610
Views
28
CrossRef citations to date
0
Altmetric
Review

MUC1 induces tamoxifen resistance in estrogen receptor-positive breast cancer

, , , &
Pages 607-613 | Received 17 Feb 2017, Accepted 07 Jun 2017, Published online: 21 Jun 2017

References

  • Chang M-S. Tamoxifen resistance in breast cancer. Biomolecules Ther. 2012;20(3):256–267.
  • Hawsawi P, Jove M, Humphries M et al., editors. Role of insulin like growth factor binding proteins and tamoxifen resistance in breast cancer epithelial cells. J Pathology. 2015;237(Suppl S1):S19-S19.
  • Thewes V, Simon R, Schroeter P, et al. Reprogramming of the ERRα and ERα target gene landscape triggers tamoxifen resistance in breast cancer. Cancer Res. 2015;75(4):720–731.
  • Kharbanda A, Rajabi H, Jin C, et al. MUC1-C oncoprotein induces tamoxifen resistance in human breast cancer cells. Mol Cancer Res. 2013;11:714–723. molcanres. 0668.2012.
  • Binkhorst L. Tamoxifen Pharmacokinetics beyond the genotyping era. Rotterdam: Erasmus University ; 2015. Available from: http://hdl.handle.net:/1765/78048
  • Yamamoto M, Hosoda M, Nakano K, et al. p53 accumulation is a strong predictor of recurrence in estrogen receptor‐positive breast cancer patients treated with aromatase inhibitors. Cancer Sci. 2014;105(1):81–88.
  • Deblois G, Giguère V. Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat Rev Cancer. 2013;13(1):27–36.
  • McDermott MS, Chumanevich AA, Lim C-U, et al. Inhibition of CDK8 mediator kinase suppresses estrogen dependent transcription and the growth of estrogen receptor positive breast cancer. Oncotarget. 2017;8(8):12558.
  • Abderrahman B, Jordan VC. Long-term adjuvant tamoxifen therapy and decreases in contralateral breast cancer. JAMA Oncol. 2017;3(2):163–164.
  • Li W, Shi X, Xu Y, et al. Tamoxifen promotes apoptosis and inhibits invasion in estrogen‑positive breast cancer MCF‑7 cells. Molecular medicine reports. 2017.
  • Ring A, Dowsett M. Mechanisms of tamoxifen resistance. Endocr Relat Cancer. 2004;11(4):643–658.
  • Kufe DW, Kharbanda S Combination anti-estrogen receptor cancer therapy using muc1 peptides and chemotherapeutics. Google Patents; 2017.
  • Sousa AM, Grandgenett PM, David L, et al. Reflections on MUC1 glycoprotein: the hidden potential of isoforms in carcinogenesis. Apmis. 2016;124:913–924.
  • Zhao Y, Planas-Silva MD. Mislocalization of cell–cell adhesion complexes in tamoxifen-resistant breast cancer cells with elevated c-Src tyrosine kinase activity. Cancer Lett. 2009;275(2):204–212.
  • Larsen SL, Laenkholm A-V, Duun-Henriksen AK, et al. Src drives growth of antiestrogen resistant breast cancer cell lines and is a marker for reduced benefit of tamoxifen treatment. PLoS One. 2015;10(2):e0118346.
  • Haddon L, Hugh J. MUC1-mediated motility in breast cancer: a review highlighting the role of the MUC1/ICAM-1/Src signaling triad. Clin Exp Metastasis. 2015;32(4):393–403.
  • Kufe DW. MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene. 2013;32(9):1073–1081.
  • Wei X, Xu H, Kufe D. MUC1 oncoprotein stabilizes and activates estrogen receptor α. Mol Cell. 2006;21(2):295–305.
  • Kufe DW. Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer. 2009;9(12):874–885.
  • Goode G, Gunda V, Chaika NV, et al. MUC1 facilitates metabolomic reprogramming in triple-negative breast cancer. PLoS One. 2017;12(5):e0176820.
  • Raina D, Ahmad R, Rajabi H, et al. Targeting cysteine-mediated dimerization of the MUC1-C oncoprotein in human cancer cells. Int J Oncol. 2012;40(5):1643.
  • Kharbanda A, Rajabi H, Jin C, et al. Oncogenic MUC1-C promotes tamoxifen resistance in human breast cancer. Mol Cancer Res. 2013;11(7):714–723.
  • Raina D, Uchida Y, Kharbanda A, et al. Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene. 2014;33(26):3422–3431.
  • Gu Y, Chen T, Li G, et al. Lower Beclin 1 downregulates HER2 expression to enhance tamoxifen sensitivity and predicts a favorable outcome for ER positive breast cancer. Cancer. 2016;8:14–20.
  • Eanes L, Patel YM. Inhibition of the MAPK pathway alone is insufficient to account for all of the cytotoxic effects of naringenin in MCF-7 breast cancer cells. Biochimie Open. 2016;3:64–71.
  • Vaziri-Gohar A, Zheng Y, Houston KD. IGF-1 receptor modulates FoxO1-mediated tamoxifen response in breast cancer cells. Mol Cancer Res. 2017. molcanres. 0176.2016.
  • Yao M, Shang -Y-Y, Zhou Z-W, et al. The research on lapatinib in autophagy, cell cycle arrest and epithelial to mesenchymal transition via Wnt/ErK/PI3K-AKT signaling pathway in human cutaneous squamous cell carcinoma. J Cancer. 2017;8(2):220.
  • Shou J, Massarweh S, Osborne CK, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2–positive breast cancer. J Natl Cancer Inst. 2004;96(12):926–935.
  • Liang Y-K, Zeng D, Xiao Y-S, et al. MCAM/CD146 promotes tamoxifen resistance in breast cancer cells through induction of epithelial–mesenchymal transition, decreased ERα expression and AKT activation. Cancer Lett. 2017;386:65–76.
  • Chua CEL, Tang BL. The role of the small GTPase Rab31 in cancer. J Cell Mol Med. 2015;19(1):1–10.
  • Jin C, Rajabi H, Pitroda S, et al. Cooperative interaction between the MUC1-C oncoprotein and the Rab31 GTPase in estrogen receptor-positive breast cancer cells. PLoS One. 2012;7(7):e39432.
  • Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2016;36(11):1461–1473.
  • El Helou R, Pinna G, Cabaud O, et al. miR-600 acts as a bimodal switch that regulates breast cancer stem cell fate through WNT signaling. Cell Rep. 2017;18(9):2256–2268.
  • Lakis S, Dimoudis S, Kotoula V, et al. Interaction between beta-catenin and EGFR expression by immunohistochemistry identifies prognostic subgroups in early high-risk triple-negative breast cancer. Anticancer Res. 2016;36(5):2365–2378.
  • Byers LA, Diao L, Wang J, et al. An epithelial–mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res. 2013;19(1):279–290.
  • Roura S, Miravet S, Piedra J, et al. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem. 1999;274(51):36734–36740.
  • Hiscox S, Jiang WG, Obermeier K, et al. Tamoxifen resistance in MCF7 cells promotes EMT‐like behaviour and involves modulation of β‐catenin phosphorylation. Int J Cancer. 2006;118(2):290–301.
  • McKeownA M, Guerriero J, Letai A. Anti-tumor (M1) macrophages secrete Cytokines that prime breast cancer cells for apoptosis. Pittsburgh (PA): Highlighting Undergraduate Research at the University of Pittsburgh Swanson School of Engineering; 2017. p. 61.
  • Ashkenazi A. Targeting the extrinsic apoptotic pathway in cancer: lessons learned and future directions. J Clin Invest. 2015;125(2):487–489.
  • Green DR. Cancer and apoptosis: who is built to last? Cancer Cell. 2017;31(1):2–4.
  • Iqbal W, Alkarim S, AlHejin A, et al. Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis. Oncotarget. 2016;7(46):76337–76353.
  • Signore M, Ricci-Vitiani L, De Maria R. Targeting apoptosis pathways in cancer stem cells. Cancer Lett. 2013;332(2):374–382.
  • Vilaboa N, Boré A, Martin-Saavedra F, et al. New inhibitor targeting human transcription factor HSF1: effects on the heat shock response and tumor cell survival. Nucleic Acids Res. 2017;45:5797–5817.
  • Wang J, Tai G. Role of C-Jun N-terminal kinase in hepatocellular carcinoma development. Target Oncol. 2016;11(6):723–738.
  • Yuan H, Wang J, Wang F, et al. Mucin 1 gene silencing inhibits the growth of SMMC-7721 human hepatoma cells through Bax-mediated mitochondrial and caspase-8-mediated death receptor apoptotic pathways. Mol Med Rep. 2015;12(5):6782–6788.
  • Zhou F, Yang Y, Xing D. Bcl‐2 and Bcl‐xL play important roles in the crosstalk between autophagy and apoptosis. Febs J. 2011;278(3):403–413.
  • Gornowicz A, Bielawska A, Gabryel-Porowska H, et al. The influence of anti-MUC1 with berenil complex of platinum (II) on concentration of apoptotic markers in human skin fibroblasts. Biochem Pharmacol (Los Angel). 2015;4(198):2167–0501.100019.
  • Yuan S-F, Li K-Z, Wang L, et al. Expression of MUC1 and its significance in hepatocellular and cholangiocarcinoma tissue. World J Gastroenterol. 2005;11(30):4661.
  • Enzenmüller S, Sun Q, Debatin K-M, et al. Lysosomal cell death and apoptosis crosstalk-synergistic role in Bcl-2 Inhibitor (ABT-263) mediated cell death in b-cell precursor acute Lymphoblastic Leukemia. Am Soc Hematol. 2016;128(22):1584.
  • Horie Y, Nemoto H, Itoh M, et al. Fermented brown rice extract causes apoptotic death of human acute lymphoblastic leukemia cells via death receptor pathway. Appl Biochem Biotechnol. 2016;178(8):1599–1611.
  • Fukui Y. Mechanisms behind signet ring cell carcinoma formation. Biochem Biophys Res Commun. 2014;450(4):1231–1233.
  • Yu M, Qi B, Xiaoxiang W, et al. Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed Pharmacother. 2017;90:677–685.
  • Fu K, Ren H, Wang Y, et al. DJ-1 inhibits TRAIL-induced apoptosis by blocking pro-caspase-8 recruitment to FADD. Oncogene. 2012;31(10):1311–1322.
  • Hiraki M, Suzuki Y, Alam M, et al. MUC1-C stabilizes MCL-1 in the oxidative stress response of triple-negative breast cancer cells to BCL-2 inhibitors. Sci Rep. 2016;6.
  • Faronato M, Lombardo Y, Coombes RC. Endocrine therapy resistance and epithelial to mesenchymal transition are driven by Nicastrin and Notch4 cooperation in MCF7 breast cancer cells. Cancer Cell Microenviron. 2014;1(3):1–3.
  • Joshi S, Kumar S, Choudhury A, et al. Altered Mucins (MUC) trafficking in benign and malignant conditions. Oncotarget. 2014;5(17):7272

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.