494
Views
6
CrossRef citations to date
0
Altmetric
Review

Novel agents in mantle cell lymphoma

&
Pages 491-506 | Received 23 Dec 2016, Accepted 05 May 2017, Published online: 17 May 2017

References

  • Zhou Y, Wang H, Fang W. Incidence trends of mantle cell lymphoma in the United States between 1992 and 2004. Cancer. 2008;113:791–798.
  • Morton LM, Wang SS, Devesa SS, et al. Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001. Blood. 2006;107:265–276.
  • Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of tumours of haematopoietic and lymphoid tissues. France: International Agency for Research on Cancer (IARC). 2008.
  • Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer. 2007;7:750–762.
  • Sherr CJ. G1 phase progression: cycling on cue. Cell. 1994;79:551–554.
  • Jares P, Colomer D, Campo E. Review series. Molecular pathogenesis of mantle cell lymphoma. J Clin Invest. 2012 Oct;122(10):3416-3423.
  • Pérez-Galán P, Dreyling M, Wiestner A, et al. Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood. 2011;117:26–38.
  • Mozos A, Royo C, Hartmann E, et al. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica. 2009;94:1555–1562.
  • Vegliante MC, Palomero J, Pérez-Galán P, et al. SOX11 regulates PAX5 expression and blocks terminal B-cell differentiation in aggressive mantle cell lymphoma. Blood. 2013;121:2175–2185.
  • Nordström L, Sernbo S, Eden P, et al. SOX11 and TP53 add prognostic information to MIPI in a homogenously treated cohort of mantle cell lymphoma - a Nordic Lymphoma Group study. Br J Haematol. 2014;166:98–108.
  • Navarro A, Clot G, Royo C, et al. Molecular subsets of mantle cell lymphoma defined by the IGHV mutational status and SOX11 expression have distinct biologic and clinical features. Cancer Res. 2012;72:5307–5316.
  • Fernàndez V, Salamero O, Espinet B, et al. Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma. Cancer Res. 2010;70:1408–1418.
  • Romaguera JE, Fayad LE, L F, et al. Ten-year follow-up after intense chemoimmunotherapy with Rituximab-HyperCVAD alternating with Rituximab-high dose methotrexate/cytarabine (R-MA) and without stem cell transplantation in patients with untreated aggressive mantle cell lymphoma. Br J Haematol. 2010;150:200–208.
  • Chen Y, Wang M, Romaguera J. Current regimens and novel agents for mantle cell lymphoma. Br J Haematol. 2014;167:3–18.
  • Delarue R, Haioun C, Ribrag V, et al. CHOP and DHAP plus rituximab followed by autologous stem cell transplantation in mantle cell lymphoma: a phase 2 study from the Groupe d’Etude des Lymphomes de l’Adulte. Blood. 2013;121:48–53.
  • Eve HE, Furtado MV, Hamon MD, et al. Time to treatment does not influence overall survival in newly diagnosed mantle-cell lymphoma. J Clin Oncol. 2009;27:e189–e190; author reply e191.
  • Campo E, Rule S. Mantle cell lymphoma: evolving management strategies. Blood J. 2015;125:48–56.
  • Dreyling M, Ferrero S, Hermine O How to manage mantle cell lymphoma. Leukemia. [Internet]. 2014;28:2117–2130. DOI:10.1038/leu.2014.171
  • Eskelund CW, Kolstad A, Jerkeman M, et al. 15-year follow-up of the second Nordic Mantle Cell Lymphoma trial (MCL2): prolonged remissions without survival plateau. Br J Haematol. 2016;175:410–418.
  • Geisler CH, Kolstad A, Laurell A, et al. Long-term progression-free survival of mantle cell lymphoma after intensive front-line immunochemotherapy with in vivo-purged stem cell rescue: a nonrandomized phase 2 multicenter study by the Nordic Lymphoma Group. Blood. 2008;112:2687–2693.
  • Hermine O, Hoster E, Walewski J, et al. Addition of highdose cytarabine to immunochemotherapy before autologous stemcell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL Younger): a randomised, openlabel, phase 3 trial of the European Mantle Cell Lymphoma Network. Lancet 2016;6736:1–11.
  • Romaguera JE, Fayad L, Rodriguez MA, et al. High rate of durable remissions after treatment of newly diagnosed aggressive mantle-cell lymphoma with rituximab plus hyper-CVAD alternating with rituximab plus high-dose methotrexate and cytarabine. J Clin Oncol. 2005;23:7013–7023.
  • Merli F, Luminari S, Ilariucci F, et al. Rituximab plus HyperCVAD alternating with high dose cytarabine and methotrexate for the initial treatment of patients with mantle cell lymphoma, a multicentre trial from Gruppo Italiano Studio Linfomi. Br J Haematol. 2012;156:346–353.
  • Bernstein SH, Epner E, Unger JM, et al. A phase II multicenter trial of hyperCVAD MTX/Ara-C and rituximab in patients with previously untreated mantle cell lymphoma; SWOG 0213. Ann Oncol. 2013;24:1587–1593.
  • Rule S, Smith P, Johnson PWM, et al. The addition of rituximab to fludarabine and cyclophosphamide chemotherapy results in a significant improvement in overall survival in patients with newly diagnosed mantle cell lymphoma: results of a randomized UK national cancer research institute trial. Haematologica. 2016;101:235–240.
  • Lens G. Immunochemotherapy with rituximab and cyclophosphamide, doxorubicin, vincristine, and prednisone significantly improves response and time to treatment failure, but not long-term outcome in patients with previously untreated mantle cell lymphoma: results o. J Clin Oncol. 2005;23:1984–1992.
  • Kluin-Nelemans HC, Hoster E, Hermine O, et al. Treatment of older patients with mantle-cell lymphoma. N Engl J Med. 2012;367:520–531.
  • Flinn IW, Van Der Jagt R, Kahl BS, et al. Randomized trial of bendamustine-rituximab or R-CHOP/R-CVP in first-line treatment of indolent NHL or MCL: the BRIGHT study. Blood. [Internet]. 2014 [cited 2014 Dec 29];123:2944–2952. Available from. http://www.ncbi.nlm.nih.gov/pubmed/24591201
  • Visco C, Finotto S, Zambello R, et al. Combination of rituximab, bendamustine, and cytarabine for patients with mantle-cell non-Hodgkin lymphoma ineligible for intensive regimens or autologous transplantation. J Clin Oncol. 2013;31:1442–1449.
  • Rummel MJ, Knauf W, Goerner M, et al. Two years rituximab vs. observation after first line treatment with bendamustine plus rituximab (B-R) in patients with mantle cell lymphoma: first results of a prospective, randomised, multicenter phase II study (a subgroup of the StiL NHL7-2008 MAINTAIN. J Clin Oncol. 34, 2016; (suppl;abstr7503).
  • Rummel MJ, Al-Batran SE, Kim SZ, et al. Bendamustine plus rituximab is effective and has a favorable toxicity profile in the treatment of mantle cell and low-grade non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23:3383–3389.
  • Wang M, Fayad L, Phase CF. 2 trial of rituximab plus hyper-CVAD alternating with rituximab plus methotrexate-cytarabine for relapsed or refractory aggressive mantle cell lymphoma. Cancer. 2008;113:2734–2741.
  • Witzig TE, Geyer SM, Kurtin P, et al. Salvage chemotherapy with rituximab DHAP for relapsed non-Hodgkin lymphoma: a phase II trial in the North Central Cancer Treatment Group. Leuk Lymphoma. 2008;49:1074–1080.
  • Adams J, The proteasome: a suitable antineoplastic target. Nat Rev Cancer. [Internet]. 2004;4:349–360.DOI: 10.1038/nrc1361
  • Glotzer M, Murray AW, Kirschner MW. Cyclin is degrated by the ubiquitin pathway. Nature. 1991;349:132–138.
  • Maki CG, Huibregtse JM, Howley PM. In vivo ubiquitination and proteasome-mediated degradation of p53. Cancer Res. 1996;56:2649–2654.
  • Palombella VJ, Rando OJ, Goldberg AL, et al. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell. [Internet]. 1994;78:773–785. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-0027980321&partnerID=40&md5=45d01b0d33968139d533b0dce715eb83
  • Kane RC, Dagher R, Farrell A, et al. Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res. 2007;13:5291–5294.
  • Ling YH, Liebes L, Jiang JD, et al. Mechanisms of proteasome inhibitor PS-341-induced G(2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin Cancer Res. [Internet]2003;9:1145–1154. Available from: www.ncbi.nlm.nih.gov/pubmed/12631620
  • Bross PF, Kane R, Farrell AT, et al. Approval summary for bortezomib for injection in the treatment of multiple myeloma. Clin Cancer Res. 2004;10:3954–3964.
  • Orlowski RZ, Stinchcombe TE, Mitchell BS, et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol. 2002;20:4420–4427.
  • Goy A, Bernstein SH, Kahl BS. Bortezomib in patients with relapsed or refractory mantle cell lymphoma: updated time-to-event analyses of the multicenter phase 2 PINNACLE study. Ann Oncol. 2009;20:520–525.
  • Morrison V A, Jung SH, Johnson J, et al. Therapy with bortezomib plus lenalidomide for relapsed/refractory mantle cell lymphoma: final results of a phase II trial (CALGB. 50501). Leuk Lymphoma. 2015;56:958–964.
  • Furtado M, Johnson R, Kruger A, et al. Addition of bortezomib to standard dose chop chemotherapy improves response and survival in relapsed mantle cell lymphoma. Br J Haematol. 2015;168:55–62.
  • Ruan J, Martin P, Furman RR, et al. Bortezomib plus CHOP-rituximab for previously untreated diffuse large B-cell lymphoma and mantle cell lymphoma. J Clin Oncol. 2011;29:690–697.
  • Robak T, Huang H, Jin J, et al. Bortezomib-based therapy for newly diagnosed mantle-cell lymphoma. N Engl J Med. [Internet]. 2015;372:944–953. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25738670
  • Doorduijn JK, Minnema M, Kersten M, et al. Bortezomib maintenance therapy after induction with R-Chop, Ara-C and autologous stem cell transplantation in newly diagnosed MCL patients, results of a multicenter phase II Hovon study. Blood. 2015;126:339–339.
  • Chang JE, Li H, Smith MR, et al. Phase 2 study of VcR-CVAD with maintenance rituximab for untreated mantle cell lymphoma: an Eastern Cooperative Oncology Group study (E1405). Blood. 2014;123:1665–1673.
  • Fisher RI, Bernstein SH, Kahl BS, et al. Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2006;24:4867–4874.
  • O’Connor OA, Wright J, Moskowitz C, et al. Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol. 2005;23:676–684.
  • Moreau P, Pylypenko H, Grosicki S, et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol. [Internet]. 2011;12:431–440. DOI: 10.1016/S1470-2045(11)70081-X
  • Till BG, Li H, Bernstein SH, et al. Phase II trial of R-CHOP plus bortezomib induction therapy followed by bortezomib maintenance for newly diagnosed mantle cell lymphoma: SWOG S0601. Br J Haematol. 2016;172:208–218.
  • Celgene. Revlimid: highlights of prescribing information reference ID. 2013;3319577.
  • Kotla V, Goel S, Nischal S, et al. Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol. [Internet]. 2009;2:36. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2736171&tool=pmcentrez&rendertype=abstract
  • Mitsiades N. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood. [Internet]. 2002;99:4525–4530. Available from: http://www.bloodjournal.org/content/99/12/4525.abstract
  • Fink EC, Ebert BL. The novel mechanism of lenalidomide activity. Blood. 2015;126:2366–2369.
  • Corral LG, Haslett PA, Muller GW, et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol. [Internet]. 1999; 163:380–386. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10384139.
  • Dredge K, Marriott JB, Todryk SM, et al. Protective antitumor immunity induced by a costimulatory thalidomide analog in conjunction with whole tumor cell vaccination is mediated by increased Th1-type immunity. J Immunol. 2002;168:4914–4919.
  • Hayashi T, Hideshima T, Akiyama M, et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol. 2005;128:192–203.
  • Chang DH, Liu N, Klimek V, et al. Brief report enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications. Blood. 2006;108:618–621.
  • Witzig TE, Nowakowski GS, Habermann TM, et al. A comprehensive review of lenalidomide therapy for B-cell non-Hodgkin lymphoma. Ann Oncol. 2015;26:1667–1677.
  • Ramsay AG, Clear AJ, Kelly G, et al. Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood. 2009;114:4713–4720.
  • Qian Z, Zhang L, Cai Z, et al. Lenalidomide synergizes with dexamethasone to induce growth arrest and apoptosis of mantle cell lymphoma cells in vitro and in vivo. Leuk Res. [Internet]2011;35:380–386. DOI: 10.1016/j.leukres.2010.09.027
  • Zhang L, Qian Z, Cai Z, et al. Synergistic antitumor effects of lenalidomide and rituximab on mantle cell lymphoma in vitro and in vivo. Am J Hematol. 2009;84:553–559.
  • Wiernik PH, Lossos IS, Tuscano JM, et al. Lenalidomide monotherapy in relapsed or refractory aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2008;26:4952–4957.
  • Witzig TE, Wiernik PH, Moore T, et al. Lenalidomide oral monotherapy produces durable responses in relapsed or refractory indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2009;27:5404–5409.
  • Witzig TE, Vose JM, Zinzani PL, et al. An international phase II trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin’s lymphoma. Ann Oncol. 2011;22:1622–1627.
  • Zinzani PL, Vose JM, Czuczman MS, et al. Long-term follow-up of lenalidomide in relapsed/refractory mantle cell lymphoma: subset analysis of the NHL-003 study. Ann Oncol. 2013;24:2892–2897.
  • Eve HE, Carey S, Richardson SJ, et al. Single-agent lenalidomide in relapsed/refractory mantle cell lymphoma: results from a UK phase II study suggest activity and possible gender differences. Br J Haematol. 2012;159:154–163.
  • Goy A, Sinha R, Williams ME, et al. Single-agent lenalidomide in patients with mantle-cell lymphoma who relapsed or progressed after or were refractory to bortezomib: phase II MCL-001 (EMERGE) study. J Clin Oncol. 2013;31:3688–3695.
  • Wang M, Fayad L, Wagner-Bartak N, et al. Lenalidomide in combination with rituximab for patients with relapsed or refractory mantle-cell lymphoma: a phase 1/2 clinical trial. Lancet Oncol. [Internet]. 2012; 13:716–723. DOI: 10.1016/S1470-2045(12)70200-0.
  • Ruan J, Martin P, Shah B, et al. Lenalidomide plus rituximab as initial treatment for mantle-cell lymphoma. N Engl J Med. [Internet]. 2015;373:1835–1844. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26535512
  • Flinn IW, Mainwaring M, Peacock N, et al. Rituximab, lenalidomide, and bortezomib in the first-line or second-line treatment of patients with mantle cell lymphoma a phase I/II trial. Blood. 2012;120(21):2748.
  • Reddy N, Hernandez-Ilizaliturri FJ, Deeb G, et al. Immunomodulatory drugs stimulate natural killer-cell function, alter cytokine production by dendritic cells, and inhibit angiogenesis enhancing the anti-tumour activity of rituximab in vivo. Br J Haematol. 2008;140:36–45.
  • Rudelius M, Pittaluga S, Pham -TH-T, et al. Constitutive activation of AKT contributes to the pathogenesis and survival of blastoid variants of mantle cell lymphoma. Blood. [Internet]. 2006;108:1668–1676. Available from: http://www.bloodjournal.org/content/106/11/1908.abstract
  • Witzig TE, Kaufmann SH. Inhibition of the Phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway in hematologic malignancies. Curr Treat Options in Oncol. 2006;7:285.
  • Bjornsti M-A, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004;4:335–348.
  • Witzig TE, Geyer SM, Ghobrial I, et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol. 2005;23:5347–5356.
  • Hess G, Herbrecht R, Romaguera J, et al. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol. [Internet]. 2009;27:3822–3829. Available from: http://jco.ascopubs.org/cgi/doi/10.1200/JCO.2008.20.7977
  • Dreyling M, Jurczak W, Jerkeman M, et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study. Lancet. 2016;387:770–778.
  • Honigberg LA, Smith AM, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A. [Internet]. 2010;107:13075–13080. [cited 2014 Dec 15. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2919935&tool=pmcentrez&rendertype=abstract
  • Buggy JJ. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int. Rev. Immunol. 2012;32:119–132.
  • Dal Porto JM, Gauld SB, Merrell KT, et al. B cell antigen receptor signaling 101. Mol Immunol. 2004;41:599–613.
  • Maas A, Hendriks RW. Role of Bruton’s tyrosine kinase in B cell development. Dev Immunol. 2001;8:171–181.
  • Bruton O. Agammaglobulinemia. Pediatrics. 1952;9:722–728.
  • Tsukada S, Rawlings DJ, Witte ON. Role of Bruton’s tyrosine kinase in immunodeficiency. Curr Opin Immunol. 1994;6:623–630.
  • Satterthwaite AB, Witte ON, Witte O. The role of Bruton ’ s tyrosine kinase in B-cell development and function: a genetic perspective. Immunol Rev. 2000;175:120–127.
  • Ponader S. Burger J A. Bruton’s tyrosine kinase: from X-linked agammaglobulinemia toward targeted therapy for B-cell malignancies. J Clin Oncol. [Internet]. 2014; 32: 1830–1839. [cited 2014 Dec 29 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24778403
  • Chang BY, Francesco M, Mfm DR, et al. Egress of CD19(+)CD5(+) cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients. Blood. [Internet]. 2013;122:2412–2424. [cited 2014 Dec 21. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3790509&tool=pmcentrez&rendertype=abstract
  • Rushworth SA, Bowles KM, Barrera LN, et al. BTK inhibitor ibrutinib is cytotoxic to myeloma and potently enhances bortezomib and lenalidomide activities through NF-κB. Cell Signal. 2013;25:106–112.
  • Herman SEM, Mustafa RZ. Gyamfi J A, et al. Ibrutinib inhibits BCR and Nf-Κb signaling and reduces tumor proliferation in tissue-resident cells of patients with CLL. Blood. 2014;123:3286–3295.
  • Zheng X, Ding N, Song Y, et al. Different sensitivity of germinal center B cell-like diffuse large B cell lymphoma cells towards ibrutinib treatment. Cancer Cell Int. [Internet]. 2014;14:32. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3984027&tool=pmcentrez&rendertype=abstract
  • Rinaldi A, Kwee I, Taborelli M, et al. Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Br J Haematol. [Internet]. 2006;132:303–316. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16409295
  • Bernard S, Danglade D, Gardano L, et al. Inhibitors of BCR signalling interrupt the survival signal mediated by the micro-environment in mantle cell lymphoma. Int J Cancer. [Internet]. 2014;0:1–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25388373
  • Kurtova AV, Tamayo AT, Ford RJ, et al. Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting. Blood. 2009;113:4604–4613.
  • Psyrri A, Papageorgiou S, Liakata E, et al. Phosphatidylinositol 3ʹ-kinase catalytic subunit alpha gene amplification contributes to the pathogenesis of mantle cell lymphoma. Clin Cancer Res. [Internet]. 2009;15:5724–5732. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=medl&AN=19723646%5Cnhttp://tq5wt9yw2k.search.serialssolutions.com/?sid=OVID:Ovid+MEDLINE(R)+%3C2008+to+April+Week+3+2012%3E&genre=article&id=pmid:19723646&id=doi:&issn=1078-0432&volume=15&issu
  • Baran-Marszak F, Boukhiar M, Harel S, et al. Constitutive and B-cell receptor-induced activation of STAT3 are important signaling pathways targeted by bortezomib in leukemic mantle cell lymphoma. Haematologica. [Internet]. 2010;95:1865–1872. Available from: http://www.haematologica.org/cgi/content/abstract/95/11/1865%5Cnhttp://www.haematologica.org/cgi/content/abstract/95/11/1865?etoc%5Cnhttp://www.haematologica.org/cgi/reprint/95/11/1865.pdf
  • Cinar M, Hamedani F, Mo Z, et al. Bruton tyrosine kinase is commonly overexpressed in mantle cell lymphoma and its attenuation by ibrutinib induces apoptosis. Leuk Res. [Internet]. 2013;37:1271–1277. DOI: 10.1016/j.leukres.2013.07.028
  • Burger JA, Buggy JJ. Emerging drug profiles; Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib (PCI-32765). Leuk Lymphoma. 2013;54:2385–2391.
  • Ou Z. Single agent Bruton’s tyrosine kinase (Btk) inhibitor and single agent carfilzomib induce cell apoptosis, arrest cell growth and down-regulate NFkb activity in mantle cell lymphoma. ASH Annu Meet.  November 18, 2011; 118(21).
  • Pan Z, Scheerens H, Li S-J, et al. Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. Chem Med Chem. [Internet]. 2007;2:58–61. [cited 2014 Oct 24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17154430
  • Ponada S, Balasubramanian S, L V P, et al. Activity of Bruton’s tyrosine kinase (Btk) Inhibitor PCI-32765 in mantle cell lymphoma (MCL) identifies Btk as a novel therapeutic target. ASH Annu Meet. 3688. November 18, 2011; 118(21).
  • Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31:88–94.
  • Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. [Internet]. 2013;369:507–516. [cited 2014 Sep 15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23782157
  • Wang ML. Blum K A, Martin P, et al. Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results. Blood. 2015;126:739–746.
  • Wang ML, Lee H, Chuang H, et al. Ibrutinib in combination with rituximab in relapsed or refractory mantle cell lymphoma: a single-centre, open-label, phase 2 trial. Lancet Oncol. 2016;17:48–56.
  • Maddocks K, Christian B, Jaglowski S, et al. A phase 1 /1b study of rituximab, bendamustine, and ibrutinib in patients with untreated and relapsed/refractory non-Hodgkin lymphoma. Blood. 2015;125:242–249.
  • Wang M, Hagemeister F, Westin JR, et al. Ibrutinib and rituximab are an efficacious and safe combination in relapsed mantle cell lymphoma: preliminary results from a phase II clinical trial. ASH Annu Meet. 2014;124(21). Oral. Session 624.
  • Wang ML, Thirumurthi S, Chuang HH, et al. Chemotherapy-free induction with ibrutinib-rituximab followed by shortened cycles of chemo-immunotherapy consolidation in young, newly diagnosed mantle cell lymphoma patients: a phase II clinical trial. Blood. 2016;128(22):147.
  • Maddocks K, Christian B, Jaglowski S, et al. Clinical Trials and Observations: A phase 1/1b study of rituximab, bendamustine, and ibrutinib in patients with untreated and relapsed/refractory non-Hodgkin lymphoma. Blood. 2015;125:242–248.
  • Mfm DR, Kuil A. Ibrutinib and idelalisib synergistically target BCR-controlled adhesion in MCL and CLL: a rationale for combination therapy. Blood. 2015;125:2306–2309.
  • Zhao X, Bodo J, Sun D. Combination of ibrutinib with ABT-199: synergistic effects on proliferation inhibition and apoptosis in mantle cell lymphoma cells through perturbation of BTK, AKT and BCL2 pathways. Br J Haematol. 2015;168:757–768.
  • Cheah CY, Chihara D, Romaguera JE, et al. Patients with mantle cell lymphoma failing ibrutinib are unlikely to respond to salvage chemotherapy and have poor outcomes. Ann Oncol. 2015;26:1175–1179.
  • Woyach JA, Ruppert AS, Lozanski G, et al. Association of disease progression on ibrutinib therapy with the acquisition of resistance mutations: a single-center experience of 267 patients. ASCO Meet Abstr. 2014;32:7010.
  • Woyach JA, Furman RR, Liu T-M, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. [Internet]. 2014;370:2286–2294. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24869598
  • Balasubramanian S, Schaffer M, Deraedt W. Mutational analysis of patients with primary resistance to single-agent ibrutinib in relapsed or refractory mantle cell lymphoma (MCL). ASH Annu Meet. 2014;124(21).
  • Lenz G, Balasubramanian S, Goldberg JD, et al. Sequence variants in patients with primary and aquired resistance to ibrutinib in the phase 3 MCL3001 (RAY) trial. Haematologica. June 2016: 135195.
  • Ma J, Lu P, Guo A, et al. Characterization of ibrutinib-sensitive and -resistant mantle lymphoma cells. Br J Haematol. [Internet]. 2014. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24957109
  • Cheah CY, Chihara D, Romaguera JE, et al. Patients with mantle cell lymphoma failing ibrutinib are unlikely to respond to salvage chemotherapy and have poor outcomes. Ann Oncol. 2015;26(6):1175-1179.
  • Levade M, David E, Laurent P, et al. Ibrutinib treatment affects collagen and von Willebrand factor-dependent platelet functions. Blood. 2015;124:3991–3996.
  • Kamel S, Horton L, Ysebaert L, et al. Ibrutinib inhibits collagen-mediated but not ADP-mediated platelet aggregation. Leukemia. [Internet]. 2014; 1–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25138588.
  • McMullen JR, Boey EJH. Correspondence to the editor: ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac. Blood. 2014;124:3829–3831.
  • Kahl BS, Spurgeon SE, Furman RR, et al. A phase 1 study of the PI3Kd inhibitor idelalisib in patients with relapsed/refractory mantle cell lymphoma (MCL). Blood. 2015;123:3398–3406.
  • Zydelig FDA required REMS safety information. 2014.
  • Burger JA. Bruton’s tyrosine kinase (BTK) inhibitors in clinical trials. Curr Hematol Malig Rep. 2014;9(1):44-49.
  • Walter HS, Rule SA, Dyer MJS, et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood. 2016;127:411–419.
  • Rajasekeran N, Sadaram M, Hebb J, et al. Three BTK-specific inhibitors, in contrast to ibrutinib, do not antagonise rituximab-dependent NK-Cell mediated cytotoxicity. ASH Annu Meet. 2014;124(21):625.
  • Byrd JC, Harrington B, O’Brien S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. [Internet]. 2015; 151207133057003. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa1509981%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/26641137%5Cnhttp://www.nejm.org/doi/abs/10.1056/NEJMoa1509981.
  • Covey T, Barf T, Gulrajani M, et al. Abstract 2596: ACP-196: a novel covalent Bruton’s tyrosine kinase (Btk) inhibitor with improved selectivity and in vivo target coverage in chronic lymphocytic leukemia (CLL) patients. Cancer Res. [Internet]. 2015;75:2596LP–2596. Available from: http://cancerres.aacrjournals.org/content/75/15_Supplement/2596.abstract
  • Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. [Internet]. 2013;19:202–208. Available from: http://dx.doi.org/10.1038/nm.3048%5Cnhttp://www.nature.com/doifinder/10.1038/nm.3048.
  • Korz C, Pscherer A, Benner A, et al. Evidence for distinct pathomechanisms in B-cell chronic lymphocytic leukemia and mantle cell lymphoma by quantitative expression analysis of cell cycle and apoptosis-associated genes. Blood. 2002;99:4554–4561.
  • Balakrishnan K, Gandhi V. Bcl-2 antagonists: a proof of concept for CLL therapy. Invest New Drugs. 2013;31:1384–1394.
  • Wilson WH, Connor OAO, Czuczman MS, et al. Safety, pharmacokinetics, pharcodynamics, and activity of navitoclax, a targeted high affinity inhibitor of BCL-2, in lymphoid malignancies. Lancet Oncol. 2011;11:1149–1159.
  • Schoenwaelder SM, Jarman KE, Gardiner EE, et al. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood. 2011;118:1663–1674.
  • Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. [Internet]. 2016;374:311–322. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa1513257
  • Chiron D, Dousset C, Brosseau C, et al. Biological rational for sequential targeting of Bruton tyrosine kinase and Bcl-2 to overcome CD40-induced ABT-199 resistance in mantle cell lymphoma. Oncotarget. 2015;6:8750–8759.
  • Seymour JF, Gerecitano JF, Kahl BS, et al. The single-agent Bcl-2 inhibitor ABT-199 (GDC-0199) in patients with relapsed/refractory (R/R) non-Hodgkin lymphoma (NHL): responses observed in all mantle cell lymphoma (MCL) patients. Davids MS, editor. Blood. [Internet]. 2013;122:1789LP–1789. Available from: http://www.bloodjournal.org/content/122/21/1789.abstract
  • Davids MS, Roberts AW, Anderson MA, et al. The BCL-2-specific BH3-mimetic ABT-199 (GDC-0199) is active and well-tolerated in patients with relapsed non-Hodgkin lymphoma: interim results of a phase I study. Blood. [Internet]. 2015;120:304LP–304. Available from: http://www.bloodjournal.org/content/120/21/304.abstract
  • Medina DJ, Goodell L, Glod J, et al. Mesenchymal stromal cells protect mantle cell lymphoma cells from spontaneous and drug-induced apoptosis through secretion of B-cell activating factor and activation of the canonical and non-canonical nuclear factor κB pathways. Haematologica. [Internet]. 2012;97:1255–1263. [cited 2014 Dec 29. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3409825&tool=pmcentrez&rendertype=abstract
  • Armand P. Review article. Immune checkpoint blockade in hematologic malignancies. Blood. 2015;125:3393–3401.
  • Hodi S, O’Day S, McDermott D, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–723.
  • Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory hodgkin’s lymphoma. N Engl J Med. 2015;372:311–319.
  • Ansell SM, Hurvitz SA, Koenig PA, et al. Phase I study of ipilimumab (MDX-010), an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B- cell non-Hodgkin lymphoma. Clin Cancer Res. 2010;15:6446–6453.
  • Lesokhin AM, Ansell SM, Armand P, et al. Preliminary results of a phase I study of nivolumab (BMS-936558) in patients with relapsed or refractory lymphoid malignancies. Blood. [Internet]. 2014;124:291LP–291. Available from: http://www.bloodjournal.org/content/124/21/291.abstract

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.