, et al. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol. 2015;6:368. doi: 10.3389/fimmu.2015.00368
  • Chen S, Lai SWT, Brown CE, et al. Harnessing and enhancing macrophage phagocytosis for cancer therapy. Front Immunol. 2021;12:635173. doi: 10.3389/fimmu.2021.635173
  • Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies (Basel). 2020 Jul 20;9(3):34. doi: 10.3390/antib9030034
  • Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010 Apr;47(2):115–23. doi: 10.1053/j.seminhematol.2010.01.011
  • Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015 Sep 24;373(13):1207–19. doi: 10.1056/NEJMoa1506348
  • van de Donk NW, Janmaat ML, Mutis T, et al. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol Rev. 2016 Mar;270(1):95–112.
  • Deaglio S, Mehta K, Malavasi F. Human CD38: a (r)evolutionary story of enzymes and receptors. Leuk Res. 2001 Jan;25(1):1–12. doi: 10.1016/S0145-2126(00)00093-X
  • van de Donk N, Usmani SZ. CD38 antibodies in multiple myeloma: mechanisms of action and modes of resistance. Front Immunol. 2018;9:2134. doi: 10.3389/fimmu.2018.02134
  • Martin TG, Corzo K, Chiron M, et al. Therapeutic opportunities with pharmacological inhibition of CD38 with Isatuximab. Cells. 2019 Nov 26;8(12):1522. doi: 10.3390/cells8121522
  • Han SH, Ryu KH, Kwon AY. The prognostic impact of HER2 genetic and protein expression in pancreatic carcinoma—HER2 protein and Gene in pancreatic cancer. Diagnostics. 2021 Apr 4;11(4):653. doi: 10.3390/diagnostics11040653
  • Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010 Sep 15;146(3):264–275. doi: 10.1016/j.jconrel.2010.04.009
  • Mota JM, Collier KA, Barros Costa RL, et al. A comprehensive review of heregulins, HER3, and HER4 as potential therapeutic targets in cancer. Oncotarget. 2017 Oct 24;8(51):89284–89306. doi: 10.18632/oncotarget.18467
  • Patel D, Bassi R, Hooper A, et al. Anti-epidermal growth factor receptor monoclonal antibody cetuximab inhibits EGFR/HER-2 heterodimerization and activation. Int J Oncol. 2009 Jan;34(1):25–32.
  • Guerreiro S, Privat AL, Bressac L, et al. CD38 in Neurodegeneration and Neuroinflammation. Cells. 2020 Feb 18;9(2):471. doi: 10.3390/cells9020471
  • Hayakawa K, Esposito E, Wang X, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016 Jul 28;535(7613):551–555. doi: 10.1038/nature18928
  • Gate D, Saligrama N, Leventhal O, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature. 2020 Jan;577(7790):399–404.
  • Kim SY, Choi SH, Rollema H, et al. Phase II crossover trial of varenicline in mild-to-moderate Alzheimer’s disease. Dement Geriatr Cognit Disord. 2014;37(3–4):232–245. doi: 10.1159/000355373
  • Blacher E, Dadali T, Bespalko A, et al. Alzheimer’s disease pathology is attenuated in a CD38-deficient mouse model. Ann Neurol. 2015 Jul;78(1):88–103.
  • Peng QY, Wang YM, Chen CX, et al. Inhibiting the CD38/cADPR pathway protected rats against sepsis associated brain injury. Brain Res. 2018 Jan 1;1678:56–63. doi: 10.1016/j.brainres.2017.09.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.