144
Views
0
CrossRef citations to date
0
Altmetric
Review

Radiation therapy for triple-negative breast cancer: from molecular insights to clinical perspectives

, &
Pages 211-217 | Received 31 Oct 2023, Accepted 18 Mar 2024, Published online: 21 Mar 2024

References

  • Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–752. doi: 10.1038/35021093
  • Penault-Llorca F, Viale G. Pathological and molecular diagnosis of triple-negative breast cancer: a clinical perspective. Ann Oncol. 2012;23 Suppl 6:vi19–22. doi: 10.1093/annonc/mds190
  • von Minckwitz G, Procter M, de Azambuja E, et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N Engl J Med. 2017;377(2):122–131. doi: 10.1056/NEJMoa1703643
  • Cortes J, Rugo HS, Cescon DW, et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N Engl J Med. 2022;387(3):217–226. doi: 10.1056/NEJMoa2202809
  • Chang-Qing Y, Jie L, Shi-Qi Z, et al. Recent treatment progress of triple negative breast cancer. Prog Biophys Mol Biol. 2020;151:40–53. doi: 10.1016/j.pbiomolbio.2019.11.007
  • Fisher B, Anderson S, Redmond CK, et al. Reanalysis and results after 12 years of follow-up in a randomized clinical trial comparing total mastectomy with lumpectomy with or without irradiation in the treatment of breast cancer. N Engl J Med. 1995;333(22):1456–1461. doi: 10.1056/NEJM199511303332203
  • Bartelink H, Horiot JC, Poortmans P, et al. Recurrence rates after treatment of breast cancer with standard radiotherapy with or without additional radiation. N Engl J Med. 2001;345(19):1378–1387. doi: 10.1056/NEJMoa010874
  • He MY, Rancoule C, Rehailia-Blanchard A, et al. Radiotherapy in triple-negative breast cancer: Current situation and upcoming strategies. Crit Rev Oncol Hematol. 2018;131:96–101. doi: 10.1016/j.critrevonc.2018.09.004
  • Ward JF. Complexity of damage produced by ionizing radiation. Cold Spring Harb Symp Quant Biol. 2000;65:377–382. doi: 10.1101/sqb.2000.65.377
  • Frey B, Borgmann K, Jost T, et al. DNA as the main target in radiotherapy—a historical overview from first isolation to anti-tumour immune response. Strahlenther Onkol. 2023;199(12):1080–1090. doi: 10.1007/s00066-023-02122-5
  • Maugeri-Saccà M, Bartucci M, De Maria R. DNA damage repair pathways in cancer stem cells. Mol Cancer Ther. 2012;11(8):1627–1636.
  • Powell SN, Kachnic LA. Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene. 2003;22(37):5784–5791. doi: 10.1038/sj.onc.1206678
  • Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer. 2012;12(9):587–598. doi: 10.1038/nrc3342
  • Stevens KN, Vachon CM, Couch FJ. Genetic susceptibility to triple-negative breast cancer. Cancer Res. 2013;73(7):2025–2030. doi: 10.1158/0008-5472.CAN-12-1699
  • Stoppa-Lyonnet D, Ansquer Y, Dreyfus H, et al. Familial invasive breast cancers: worse outcome related to BRCA1 mutations. J Clin Oncol. 2000;18(24):4053–4059. doi: 10.1200/JCO.2000.18.24.4053
  • Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366–374. doi: 10.1038/35077232
  • Koyanagi S, Takeshita A, Nakamura M. Clinical characteristics of sudden cardiac death in patients with vasospastic angina. Jpn Circ J. 1989;53(12):1541–1545. doi: 10.1253/jcj.53.1541
  • To NH, Nguyen HQ, Thiolat A, et al. Radiation therapy for triple-negative breast cancer: emerging role of microRnas as biomarkers and radiosensitivity modifiers. A systematic review. Breast Cancer Res Treat. 2022;193(2):265–279. doi: 10.1007/s10549-022-06533-3
  • Kyndi M, Sørensen FB, Knudsen H, et al. Estrogen receptor, progesterone receptor, HER-2, and response to postmastectomy radiotherapy in high-risk breast cancer: the Danish breast cancer cooperative group. J Clin Oncol. 2008;26(9):1419–1426. doi: 10.1200/JCO.2007.14.5565
  • Heravi M, Kumala S, Rachid Z, et al. ZRBA1, a mixed EGFR/DNA targeting molecule, potentiates radiation response through delayed DNA damage repair process in a triple negative breast cancer model. Int J Radiat Oncol Biol Phys. 2015;92(2):399–406. doi: 10.1016/j.ijrobp.2015.01.026
  • Speers C, Zhao SG, Kothari V, et al. Maternal embryonic leucine zipper kinase (MELK) as a novel mediator and biomarker of radioresistance in human breast cancer. Clin Cancer Res. 2016;22(23):5864–5875. doi: 10.1158/1078-0432.CCR-15-2711
  • Bao G, Zhou H, Zou S, et al. Inhibition of Poly(ADP-ribose) polymerase sensitizes [177Lu]Lu-DOTAGA.(SA.FAPi)2-mediated radiotherapy in triple-negative breast cancer. Mol Pharm. 2023;20(5):2443–2451. doi: 10.1021/acs.molpharmaceut.2c01051
  • Choi HS, Ko YS, Jin H, et al. Mebendazole increases anticancer activity of radiotherapy in radiotherapy-resistant triple-negative breast cancer cells by enhancing natural killer cell-mediated cytotoxicity. Int J Mol Sci. 2022;23(24):15493. doi: 10.3390/ijms232415493
  • Bai X, Ni J, Beretov J, et al. THOC2 and THOC5 regulate stemness and radioresistance in triple-negative breast cancer. Adv Sci (Weinh). 2021;8(24):e2102658. doi: 10.1002/advs.202102658
  • Han MG, Wee CW, Kang MH, et al. Combination of OX40 Co-stimulation, radiotherapy, and PD-1 inhibition in a syngeneic murine triple-negative breast cancer model. Cancers (Basel). 2022;14(11):2692. doi: 10.3390/cancers14112692
  • Janic B, Brown SL, Neff R, et al. Therapeutic enhancement of radiation and immunomodulation by gold nanoparticles in triple negative breast cancer. Cancer Biol Ther. 2021;22(2):124–135. doi: 10.1080/15384047.2020.1861923
  • Johnson J, Chow Z, Napier D, et al. Targeting PI3K and AMPKα signaling alone or in combination to enhance radiosensitivity of triple negative breast cancer. Cells. 2020;9(5):1253. doi: 10.3390/cells9051253
  • Khozooei S, Lettau K, Barletta F, et al. Fisetin induces DNA double-strand break and interferes with the repair of radiation-induced damage to radiosensitize triple negative breast cancer cells. J Exp Clin Cancer Res. 2022;41(1):256. doi: 10.1186/s13046-022-02442-x
  • Liu W, Zheng M, Zhang R, et al. RNF126-mediated MRE11 ubiquitination activates the DNA damage response and confers resistance of triple-negative breast cancer to radiotherapy. Adv Sci (Weinh). 2023;10(5):e2203884. doi: 10.1002/advs.202203884
  • Raafat Elsayed AA, Al-Marsoummi S, Vomhof-Dekrey EE, et al. SLFN12 over-expression sensitizes triple negative breast cancer cells to chemotherapy drugs and radiotherapy. Cancer Genomics Proteomics. 2022;19:328–338. doi: 10.21873/cgp.20323
  • Ma Y, Zhang H, Chen C, et al. TRIM32 promotes radioresistance by disrupting TC45-STAT3 interaction in triple-negative breast cancer. Oncogene. 2022;41(11):1589–1599. doi: 10.1038/s41388-022-02204-1
  • Sears J, Swanner J, Fahrenholtz CD, et al. Combined photothermal and ionizing radiation sensitization of triple-negative breast cancer using triangular silver nanoparticles. Int J Nanomedicine. 2021;16:851–865. doi: 10.2147/IJN.S296513
  • Zhou M, Chen M, Shi B, et al. Radiation enhances the efficacy of EGFR-targeted CAR-T cells against triple-negative breast cancer by activating NF-κB/Icam1 signaling. Mol Ther. 2022;30(11):3379–3393. doi: 10.1016/j.ymthe.2022.07.021
  • Song H-N, Jin H, Kim J-H, et al. Abscopal effect of radiotherapy enhanced with immune checkpoint inhibitors of triple negative breast cancer in 4T1 mammary carcinoma model. Int J Mol Sci. 2021;22(19):10476. doi: 10.3390/ijms221910476
  • Wei L, Wang X, Luo M, et al. The PAD4 inhibitor GSK484 enhances the radiosensitivity of triple-negative breast cancer. Hum Exp Toxicol. 2021;40(7):1074–1083. doi: 10.1177/0960327120979028
  • Wen Y, Dai G, Wang L, et al. Silencing of XRCC4 increases radiosensitivity of triple-negative breast cancer cells. Biosci Rep. 2019;39(3):BSR20180893. doi: 10.1042/BSR20180893
  • Xu A-L, Xue Y-Y, Tao W-T, et al. Oleanolic acid combined with olaparib enhances radiosensitization in triple negative breast cancer and hypoxia imaging with 18F-FETNIM micro PET/CT. Biomed Pharmacother. 2022;150:113007. doi: 10.1016/j.biopha.2022.113007
  • Ren Y, Fu F, Han J. MiR-27a modulates radiosensitivity of triple-negative breast cancer (TNBC) cells by targeting CDC27. Med Sci Monit. 2015;21:1297–1303. doi: 10.12659/MSM.893974
  • Yang F, Zhang W, Shen Y, et al. Identification of dysregulated microRnas in triple-negative breast cancer (review). Int J Oncol. 2015;46(3):927–932. doi: 10.3892/ijo.2015.2821
  • Ho AY, Barker CA, Arnold BB, et al. A phase 2 clinical trial assessing the efficacy and safety of pembrolizumab and radiotherapy in patients with metastatic triple-negative breast cancer. Cancer. 2020;126(4):850–860. doi: 10.1002/cncr.32599
  • Voorwerk L, Slagter M, Horlings HM, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat Med. 2019;25(6):920–928. doi: 10.1038/s41591-019-0432-4
  • Sun K, Xu Y, Zhang L, et al. A phase 2 trial of enhancing immune checkpoint blockade by stereotactic radiation and in situ virus gene therapy in metastatic triple-negative breast cancer. Clin Cancer Res. 2022;28(20):4392–4401. doi: 10.1158/1078-0432.CCR-22-0622
  • Cameron D, Brown J, Dent R, et al. Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol. 2013;14(10):933–942. doi: 10.1016/S1470-2045(13)70335-8
  • Kayali M, Abi Jaoude J, Mohammed M, et al. Post-mastectomy radiation therapy in triple-negative breast cancer patients: analysis of the BEATRICE trial. Ann Surg Oncol. 2022;29(1):460–466. doi: 10.1245/s10434-021-10511-2
  • Loap P, Loirat D, Berger F, et al. Combination of olaparib and radiation therapy for triple negative breast cancer: preliminary results of the RADIOPARP phase 1 trial. Int J Radiat Oncol Biol Phys. 2021;109(2):436–440. doi: 10.1016/j.ijrobp.2020.09.032
  • O’Rorke MA, Murray LJ, Brand JS, et al. The value of adjuvant radiotherapy on survival and recurrence in triple-negative breast cancer: a systematic review and meta-analysis of 5507 patients. Cancer Treat Rev. 2016;47:12–21. doi: 10.1016/j.ctrv.2016.05.001
  • Kim J, Haffty BG. Genetic factors in the screening and imaging for breast cancer. Korean J Radiol. 2023;24(5):378. doi: 10.3348/kjr.2023.0012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.