1,820
Views
40
CrossRef citations to date
0
Altmetric
Review

Prodrugs for targeted cancer therapy

, &
Pages 483-502 | Received 14 Feb 2019, Accepted 03 May 2019, Published online: 13 May 2019

References

  • Komarova NL, Boland CR. Cancer: calculated treatment. Nature. 2013;499(7458):291–292.
  • Zhang X, Li X, You Q, et al. Prodrug strategy for cancer cell-specific targeting: A recent overview. Eur J Med Chem. 2017;139:542–563.
  • Lesniewska-Kowiel MA, Muszalska I. Strategies in the designing of prodrugs, taking into account the antiviral and anticancer compounds. Eur J Med Chem. 2017;129:53–71.
  • Santhosh S, Kumar P, Ramprasad V, et al. Evolution of targeted therapies in cancer: opportunities and challenges in the clinic. Future Oncol. 2015;11(2):279–293.
  • Huang C-Y, Ju D-T, Chang C-F, et al. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine (Taipei). 2017;7:4.
  • Holohan C, Van Schaeybroeck S, Longley DB, et al. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–726.
  • Wang Z, Deng X, Ding J, et al. Mechanisms of drug release in pH-sensitive micelles for tumour targeted drug delivery system: A review. Int J Pharm. 2018;535(1):253–260.
  • Giang I, Boland EL, Poon GM. Prodrug applications for targeted cancer therapy. Aaps J. 2014;16(5):899–913.
  • Zawilska JB, Wojcieszak J, Olejniczak AB. Prodrugs: a challenge for the drug development. Pharmacol Rep. 2013;65(1):1–14.
  • Arpicco S, Dosio F, Stella B, et al. Anticancer prodrugs: an overview of major strategies and recent developments. Curr Top Med Chem. 2011;11(18):2346–2381.
  • Yang Y-H, Aloysius H, Inoyama D, et al. Enzyme-mediated hydrolytic activation of prodrugs. Acta Pharm Sin B. 2011;1(3):143–159.
  • Mahato R, Tai W, Cheng K. Prodrugs for improving tumor targetability and efficiency. Adv Drug Deliv Rev. 2011;63(8):659–670.
  • Li M, Thapa P, Rajaputra P, et al. Quantitative modeling of the dynamics and intracellular trafficking of far-red light-activatable prodrugs: implications in stimuli-responsive drug delivery system. J Pharmacokinet Pharmacodyn. 2017;44(6):521–536.
  • Sharma SK, Bagshawe KD. Antibody directed enzyme prodrug therapy (ADEPT): trials and tribulations. Adv Drug Deliv Rev. 2017 Sep;1(118):2–7.
  • Mishra AP, Chandra S, Tiwari R, et al. Therapeutic potential of prodrugs towards targeted drug delivery. Open Med Chem J. 2018;12:111–123.
  • Williams EM, Little RF, Mowday AM, et al. Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J. 2015;471(2):131–153.
  • Karjoo Z, Chen X, Hatefi A. Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev. 2016;99(Pt A):113–128.
  • Tan Q, Saggar JK, Yu M, et al. Mechanisms of drug resistance related to the microenvironment of solid tumors and possible strategies to inhibit them. Cancer J (Sudbury, Mass). 2015;21(4): 254–262.
  • Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579.
  • Bildstein L, Dubernet C, Couvreur P. Prodrug-based intracellular delivery of anticancer agents. Adv Drug Deliv Rev. 2011;63(1–2):3–23.
  • Wu W, Luo Y, Sun C, et al. Targeting cell-impermeable prodrug activation to tumor microenvironment eradicates multiple drug-resistant neoplasms. Cancer Res. 2006;66(2):970–980.
  • Bao Y, Yin M, Hu X, et al. A safe, simple and efficient doxorubicin prodrug hybrid micelle for overcoming tumor multidrug resistance and targeting delivery. J Control Release. 2016;235:182–194.
  • Cheng R, Feng F, Meng F, et al. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release. 2011;152(1):2–12.
  • Swietach P, Vaughan-Jones RD, Harris AL, et al. The chemistry, physiology and pathology of pH in cancer. Philos Trans R Soc B. 2014;369(1638):20130099.
  • Konopleva M, Thall PF, Yi CA, et al. Phase I/II study of the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute lymphoblastic leukemia. Haematologica. 2015;100(7):927–934.
  • Badar T, Handisides DR, Benito JM, et al. Phase I study of evofosfamide, an investigational hypoxia-activated prodrug, in patients with advanced leukemia. Am J Hematol. 2016;91(8):800–805.
  • Stornetta A, Deng K-CK, Danielli S, et al. Drug-DNA adducts as biomarkers for metabolic activation of the nitro-aromatic nitrogen mustard prodrug PR-104A. Biochem Pharmacol. 2018;154:64–74.
  • Albertella MR, Loadman PM, Jones PH, et al. Hypoxia-selective targeting by the bioreductive prodrug AQ4N in patients with solid tumors: results of a phase I study. Clin Cancer Res. 2008;14(4):1096.
  • Laubach JP, Liu C-J, Raje NS, et al. A Phase I/II study of evofosfamide, A hypoxia-activated prodrug with or without bortezomib in subjects with relapsed/refractory multiple myeloma. Clin Cancer Res. 2019;25(2):478.
  • Tap WD, Papai Z, Van Tine BA, et al. Doxorubicin plus evofosfamide versus doxorubicin alone in locally advanced, unresectable or metastatic soft-tissue sarcoma (TH CR-406/SARC021): an international, multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2017;18(8):1089–1103.
  • Zhang Y, Yang C, Wang W, et al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep. 2016;6:21225.
  • Luo C, Sun J, Sun B, et al. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol Sci. 2014;35(11):556–566.
  • Liu J, Huang Y, Kumar A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32(4):693–710.
  • Shen S, Wu Y, Li K, et al. Versatile hyaluronic acid modified AQ4N-Cu(II)-gossypol infinite coordination polymer nanoparticles: multiple tumor targeting, highly efficient synergistic chemotherapy, and real-time self-monitoring. Biomaterials. 2018;154:197–212.
  • Stuart MAC, Huck WTS, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9:101.
  • Lu T, Wang Z, Ma Y, et al. Influence of polymer size, liposomal composition, surface charge, and temperature on the permeability of pH-sensitive liposomes containing lipid-anchored poly(2-ethylacrylic acid). Int J Nanomedicine. 2012;7:4917–4926.
  • Morishita M, Lowman AM, Takayama K, et al. Elucidation of the mechanism of incorporation of insulin in controlled release systems based on complexation polymers. J Control Release. 2002;81(1–2):25–32.
  • Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release. 2003;91(1):103–113.
  • Gu Y, Zhong Y, Meng F, et al. Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy. Biomacromolecules. 2013;14(8):2772–2780.
  • Cranmer LD. Spotlight on aldoxorubicin (INNO-206) and its potential in the treatment of soft tissue sarcomas: evidence to date. Onco Targets Ther. 2019;12:2047–2062.
  • Kratz F, Roth T, Fichiner I, et al. In vitro and in vivo efficacy of acid-sensitive transferrin and albumin doxorubicin conjugates in a human xenograft panel and in the MDA-MB-435 mamma carcinoma model. J Drug Target. 2000;8(5):305–318.
  • Chawla SP, Sankhala KK, Chawla S, et al. A phase 1/2 study of continuous infusion ifosfamide/mesna + aldoxorubicin in sarcoma patients. J Clin Oncol. 2016;34(15_suppl):e22547–e22547.
  • Chawla SP, Ganjoo KN, Schuetze S, et al. Phase III study of aldoxorubicin vs investigators’ choice as treatment for relapsed/refractory soft tissue sarcomas. J Clin Oncol. 2017;35(15_suppl):11000.
  • Gong J, Yan J, Forscher C, et al. Aldoxorubicin: a tumor-targeted doxorubicin conjugate for relapsed or refractory soft tissue sarcomas. Drug Des Devel Ther. 2018;12:777–786.
  • Liu L, Liu P. Synthesis strategies for disulfide bond-containing polymer-based drug delivery system for reduction-responsive controlled release. Front Mater Sci. 2015;9(3):211–226.
  • Cazzamalli S, Dal Corso A, Widmayer F, et al. Chemically defined antibody– and small molecule–drug conjugates for in vivo tumor targeting applications: a comparative analysis. J Am Chem Soc. 2018;140(5):1617–1621.
  • Gébleux R, Wulhfard S, Casi G, et al. Antibody format and drug release rate determine the therapeutic activity of noninternalizing antibody-drug conjugates. Mol Cancer Ther. 2015;14(11):2606–2612.
  • Saravanakumar G, Kim J, Kim WJ. Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv Sci. 2017;4(1):1600124-n/a.
  • Liou G-Y, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5). DOI:10.3109/10715761003667554
  • Peng X, Gandhi V. ROS-activated anticancer prodrugs: a new strategy for tumor-specific damage. Ther Deliv. 2012;3(7):823–833.
  • Srikun D, Miller EW, Domaille DW, et al. An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. J Am Chem Soc. 2008;130(14):4596–4597.
  • Wang L, Xie S, Ma L, et al. 10-Boronic acid substituted camptothecin as prodrug of SN-38. Eur J Med Chem. 2016;116:84–89.
  • Kuang Y, Balakrishnan K, Gandhi V, et al. Hydrogen peroxide inducible DNA cross-linking agentargeted anticancer prodrugs. J Am Chem Soc. 2011;133(48):19278–19281.
  • Chen W, Balakrishnan K, Kuang Y, et al. Reactive oxygen species (ROS) inducible DNA cross-linking agents and their effect on cancer cells and normal lymphocytes. J Med Chem. 2014;57(11):4498–4510.
  • Perez C, Monserrat J-P, Chen Y, et al. Exploring hydrogen peroxide responsive thiazolidinone-based prodrugs. Chem Comm. 2015;51(33):7116–7119.
  • Sznarkowska A, Kostecka A, Meller K, et al. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget. 2017;8(9):15996–16016.
  • Hagen H, Marzenell P, Jentzsch E, et al. Aminoferrocene-based prodrugs activated by reactive oxygen species. J Med Chem. 2012;55(2):924–934.
  • Marzenell P, Hagen H, Sellner L, et al. Aminoferrocene-based prodrugs and their effects on human normal and cancer cells as well as bacterial cells. J Med Chem. 2013;56(17):6935–6944.
  • Noh J, Kwon B, Han E, et al. Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nat Commun. 2015;6:6907.
  • Pellosi DS, De Jesus P, Tedesco AC. Spotlight on the delivery of photosensitizers: different approaches for photodynamic-based therapies. Expert Opin Drug Deliv. 2017;14(12):1395–1406.
  • Bio M, Rajaputra P, Nkepang G, et al. Site-specific and far-red-light-activatable prodrug of combretastatin A-4 using photo-unclick chemistry. J Med Chem. 2013;56(10):3936–3942.
  • Huang S-X, Yun B-S, Ma M, et al. Leinamycin E1 acting as an anticancer prodrug activated by reactive oxygen species. Proc Nat Acad Sci. 2015;112(27):8278.
  • Pan Z, Zhang J, Ji K, et al. Organic CO prodrugs activated by endogenous ROS. Org Lett. 2017;20(1):8–11.
  • Bhagat SD, Singh U, Mishra RK, et al. An endogenous reactive oxygen species (ROS)-activated histone deacetylase inhibitor prodrug for cancer chemotherapy. ChemMedChem. 2018;13(19):2073–2079.
  • Monostori P, Wittmann G, Karg E, et al. Determination of glutathione and glutathione disulfide in biological samples: an in-depth review. J Chromatogr B. 2009;877(28):3331–3346.
  • Wu G, Fang YZ, Yang S, et al. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489–492.
  • Gunnarsdottir S, Elfarra AA. Glutathione-dependent metabolism of cis-3-(9H-purin-6-ylthio)acrylic acid to yield the chemotherapeutic drug 6-mercaptopurine: evidence for two distinct mechanisms in rats. J Pharmacol Exp Ther. 1999;290(3):950–957.
  • Ruzza P, Rosato A, Rossi CR, et al. Glutathione transferases as targets for cancer therapy. Anticancer Agents Med Chem. 2009;9(7):763–777.
  • Ramsay EE, Dilda PJ. Glutathione S-conjugates as prodrugs to target drug-resistant tumors. Front Pharmacol. 2014;5:181.
  • Han H, Jin Q, Wang Y, et al. The rational design of a gemcitabine prodrug with AIE-based intracellular light-up characteristics for selective suppression of pancreatic cancer cells. Chem Comm. 2015;51(98):17435–17438.
  • Xu Z, Wang D, Xu S, et al. Preparation of a camptothecin prodrug with glutathione-responsive disulfide linker for anticancer drug delivery. Chem Asian J. 2014;9(1):199–205.
  • Yuan L, Chen W, Hu J, et al. Mechanistic study of the covalent loading of paclitaxel via disulfide linkers for controlled drug release. Langmuir. 2013;29(2):734–743.
  • Xu Z, Liu S, Kang Y, et al. Glutathione- and pH-responsive nonporous silica prodrug nanoparticles for controlled release and cancer therapy. Nanoscale. 2015;7(13):5859–5868.
  • Xu Z, Liu S, Kang Y, et al. Glutathione-responsive polymeric micelles formed by a biodegradable amphiphilic triblock copolymer for anticancer drug delivery and controlled release. ACS Biomater Sci Eng. 2015;1(7):585–592.
  • Kong F, Liang Z, Luan D, et al. A Glutathione (GSH)-Responsive Near-Infrared (NIR) Theranostic Prodrug for Cancer Therapy and Imaging. Anal Chem. 2016;88(12):6450–6456.
  • Hosein PJ, Craig MD, Tallman MS, et al. A multicenter phase II study of darinaparsin in relapsed or refractory Hodgkin’s and non-Hodgkin’s lymphoma. Am J Hematol. 2012;87(1):111–114.
  • Ravi D, Bhalla S, Gartenhaus RB, et al. The novel organic arsenical darinaparsin induces MAPK-mediated and SHP1-dependent cell death in T-cell lymphoma and Hodgkin lymphoma cells and human xenograft models. Clin Cancer Res. 2014;20(23):6023–6033.
  • Penet M-F, Chen Z, Li C, et al. Prodrug enzymes and their applications in image-guided therapy of cancer: tracking prodrug enzymes to minimize collateral damage. Drug Deliv Transl Res. 2012;2(1):22–30.
  • Fouladi F, Steffen KJ, Mallik S. Enzyme-responsive liposomes for the delivery of anticancer drugs. Bioconjug Chem. 2017;28(4):857–868.
  • Renoux B, Raes F, Legigan T, et al. Targeting the tumour microenvironment with an enzyme-responsive drug delivery system for the efficient therapy of breast and pancreatic cancers. Chem Sci. 2017;8(5):3427–3433.
  • Vasiljeva O, Hostetter D, Moore S J, et al. The multifaceted roles of tumor-associated proteases and harnessing their activity for prodrug activation. J Biol Chem. 2019.
  • Rooseboom M, Commandeur JNM, Vermeulen NPE. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev. 2004;56(1):53.
  • Ciuleanu T, Socinski MA, Obasaju C, et al. Efficacy and safety of necitumumab continuation therapy in the Phase III SQUIRE study of patients with Stage IV squamous non–small-cell lung cancer. Clin Lung Cancer. 2018;19(2):130–138.e2.
  • Shao LH, Liu SP, Hou JX, et al. Cathepsin B cleavable novel prodrug Ac-Phe-Lys-PABC-ADM enhances efficacy at reduced toxicity in treating gastric cancer peritoneal carcinomatosis: an experimental study. Cancer. 2012;118(11):2986–2996.
  • Albright CF, Graciani N, Han W, et al. Matrix metalloproteinase-activated doxorubicin prodrugs inhibit HT1080 xenograft growth better than doxorubicin with less toxicity. Mol Cancer Ther. 2005;4(5):751–760.
  • Shin WS, Han J, Verwilst P, et al. Cancer targeted enzymatic theranostic prodrug: precise diagnosis and chemotherapy. Bioconjug Chem. 2016;27(5):1419–1426.
  • Zhang X, Li X, Li Z, et al. An NAD(P)H:quinone Oxidoreductase 1 responsive and self-immolative prodrug of 5-Fluorouracil for safe and effective cancer therapy. Org Lett. 2018;20(12):3635–3638.
  • Glorieux C, Sandoval JM, Dejeans N, et al. Overexpression of NAD(P)H: quinoneoxidoreductase 1 (NQO1) and genomic gain of the NQO1 locus modulates breast cancer cell sensitivity to quinones. Life Sci. 2016;145:57–65.
  • Cui J, Zhang X, Huang G, et al. DMAKO-20 as a new multitarget anticancer prodrug activated by the tumor specific CYP1B1 Enzyme. Mol Pharm. 2019;16(1):409–421.
  • Mahalingam D, Wilding G, Denmeade S, et al. Mipsagargin, a novel thapsigargin-based PSMA-activated prodrug: results of a first-in-man phase I clinical trial in patients with refractory, advanced or metastatic solid tumours. Br J Cancer. 2016;114(9):986–994.
  • Bala V, Rao S, Boyd BJ, et al. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J Control Release. 2013;172(1):48–61.
  • de la Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev. 2012;64(11):967–978.
  • Hung B-Y, Kuthati Y, Kankala RK, et al. Utilization of enzyme-immobilized mesoporous silica nanocontainers (IBN-4) in prodrug-activated cancer theranostics. Nanomaterials. 2015;5(4):2169–2191.
  • Li J, Li Y, Wang Y, et al. Polymer prodrug-based nanoreactors activated by tumor acidity for orchestrated oxidation/chemotherapy. Nano Lett. 2017;17(11):6983–6990.
  • Chen Y-P, Chen C-T, Hung Y, et al. A new strategy for intracellular delivery of enzyme using mesoporous silica nanoparticles: superoxide dismutase. J Am Chem Soc. 2013;135(4):1516–1523.
  • Golan T, Grenader T, Ohana P, et al. Pegylated liposomal mitomycin C prodrug enhances tolerance of mitomycin C: a phase 1 study in advanced solid tumor patients. Cancer Med. 2015;4(10):1472–1483.
  • Gabizon AA, Tzemach D, Horowitz AT, et al. Reduced toxicity and superior therapeutic activity of a mitomycin c lipid-based prodrug incorporated in pegylated liposomes. Clin Cancer Res. 2006;12(6):1913.
  • Walther R, Rautio J, Zelikin AN. Prodrugs in medicinal chemistry and enzyme prodrug therapies. Adv Drug Deliv Rev. 2017;118:65–77.
  • Aloysius H, Hu L. Targeted prodrug approaches for hormone refractory prostate cancer. Med Res Rev. 2015;35(3):554–585.
  • Zhang J, Kale V, Chen M. Gene-directed enzyme prodrug therapy. Aaps J. 2015;17(1):102–110.
  • Tietze LF, Schmuck K. Prodrugs for targeted tumor therapies: recent developments in ADEPT, GDEPT and PMT. Curr Pharm Des. 2011;17(32):3527–3547.
  • Hong CR, Wilson WR, Hicks KO. An intratumor pharmacokinetic/pharmacodynamic model for the hypoxia-activated prodrug evofosfamide (TH-302): monotherapy activity is not dependent on a bystander effect. Neoplasia. 2018;21(2):159–171.
  • Yakkundi A, McErlane V, Murray M, et al. Tumor-selective drug activation: a GDEPT approach utilizing cytochrome P450 1A1 and AQ4N. Cancer Gene Ther. 2006;13:598.
  • Chiocca EA, Waxman DJ. Cytochrome p450-based gene therapies for cancer. Methods Mol Med. 2004;90:203–222.
  • Schellmann N, Deckert P, Bachran D, et al. Targeted enzyme prodrug therapies. Mini Rev Med Chem. 2010;10(10):887–904.
  • Chandor A, Dijols S, Ramassamy B, et al. Metabolic activation of the antitumor Drug 5-(Aziridin-1-yl)-2,4-Dinitrobenzamide (CB1954) by NO Synthases. Chem Res Toxicol. 2008;21(4):836–843.
  • Malekshah OM, Chen X, Nomani A, et al. Enzyme/prodrug systems for cancer gene therapy. Current Pharmacol Rep. 2016;2(6):299–308.
  • van Putten EH, Dirven CM, van Den Bent MJ, et al. Sitimagene ceradenovec: a gene-based drug for the treatment of operable high-grade glioma. Future Oncol. 2010;6(11):1691–1710.
  • Langford G, Dayan A, Yla-Herttuala S, et al. A preclinical assessment of the safety and biodistribution of an adenoviral vector containing the herpes simplex virus thymidine kinase gene (Cerepro) after intracerebral administration. J Gene Med. 2009;11(6):468–476.
  • Freytag SO, Barton KN, Zhang Y. Efficacy of oncolytic adenovirus expressing suicide genes and interleukin-12 in preclinical model of prostate cancer. Gene Ther. 2013;20(12):1131–1139.
  • Tang C, Russell PJ, Martiniello-Wilks R, et al. Concise review: nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy?. Stem Cells. 2010;28(9):1686–1702.
  • Tirkey B, Bhushan B, Uday Kumar S, et al. Prodrug encapsulated albumin nanoparticles as an alternative approach to manifest anti-proliferative effects of suicide gene therapy. Mater Sci Eng C Mater Bio Appl. 2017;73:507–515.
  • Greco O, Dachs GU. Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol. 2001 Apr;187(1):22–36.
  • Race PR, Lovering AL, White SA, et al. Kinetic and structural characterisation of escherichia coli nitroreductase mutants showing improved efficacy for the prodrug substrate CB1954. J Mol Biol. 2007;368(2):481–492.
  • Braybrooke JP, Slade A, Deplanque G, et al. Phase I study of MetXia-P450 gene therapy and oral cyclophosphamide for patients with advanced breast cancer or melanoma. Clin Cancer Res off J Am Assoc Cancer Res. 2005;11(4):1512–1520.
  • Folkes LK, Wardman P. Oxidative activation of indole-3-acetic acids to cytotoxic species- a potential new role for plant auxins in cancer therapy. Biochem Pharmacol. 2001;61(2):129–136.
  • Twumasi-Boateng K, Pettigrew JL, Kwok YYE, et al. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat Rev Cancer. 2018;18(7):419–432.
  • Shefet-Carasso L, Benhar I. Antibody-targeted drugs and drug resistance–challenges and solutions. Drug Resist updates. 2015;18:36–46.
  • Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12:278.
  • Weiner LM, Murray JC, Shuptrine CW. Antibody-based immunotherapy of cancer: new insights, new targets. Cell. 2012;148(6):1081–1084.
  • Singh Y, Palombo M, Sinko PJ. Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem. 2008;15(18):1802–1826.
  • Joubert N, Denevault-Sabourin C, Bryden F, et al. Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. Eur J Med Chem. 2017;142:393–415.
  • Sharma SK, Bagshawe KD. Translating antibody directed enzyme prodrug therapy (ADEPT) and prospects for combination. Expert Opin Biol Ther. 2017;17(1):1–13.
  • Bagshawe KD. Antibody directed enzymes revive anti-cancer prodrugs concept. Br J Cancer. 1987;56(5):531–532.
  • Bagshawe KD. Antibody-directed enzyme prodrug therapy (ADEPT) for cancer. Expert Rev Anticancer Ther. 2006;6(10):1421–1431.
  • Stribbling SM, Friedlos F, Martin J, et al. Regressions of established breast carcinoma xenografts by carboxypeptidase G2 suicide gene therapy and the prodrug CMDA are due to a bystander effect. Hum Gene Ther. 2000;11(2):285–292.
  • Keilholz U, Rohde L, Mehlitz P, et al. First-in-man dose escalation and pharmacokinetic study of CAP7.1, a novel prodrug of etoposide, in adults with refractory solid tumours. Eur J Cancer. 2017;80:14–25.
  • Wei Y, Pei D. Activation of antibacterial prodrugs by peptide deformylase. Bioorg Med Chem Lett. 2000;10(10):1073–1076.
  • Wang Y, Yuan H, Wright SC, et al. Synthesis and preliminary cytotoxicity study of a cephalosporin-CC-1065 analogue prodrug. BMC Chem Biol. 2001;1(1):4.
  • Francis RJ, Sharma SK, Springer C, et al. A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours. Br J Cancer. 2002;87(6):600–607.
  • Rahbarnia L, Farajnia S, Babaei H, et al. Evolution of phage display technology: from discovery to application. J Drug Target. 2017; 216-224(p)
  • Pedley RB, Sharma SK, Boxer GM, et al. Enhancement of antibody-directed enzyme prodrug therapy in colorectal xenografts by an antivascular agent. Cancer Res. 1999;59(16):3998–4003.
  • Webley SD, Francis RJ, Pedley RB, et al. Measurement of the critical DNA lesions produced by antibody-directed enzyme prodrug therapy (ADEPT) in vitro, in vivo and in clinical material. Br J Cancer. 2001;84(12):1671–1676.
  • Chen BM, Cheng TL, Tzou SC, et al. Potentiation of antitumor immunity by antibody-directed enzyme prodrug therapy. Int J Cancer. 2001;94(6):850–858.
  • Li Y-L, Li Q-X, Liu R-J, et al. Chinese medicine amygdalin and β-glucosidase combined with antibody enzymatic prodrug system as a feasible antitumor therapy. Chin J Integr Med. 2015;237–240.
  • Cheng TL, Chen BM, Chern JW, et al. Efficient clearance of poly(ethylene glycol)-modified immunoenzyme with anti-PEG monoclonal antibody for prodrug cancer therapy. Bioconjug Chem. 2000;11(2):258–266.
  • Zhang X, Wang H, Ma Z, et al. Effects of pharmaceutical PEGylation on drug metabolism and its clinical concerns. Expert Opin Drug Metab Toxicol. 2014;10(12):1691–1702.
  • Kimiz-Gebologlu I, Gulce-Iz S, Biray-Avci CJMBR. Monoclonal antibodies in cancer immunotherapy. Mol Biol Rep. 2018;45(6):2935–2940.
  • Lu J, Liu X, Liao Y-P, et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat Commun. 2017;8(1):1811.
  • Wan Z, Sun J, Xu J, et al. Dual functional immunostimulatory polymeric prodrug carrier with pendent indoximod for enhanced cancer immunochemotherapy. Acta Biomater. 2019.
  • Nasiri H, Valedkarimi Z, Aghebati-Maleki L, et al. Antibody-drug conjugates: promising and efficient tools for targeted cancer therapy. J Cell Physiol. 2018;233(9):6441–6457.
  • Xie H, Adjei AA. Antibody-drug conjugates for the therapy of thoracic malignancies. J Thorac Oncol. 2019;14(3):358–376.
  • Zhao RY, Erickson HK, Leece BA, et al. Synthesis and biological evaluation of antibody conjugates of phosphate prodrugs of cytotoxic DNA alkylators for the targeted treatment of cancer. J Med Chem. 2012;55(2):766–782.
  • Xu S. Internalization, Trafficking, Intracellular Processing and actions of antibody-drug conjugates. Pharm Res. 2015;32(11):3577–3583.
  • Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9(1):33–46.
  • Trail PA, Willner D, Lasch SJ, et al. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science (New York, NY). 1993;261(5118):212–215.
  • Asamoah-Asare J, Zhang Y, Chen Y. Antibody conjugated polymeric prodrugs the future for cancer therapy. Int. J Adv Biotechnol Bioeng. 2013; 1–17.
  • Beck A, Goetsch L, Dumontet C, et al. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16:315.
  • Katz J, Janik JE, Younes A. Brentuximab Vedotin (SGN-35). Clin Cancer Res. 2011;17(20):6428.
  • Burris HA, Tibbitts J, Holden SN, et al. Trastuzumab Emtansine (T-DM1): a novel agent for targeting HER2+ breast cancer. Clin Breast Cancer. 2011;11(5):275–282.
  • Dan N, Setua S, Kashyap VK, et al. Antibody-drug conjugates for cancer therapy: chemistry to clinical implications. Pharmaceuticals. 2018;11(2):32.
  • Elgersma RC, Coumans RGE, Huijbregts T, et al. Design, Synthesis, and Evaluation of Linker-Duocarmycin Payloads: toward Selection of HER2-Targeting Antibody–drug Conjugate SYD985. Mol Pharm. 2015;12(6):1813–1835.
  • Strickler JH, Weekes CD, Nemunaitis J, et al. First-in-human Phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody–drug conjugate targeting c-Met, in patients with advanced solid tumors. J Clin Oncol. 2018;36(33):3298–3306.
  • Wang J, Anderson MG, Oleksijew A, et al. ABBV-399, a c-Met antibody-drug conjugate that targets both MET-Amplified and c-Met-overexpressing tumors, irrespective of MET pathway dependence. Clin Cancer Res. 2017;23(4):992–1000.
  • Zhong P, Gu X, Cheng R, et al. Alfa-Beta-3 integrin-targeted micellar mertansine prodrug effectively inhibits triple-negative breast cancer in vivo. Int J Nanomedicine. 2017;12:7913–7921.
  • Sun B, Luo C, Cui W, et al. Chemotherapy agent-unsaturated fatty acid prodrugs and prodrug-nanoplatforms for cancer chemotherapy. J Control Release. 2017;264:145–159.
  • Goel N, Stephens S. Certolizumab pegol. mAbs. 2010;2(2):137–147.
  • Omelyanenko V, Kopeckova P, Gentry C, et al. HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. 1. influence of the method of synthesis on the binding affinity to OVCAR-3 ovarian carcinoma cells in vitro. J Drug Target. 1996;3(5):357–373.
  • Lidicky O, Janouskova O, Strohalm J, et al. Anti-lymphoma efficacy comparison of anti-Cd20 monoclonal antibody-targeted and non-targeted star-shaped polymer-prodrug conjugates. Molecules. 2015;20(11):19849–19864.
  • Gray JE, Heist RS, Starodub AN, et al. Therapy of Small Cell Lung Cancer (SCLC) with a Topoisomerase-I–inhibiting Antibody–drug Conjugate (ADC) Targeting Trop-2, Sacituzumab Govitecan. Clin Cancer Res. 2017;23(19):5711.
  • Doi T, Shitara K, Naito Y, et al. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study. Lancet Oncol. 2017;18(11):1512–1522.
  • Moore KN, Vergote I, Oaknin A, et al. FORWARD I: a Phase III study of mirvetuximab soravtansine versus chemotherapy in platinum-resistant ovarian cancer. Future Oncol. 2018;14(17):1669–1678.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.