329
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting the PACAP-38 pathway is an emerging therapeutic strategy for migraine prevention

ORCID Icon, & ORCID Icon
Pages 57-64 | Received 13 Jan 2024, Accepted 08 Feb 2024, Published online: 12 Feb 2024

References

  • Ashina M, Katsarava Z, Do TP, et al. Migraine: epidemiology and systems of care. Lancet. 2021;397(10283):1485–1495. doi: 10.1016/S0140-6736(20)32160-7
  • Martelletti P, Leonardi M, Ashina M, et al. Rethinking headache as a global public health case model for reaching the SDG 3 HEALTH by 2030. J Headache Pain. 2023;24(1):140. doi: 10.1186/s10194-023-01666-2
  • Eigenbrodt AK, Ashina H, Khan S, et al. Diagnosis and management of migraine in ten steps. Nat Rev Neurol. 2021;17(8):501–514. doi: 10.1038/s41582-021-00509-5
  • Steiner TJ, Stovner LJ. Global epidemiology of migraine and its implications for public health and health policy. Nat Rev Neurol. 2023;19(2):109–117. doi: 10.1038/s41582-022-00763-1
  • Ailani J, Burch RC, Robbins MS, et al. The American Headache Society Consensus Statement: update on integrating new migraine treatments into clinical practice. Headache. 2021;61(7):1021–1039. doi: 10.1111/head.14153
  • Sacco S, Amin FM, Ashina M, et al. European Headache Federation guideline on the use of monoclonal antibodies targeting the calcitonin gene related peptide pathway for migraine prevention – 2022 update. J Headache Pain. 2022;23(1):67. doi: 10.1186/s10194-022-01431-x
  • Headache Classification Committee of the International Headache Society (IHS). The international classification of headache disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211. doi: 10.1177/0333102417738202
  • Bigal ME, Serrano D, Buse D, et al. Acute migraine medications and evolution from episodic to chronic migraine: a longitudinal population-based study. Headache. 2008;48(8):1157–1168. doi: 10.1111/j.1526-4610.2008.01217.x
  • Ashina MM, Ropper AH. Migraine. N Engl J Med. 2020;383(19):1866–1876. doi: 10.1056/NEJMra1915327
  • Ashina M, Hansen JM, Do TP, et al. Migraine and the trigeminovascular system-40 years and counting. Lancet Neurol. 2019;18(8):795–804.
  • Edvinsson L, Haanes KA, Warfvinge K, et al. CGRP as the target of new migraine therapies – successful translation from bench to clinic. Nat Rev Neurol. 2018;14(6):338–350.
  • Schytz HW, Olesen J, Ashina M. The PACAP receptor: a novel target for migraine treatment. Neurotherapeutics. 2010;7(2):191–196. doi: 10.1016/j.nurt.2010.02.003
  • Blumenfeld AM, Bloudek LM, Becker WJ, et al. Patterns of use and reasons for discontinuation of prophylactic medications for episodic migraine and chronic migraine: results from the second international burden of migraine study (IBMS-II). Headache. 2013;53(4):644–655. doi: 10.1111/head.12055
  • Hepp Z, Dodick DW, Varon SF, et al. Adherence to oral migraine-preventive medications among patients with chronic migraine. Cephalalgia. 2015;35(6):478–488. doi: 10.1177/0333102414547138
  • Hepp Z, Dodick DW, Varon SF, et al. Persistence and switching patterns of oral migraine prophylactic medications among patients with chronic migraine: a retrospective claims analysis. Cephalalgia. 2017;37(5):470–485. doi: 10.1177/0333102416678382
  • Dodick DW, Turkel CC, DeGryse RE, et al. OnabotulinumtoxinA for treatment of chronic migraine: pooled results from the double-blind, randomized, placebo-controlled phases of the PREEMPT clinical program. Headache. 2010;50(6):921–936. doi: 10.1111/j.1526-4610.2010.01678.x
  • Aurora SK, Winner P, Freeman MC, et al. OnabotulinumtoxinA for treatment of chronic migraine: pooled analyses of the 56-week PREEMPT clinical program. Headache. 2011;51(9):1358–1373. doi: 10.1111/j.1526-4610.2011.01990.x
  • Herd CP, Tomlinson CL, Rick C, et al. Botulinum toxins for the prevention of migraine in adults. Cochrane Database Syst Rev. 2018;6(6):CD011616. doi: 10.1002/14651858.CD011616.pub2
  • Burstein R, Blumenfeld AM, Silberstein SD, et al. Mechanism of action of onabotulinumtoxinA in chronic migraine: a narrative review. Headache. 2020;60(7):1259–1272. doi: 10.1111/head.13849
  • Mathew NT, Jaffri SF. A double-blind comparison of onabotulinumtoxina (BOTOX) and topiramate (TOPAMAX) for the prophylactic treatment of chronic migraine: a pilot study. Headache. 2009;49(10):1466–1478. doi: 10.1111/j.1526-4610.2009.01566.x
  • Rothrock JF, Adams AM, Lipton RB, et al. FORWARD study: evaluating the comparative effectiveness of onabotulinumtoxinA and topiramate for headache prevention in adults with chronic migraine. Headache. 2019;59(10):1700–1713. doi: 10.1111/head.13653
  • Masters-Israilov A, Robbins MS. OnabotulinumtoxinA wear-off phenomenon in the treatment of chronic migraine. Headache. 2019;59(10):1753–1761. doi: 10.1111/head.13638
  • Bendtsen L, Sacco S, Ashina M, et al. Guideline on the use of onabotulinumtoxinA in chronic migraine: a consensus statement from the European Headache Federation. J Headache Pain. 2018;19(1):91. doi: 10.1186/s10194-018-0921-8
  • Gantenbein AR, Agosti R, Gobbi C, et al. Impact on monthly migraine days of discontinuing anti-CGRP antibodies after one year of treatment – a real-life cohort study. Cephalalgia. 2021;41(11–12):1181–1186. doi: 10.1177/03331024211014616
  • Iannone LF, Fattori D, Benemei S, et al. Predictors of sustained response and effects of the discontinuation of anti-calcitonin gene related peptide antibodies and reinitiation in resistant chronic migraine. Eur J Neurol. 2022;29(5):1505–1513. doi: 10.1111/ene.15260
  • Vernieri F, Altamura C, Brunelli N, et al. Rapid response to galcanezumab and predictive factors in chronic migraine patients: a 3-month observational, longitudinal, cohort, multicenter, Italian real-life study. Eur J Neurol. 2022;29(4):1198–1208. doi: 10.1111/ene.15197
  • Cullum CK, Do TP, Ashina M, et al. Real-world long-term efficacy and safety of erenumab in adults with chronic migraine: a 52-week, single-center, prospective, observational study. J Headache Pain. 2022;23(1):61. doi: 10.1186/s10194-022-01433-9
  • Varnado O, Brady LB, Zagar A, et al. Discontinuation and switching patterns in patients with migraine initiating calcitonin gene-related peptide monoclonal antibodies: a US real-world study. Presented at: 2023 American Headache Society Annual Meeting; Jun 15–18; Austin, TX.
  • Overeem LH, Peikert A, Hofacker MD, et al. Effect of antibody switch in non-responders to a CGRP receptor antibody treatment in migraine: a multi-center retrospective cohort study. Cephalalgia. 2022;42(4–5):291–301. doi: 10.1177/03331024211048765
  • Iannone LF, Burgalassi A, Vigani G, et al. Switching anti-CGRP(R) monoclonal antibodies in multi-assessed non-responder patients and implications for ineffectiveness criteria: a retrospective cohort study. Cephalalgia. 2023;43(4):3331024231160519. doi: 10.1177/03331024231160519
  • Silberstein SD, Reshef S, Cohen JM, et al. Adverse events reported with therapies targeting the CGRP pathway during the first 6 months post-launch: a retrospective analysis using the FDA adverse events reporting system. Adv Ther. 2023;40(2):445–459. doi: 10.1007/s12325-022-02346-4
  • Robbins L. Erenumab side effects. Headache. 2019;59(7):1088–1089. doi: 10.1111/head.13589
  • Ray JC, Allen P, Bacsi A, et al. Inflammatory complications of CGRP monoclonal antibodies: a case series. J Headache Pain. 2021;22(1):121. doi: 10.1186/s10194-021-01330-7
  • Pico MJ, Badri M, Michalak N, et al. Systemic allergic reaction to galcanezumab (emgality): a case report. Cephalalgia. 2024;44(1):3331024231222914. doi: 10.1177/03331024231222914
  • Noseda R, Bedussi F, Gobbi C, et al. Safety profile of monoclonal antibodies targeting the calcitonin gene-related peptide system in pregnancy: updated analysis in VigiBase®. Cephalalgia. 2023;43(4):3331024231158083. doi: 10.1177/03331024231158083
  • Safiri S, Pourfathi H, Eagan A, et al. Global, regional, and national burden of migraine in 204 countries and territories, 1990 to 2019. Pain. 2022;163(2):e293–309. doi: 10.1097/j.pain.0000000000002275
  • Chaudhari K, Syed BA. The pipeline and market for migraine drugs. Nat Rev Drug Discov. 2023 Nov 17. doi: 10.1038/d41573-023-00182-x
  • Davies C. Migraine market continues exponential growth. Available from: https://www.iqvia.com/blogs/2022/04/migraine-market-continues-exponential-growth
  • Edvinsson L, Tajti J, Szalárdy L, et al. PACAP and its role in primary headaches. J Headache Pain. 2018;19(1):21. doi: 10.1186/s10194-018-0852-4
  • Miyata A, Arimura A, Dahl RR, et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989;164(1):567–574. doi: 10.1016/0006-291X(89)91757-9
  • Miyata A, Jiang L, Dahl RD, et al. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun. 1990;170(2):643–648. doi: 10.1016/0006-291X(90)92140-U
  • Vaudry D, Falluel-Morel A, Bourgault S, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev. 2009;61(3):283–357. doi: 10.1124/pr.109.001370
  • Moller K, Zhang YZ, Håkanson R, et al. Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: immunocytochemical and immunochemical evidence. Neuroscience. 1993;57(3):725–732. doi: 10.1016/0306-4522(93)90018-B
  • Edvinsson L, Elsås T, Suzuki N, et al. Origin and co-localization of nitric oxide synthase, CGRP, PACAP, and VIP in the cerebral circulation of the rat. Microsc Res Tech. 2001;53(3):221–228. doi: 10.1002/jemt.1086
  • Mulder H, Uddman R, Moller K, et al. Pituitary adenylate cyclase activating polypeptide expression in sensory neurons. Neuroscience. 1994;63(1):307–312. doi: 10.1016/0306-4522(94)90025-6
  • Uddman R, Tajti J, Möller S, et al. Neuronal messengers and peptide receptors in the human sphenopalatine and otic ganglia. Brain Res. 1999;826(2):193–199. doi: 10.1016/S0006-8993(99)01260-3
  • Uddman R, Tajti J, Hou M, et al. Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2. Cephalalgia. 2002;22(2):112–116. doi: 10.1046/j.1468-2982.2002.00324.x
  • Knutsson M, Edvinsson L. Distribution of mRNA for VIP and PACAP receptors in human cerebral arteries and cranial ganglia. Neuroreport. 2002;13(4):507–509. doi: 10.1097/00001756-200203250-00030
  • Chan KY, Baun M, De Vries R, et al. Pharmacological characterization of VIP and PACAP receptors in the human meningeal and coronary artery. Cephalalgia. 2011;31(2):181–189. doi: 10.1177/0333102410375624
  • Waschek JA, Baca SM, Akerman S. PACAP and migraine headache: immunomodulation of neural circuits in autonomic ganglia and brain parenchyma. J Headache Pain. 2018;19(1):23. doi: 10.1186/s10194-018-0850-6
  • Rawlings SR. PACAP, PACAP receptors, and intracellular signalling. Mol Cell Endocrinol. 1994;101(1–2):C5–C9. doi: 10.1016/0303-7207(94)90212-7
  • Harmar AJ, Fahrenkrug J, Gozes I, et al. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol. 2012;166(1):4–17. doi: 10.1111/j.1476-5381.2012.01871.x
  • Jansen-Olesen I, Baun M, Amrutkar DV, et al. PACAP-38 but not VIP induces release of CGRP from trigeminal nucleus caudalis via a receptor distinct from the PAC1 receptor. Neuropeptides. 2014;48(2):53–64. doi: 10.1016/j.npep.2014.01.004
  • Uddman R, Goadsby PJ, Jansen I, et al. PACAP, a VIP-like peptide: immunohistochemical localization and effect upon cat pial arteries and cerebral blood flow. J Cereb Blood Flow Metab. 1993;13(2):291–297. doi: 10.1038/jcbfm.1993.36
  • Tuka B, Helyes Z, Markovics A, et al. Peripheral and central alterations of pituitary adenylate cyclase activating polypeptide-like immunoreactivity in the rat in response to activation of the trigeminovascular system. Peptides. 2012;33(2):307–316. doi: 10.1016/j.peptides.2011.12.019
  • Körtési T, Tuka B, Tajti J, et al. Kynurenic acid inhibits the electrical stimulation induced elevated pituitary adenylate cyclase-activating polypeptide expression in the TNC. Front Neurol. 2018;8:745. doi: 10.3389/fneur.2017.00745
  • Schytz HW, Birk S, Wienecke T, et al. PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain. 2009;132(Pt 1):16–25. doi: 10.1093/brain/awn307
  • Amin FM, Hougaard A, Schytz HW, et al. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain. 2014;137(Pt 3):779–794.
  • Guo S, Vollesen ALH, Hansen RD, et al. Part I: pituitary adenylate cyclase-activating polypeptide-38 induced migraine-like attacks in patients with and without familial aggregation of migraine. Cephalalgia. 2017;37(2):125–135. doi: 10.1177/0333102416639516
  • Vollesen LH, Guo S, Andersen MR, et al. Effect of the H1-antihistamine clemastine on PACAP38 induced migraine. Cephalalgia. 2019;39(5):597–607. doi: 10.1177/0333102418798611
  • Ghanizada H, Al-Karagholi MAM, Arngrim N, et al. PACAP27 induces migraine-like attacks in migraine patients. Cephalalgia. 2020;40(1):57–67. doi: 10.1177/0333102419864507
  • Wienholtz NKF, Christensen CE, Zhang DG, et al. Early treatment with sumatriptan prevents PACAP38-induced migraine: a randomised clinical trial. Cephalalgia. 2021;41(6):731–748. doi: 10.1177/0333102420975395
  • Tuka B, Helyes Z, Markovics A, et al. Alterations in PACAP-38-like immunoreactivity in the plasma during ictal and interictal periods of migraine patients. Cephalalgia. 2013;33(13):1085–1095. doi: 10.1177/0333102413483931
  • Zagami AS, Edvinsson L, Goadsby PJ. Pituitary adenylate cyclase activating polypeptide and migraine. Ann Clin Transl Neurol. 2014;1(12):1036–1040. doi: 10.1002/acn3.113
  • Sbei S, Moncrief T, Limjunyawong N, et al. PACAP activates MRGPRX2 on meningeal mast cells to drive migraine-like pain. Sci Rep. 2023;13(1):12302. doi: 10.1038/s41598-023-39571-y
  • Guo S, Vollesen ALH, Hansen YB, et al. Part II: biochemical changes after pituitary adenylate cyclase-activating polypeptide-38 infusion in migraine patients. Cephalalgia. 2017;37(2):136–147.
  • Vollesen ALH, Amin FM, Ashina M. Targeted pituitary adenylate cyclase-activating peptide therapies for migraine. Neurotherapeutics. 2018;15(2):371–376. doi: 10.1007/s13311-017-0596-x
  • Ashina M, Doležil D, Bonner JH, et al. A phase 2, randomized, double-blind, placebo-controlled trial of AMG 301, a pituitary adenylate cyclase-activating polypeptide PAC1 receptor monoclonal antibody for migraine prevention. Cephalalgia. 2021;41(1):33–44. doi: 10.1177/0333102420970889
  • Rees TA, Labastida-Ramírez A, Rubio-Beltrán E. Calcitonin/PAC1 receptor splice variants: a blind spot in migraine research. Trends Pharmacol Sci. 2023;44(10):651–663.
  • Loomis CM, Dutzar B, Ojala EW, et al. Pharmacologic characterization of ALD1910, a potent humanized monoclonal antibody against the pituitary adenylate cyclase-activating peptide. J Pharmacol Exp Ther. 2019;369(1):26–36. doi: 10.1124/jpet.118.253443
  • Rasmussen NB, Deligianni C, Christensen CE, et al. The effect of lu AG09222 on PACAP38- and VIP-induced vasodilation, heart rate increase, and headache in healthy subjects: an interventional, randomized, double-blind, parallel-group, placebo-controlled study. J Headache Pain. 2023;24(1):60. doi: 10.1186/s10194-023-01599-w
  • A study with Lu AG09222 in adults with migraine who have not been helped by prior preventive treatments [internet]. ClinicalTrials.Gov. Last update: 2023 Apr. Available from: https://www.clinicaltrials.gov/study/NCT05133323
  • Ashina M. Efficacy and safety of Lu AG09222 for migraine prevention in patients with 2-4 previous preventive treatment failures: HOPE, an interventional, randomized, double-blind, parallel-group, placebo-controlled phase 2 trial. Presented at: The International Headache Congress 2023. Sep14–17; Seoul (South Korea).
  • A study of LY3451838 in healthy participants [internet]. ClinicalTrials.Gov. Last update: 2020 Mar. Available from: https://clinicaltrials.gov/study/NCT03692949
  • A study of LY3451838 in participants with migraine. Last Update: 2023 Nov. Available from https://clinicaltrials.gov/study/NCT04498910
  • Couvineau A, Laburthe M. VPAC receptors: structure, molecular pharmacology and interaction with accessory proteins. Br J Pharmacol. 2012;166(1):42–50. doi: 10.1111/j.1476-5381.2011.01676.x
  • Pedersen SH, la Cour SH, Calloe K, et al. PACAP-38 and PACAP(6-38) degranulate rat meningeal mast cells via the orphan MrgB3-receptor. Front Cell Neurosci. 2018;13:114. doi: 10.3389/fncel.2019.00114
  • Staton PC, Hatcher JP, Walker DJ, et al. The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain. 2008;139(1):225–236. doi: 10.1016/j.pain.2008.04.006
  • Adelborg K, Szépligeti SK, Holland-Bill L, et al. Migraine and risk of cardiovascular diseases: Danish population based matched cohort study. BMJ. 2018;360:k96. doi: 10.1136/bmj.k96
  • Mahmoud AN, Mentias A, Elgendy AY, et al. Migraine and the risk of cardiovascular and cerebrovascular events: a meta-analysis of 16 cohort studies including 1 152 407 subjects. BMJ Open. 2018;8(3):e020498. doi: 10.1136/bmjopen-2017-020498
  • Mathew PG, Klein BC. Getting to the heart of the matter: migraine, triptans, DHE, ditans, CGRP antibodies, first/second-generation gepants, and cardiovascular risk. Headache. 2019;59(8):1421–1426. doi: 10.1111/head.13601
  • Favoni V, Giani L, Al-Hassany L, et al. CGRP and migraine from a cardiovascular point of view: what do we expect from blocking CGRP? J Headache Pain. 2019;20(1):27. doi: 10.1186/s10194-019-0979-y
  • de Vries Lentsch S, van der Arend BWH, Maassen Vandenbrink A, et al. Blood pressure in patients with migraine treated with monoclonal anti-CGRP (receptor) antibodies: a prospective follow-up study. Neurology. 2022;99(17):e1897–e1904.
  • Saely S, Croteau D, Jawidzik L, et al. Hypertension: a new safety risk for patients treated with erenumab. Headache. 2021;61(1):202–208.
  • Somogyvari-Vigh A, Reglodi D. Pituitary adenylate cyclase activating polypeptide: a potential neuroprotective peptide. Curr Pharm Des. 2004;10(23):2861–2889. doi: 10.2174/1381612043383548
  • Sarszegi Z, Szabo D, Gaszner B, et al. Examination of pituitary adenylate cyclase-activating polypeptide (PACAP) as a potential biomarker in heart failure patients. J Mol Neurosci. 2019;68(3):368–376. doi: 10.1007/s12031-017-1025-7
  • Reglodi D, Vaczy A, Rubio-Beltran E, et al. Protective effects of PACAP in ischemia. J Headache Pain. 2018;19(1):19. doi: 10.1186/s10194-018-0845-3
  • Dapkute A, Vainauskiene J, Ryliskiene K. Patient-reported outcomes of migraine treatment with erenumab: results from a national patient survey. Neurol Sci. 2022;43(5):3305–3312. doi: 10.1007/s10072-021-05861-4
  • Bentivegna E, Onan D, Martelletti P. Unmet needs in preventive treatment of migraine. Neurol Ther. 2023;12(2):337–342. doi: 10.1007/s40120-023-00438-z
  • Martelletti P, Curto M. Unmet needs for migraine. Curr Med Res Opin. 2021;37(11):1957–1959. doi: 10.1080/03007995.2021.1976738
  • Vaghi G, De Icco R, Tassorelli C, et al. Who cares about migraine? Pathways and hurdles in the European region – access to care III. J Headache Pain. 2023;24(1):120. doi: 10.1186/s10194-023-01652-8
  • Siersbæk N, Kilsdal L, Jervelund C, et al. Real-world evidence on the economic implications of CGRP-mAbs as preventive treatment of migraine. BMC neurol. 2023;23(1):254. doi: 10.1186/s12883-023-03302-7
  • Akerman S, Goadsby PJ. Neuronal PAC1 receptors mediate delayed activation and sensitization of trigeminocervical neurons: relevance to migraine. Sci Transl Med. 2015;7(308):308ra157. doi: 10.1126/scitranslmed.aaa7557
  • Pellesi L, Al-Karagholi MA, De Icco R, et al. Effect of vasoactive intestinal polypeptide on development of migraine headaches: a randomized clinical trial. JAMA Netw Open. 2021;4(8):e2118543.
  • Kuburas A, Russo AF. Shared and independent roles of CGRP and PACAP in migraine pathophysiology. J Headache Pain. 2023;24(1):34. doi: 10.1186/s10194-023-01569-2