121
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Advancements in protein glycosylation biomarkers for ovarian cancer through mass spectrometry-based approaches

, , , &
Pages 249-258 | Received 17 Aug 2023, Accepted 18 Dec 2023, Published online: 25 Dec 2023

References

  • Ozols RF, Bookman MA, Connolly DC, et al. Focus on epithelial ovarian cancer. Cancer Cell. 2004 Jan;5(1):19–24.
  • Quesada S, Thomas QD, Colombo PE, et al. Optimal first-line medico-surgical strategy in ovarian cancers: are we there yet? Cancers (Basel). 2023 Jul 10;15(14):3556. doi: 10.3390/cancers15143556
  • Miller DS, Blessing JA, Krasner CN, et al. Phase II evaluation of pemetrexed in the treatment of recurrent or persistent platinum-resistant ovarian or primary peritoneal carcinoma: a study of the gynecologic oncology group. J Clin Oncol. 2009 Jun 1;27(16):2686–2691. doi: 10.1200/JCO.2008.19.2963
  • Xu S, Yue Y, Zhang S, et al. STON2 negatively modulates stem-like properties in ovarian cancer cells via DNMT1/MUC1 pathway. J Exp Clin Cancer Res. 2018 Dec 5;37(1):305. doi: 10.1186/s13046-018-0977-y
  • Shen X, Wang C, Zhu H, et al. Exosome-mediated transfer of CD44 from high-metastatic ovarian cancer cells promotes migration and invasion of low-metastatic ovarian cancer cells. J Ovarian Res. 2021 Feb 24;14(1):38. doi: 10.1186/s13048-021-00776-2
  • Zhou W, Ma J, Zhao H, et al. Serum exosomes from epithelial ovarian cancer patients contain LRP1, which promotes the migration of epithelial ovarian cancer cell. Mol Cell Proteomics. 2023 Apr;22(4):100520.
  • Li B, An HJ, Kirmiz C, et al. Glycoproteomic analyses of ovarian cancer cell lines and sera from ovarian cancer patients show distinct glycosylation changes in individual proteins. J Proteome Res. 2008;7(9):3776–3788. doi: 10.1021/pr800297u
  • Wu J, Xie X, Liu Y, et al. Identification and confirmation of differentially expressed fucosylated glycoproteins in the serum of ovarian cancer patients using a lectin array and LC-MS/MS. J Proteome Res. 2012 Sep 7;11(9):4541–4552. doi: 10.1021/pr300330z
  • Andersen JD, Boylan KL, Jemmerson R, et al. Leucine-rich alpha-2-glycoprotein-1 is upregulated in sera and tumors of ovarian cancer patients. J Ovarian Res. 2010 Sep 10;3(1):21. doi: 10.1186/1757-2215-3-21
  • Wu J, Xie X, Nie S, et al. Altered expression of sialylated glycoproteins in ovarian cancer sera using lectin-based ELISA assay and quantitative glycoproteomics analysis. J Proteome Res. 2013 Jul 5;12(7):3342–3352. doi: 10.1021/pr400169n
  • Hu Y, Pan J, Shah P, et al. Integrated proteomic and glycoproteomic characterization of human high-grade serous ovarian carcinoma. Cell Rep. 2020 Oct 20;33(3):108276. doi: 10.1016/j.celrep.2020.108276
  • Boylan KLM, Afiuni-Zadeh S, Geller MA, et al. Evaluation of the potential of pap test fluid and cervical swabs to serve as clinical diagnostic biospecimens for the detection of ovarian cancer by mass spectrometry-based proteomics. Clin Proteomics. 2021 Jan 7;18(1):4. doi: 10.1186/s12014-020-09309-3
  • Cortesi L, Rossi E, Della Casa L, et al. Protein expression patterns associated with advanced stage ovarian cancer. Electrophoresis. 2011 Aug;32(15):1992–2003.
  • Maxwell GL, Hood BL, Day R, et al. Proteomic analysis of stage I endometrial cancer tissue: identification of proteins associated with oxidative processes and inflammation. Gynecol Oncol. 2011 Jun 1;121(3):586–594. doi: 10.1016/j.ygyno.2011.02.031
  • Steitz AM, Steffes A, Finkernagel F, et al. Tumor-associated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced (TGFBI) and tenascin C. Cell Death Dis. 2020 Apr 20;11(4):249. doi: 10.1038/s41419-020-2438-8
  • Kuzmanov U, Musrap N, Kosanam H, et al. Glycoproteomic identification of potential glycoprotein biomarkers in ovarian cancer proximal fluids. Clin Chem Lab Med. 2013 Jul;51(7):1467–1476.
  • Song G, Chen L, Zhang B, et al. Proteome-wide tyrosine phosphorylation analysis reveals dysregulated signaling pathways in ovarian tumors. Mol Cell Proteomics. 2019 Mar;18(3):448–460.
  • Jakobsson ME, Moen A, Davidson B, et al. Hsp70 (HSPA1) lysine methylation status as a potential prognostic factor in metastatic high-grade serous carcinoma. PLoS One. 2015;10(10):e0140168. doi: 10.1371/journal.pone.0140168
  • Ouyang Y, Xia K, Yang X, et al. Alternative splicing acts as an independent prognosticator in ovarian carcinoma. Sci Rep. 2021 May 17;11(1):10413. doi: 10.1038/s41598-021-89778-0
  • Zhang X, Wang Y, Qian Y, et al. Discovery of specific metastasis-related N-glycan alterations in epithelial ovarian cancer based on quantitative glycomics. PLoS One. 2014;9(2):e87978. doi: 10.1371/journal.pone.0087978
  • Chen H, Deng Z, Huang C, et al. Mass spectrometric profiling reveals association of N-glycan patterns with epithelial ovarian cancer progression. Tumor Biol. 2017;39(7):1010428317716249. doi: 10.1177/1010428317716249
  • Biskup K, Braicu EI, Sehouli J, et al. The ascites N-glycome of epithelial ovarian cancer patients. J Proteomics. 2017;157:33–39. doi: 10.1016/j.jprot.2017.02.001
  • Cheng M, Shu H, Peng Y, et al. Specific analysis of α-2, 3-sialylated N-Glycan linkage isomers by microchip capillary electrophoresis–mass spectrometry. Anal Chem. 2021;93(13):5537–5546. doi: 10.1021/acs.analchem.1c00064
  • Ricardo S, Marcos-Silva L, Pereira D, et al. Detection of glyco-mucin profiles improves specificity of MUC16 and MUC1 biomarkers in ovarian serous tumours. Mol Oncol. 2015;9(2):503–512. doi: 10.1016/j.molonc.2014.10.005
  • Coelho R, Marcos-Silva L, Mendes N, et al. Mucins and truncated O-glycans unveil phenotypic discrepancies between serous ovarian cancer cell lines and primary tumours. Int J Mol Sci. 2018;19(7):2045. doi: 10.3390/ijms19072045
  • Ferraro S, Braga F, Lanzoni M, et al. Serum human epididymis protein 4 vs carbohydrate antigen 125 for ovarian cancer diagnosis: a systematic review. J Clin Pathol. 2013;66(4):273–281. doi: 10.1136/jclinpath-2012-201031
  • Armbrister R, Ochoa L, Abbott KL. The clinical role of glycobiology on ovarian cancer progression. In: Abbott KL, Dimitroff C, editors. Advances in cancer research. Vol. 157. Amsterdam, The Netherlands: Elsevier; 2023. p. 1–22.
  • Vitiazeva V, Kattla JJ, Flowers SA, et al. The O-linked glycome and blood group antigens ABO on mucin-type glycoproteins in mucinous and serous epithelial ovarian tumors. PLoS One. 2015;10(6):e0130197. doi: 10.1371/journal.pone.0130197
  • Saldova R, Struwe WB, Wynne K, et al. Exploring the glycosylation of serum CA125. Int J Mol Sci. 2013;14(8):15636–15654. doi: 10.3390/ijms140815636
  • Biskup K, Braicu EI, Sehouli J, et al. Serum glycome profiling: a biomarker for diagnosis of ovarian cancer. J Proteome Res. 2013;12(9):4056–4063. doi: 10.1021/pr400405x
  • Biskup K, Braicu EI, Sehouli J, et al. The serum glycome to discriminate between early-stage epithelial ovarian cancer and benign ovarian diseases. Dis Markers. 2014;2014:1–10. doi: 10.1155/2014/238197
  • Kim J-H, Park CW, Um D, et al. Mass spectrometric screening of ovarian cancer with serum glycans. Dis Markers. 2014;2014:1–9. doi: 10.1155/2014/634289
  • Anugraham M, Jacob F, Nixdorf S, et al. Specific glycosylation of membrane proteins in epithelial ovarian cancer cell lines: glycan structures reflect gene expression and DNA methylation status. Mol Cell Proteomics. 2014;13(9):2213–2232. doi: 10.1074/mcp.M113.037085
  • Drake RR, Powers TW, Jones EE, et al. MALDI mass spectrometry imaging of N-linked glycans in cancer tissues. Adv Cancer Res. 2017;134:85–116.
  • Briggs MT, Condina MR, Ho YY, et al. MALDI mass spectrometry imaging of early‐and late‐stage serous ovarian cancer tissue reveals stage‐specific N‐glycans. Proteomics. 2019;19(21–22):1800482. doi: 10.1002/pmic.201800482
  • Grzeski M, Taube ET, Braicu EI, et al. In situ N-glycosylation signatures of epithelial ovarian cancer tissue as defined by MALDI mass spectrometry imaging. Cancers. 2022;14(4):1021. doi: 10.3390/cancers14041021
  • Kim K, Ruhaak LR, Nguyen UT, et al. Evaluation of glycomic profiling as a diagnostic biomarker for epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2014;23(4):611–621. doi: 10.1158/1055-9965.EPI-13-1073
  • Alley WR Jr., Vasseur JA, Goetz JA, et al. N-linked glycan structures and their expressions change in the blood sera of ovarian cancer patients. J Proteome Res. 2012 Apr 6;11(4):2282–2300. doi: 10.1021/pr201070k
  • Ruhaak LR, Kim K, Stroble C, et al. Protein-Specific Differential Glycosylation of Immunoglobulins in Serum of Ovarian Cancer Patients. J Proteome Res. 2016 Mar 4;15(3):1002–1010. doi: 10.1021/acs.jproteome.5b01071
  • Wieczorek M, Braicu EI, Oliveira-Ferrer L, et al. Immunoglobulin G Subclass-Specific Glycosylation Changes in Primary Epithelial Ovarian Cancer. Front Immunol. 2020;11:654. doi: 10.3389/fimmu.2020.00654
  • O’Flaherty R, Muniyappa M, Walsh I, et al. A robust and versatile automated glycoanalytical technology for serum antibodies and acute phase proteins: ovarian cancer Case Study. Mol Cell Proteomics. 2019 Nov;18(11):2191–2206.
  • Escrevente C, Machado E, Brito C, et al. Different expression levels of alpha3/4 fucosyltransferases and Lewis determinants in ovarian carcinoma tissues and cell lines. Int J Oncol. 2006 Sep;29(3):557–566.
  • Akita K, Yoshida S, Ikehara Y, et al. Different levels of sialyl-Tn antigen expressed on MUC16 in patients with endometriosis and ovarian cancer. Int J Gynecol Cancer. 2012 May;22(4):531–538.
  • Gubbels JA, Belisle J, Onda M, et al. Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol Cancer. 2006 Oct 26;5(1):50. doi: 10.1186/1476-4598-5-50
  • Newsom-Davis TE, Wang D, Steinman L, et al. Enhanced immune recognition of cryptic glycan markers in human tumors. Cancer Res. 2009 Mar 1;69(5):2018–2025. doi: 10.1158/0008-5472.CAN-08-3589
  • Scholler N, Crawford M, Sato A, et al. Bead-based ELISA for validation of ovarian cancer early detection markers. Clin Cancer Res. 2006 Apr 1;12(7 Pt 1):2117–2124. doi: 10.1158/1078-0432.CCR-05-2007
  • Shetty V, Hafner J, Shah P, et al. Investigation of ovarian cancer associated sialylation changes in N-linked glycopeptides by quantitative proteomics. Clin Proteomics. 2012 Aug 2;9(1):10. doi: 10.1186/1559-0275-9-10
  • Wang PH, Lee WL, Juang CM, et al. Altered mRNA expressions of sialyltransferases in ovarian cancers. Gynecol Oncol. 2005 Dec;99(3):631–639.
  • Takahashi N, Yamamoto E, Ino K, et al. High expression of N-acetylglucosaminyltransferase V in mucinous tumors of the ovary. Oncol Rep. 2009 Nov;22(5):1027–1032.
  • Takahashi T, Ikeda Y, Miyoshi E, et al. alpha1,6fucosyltransferase is highly and specifically expressed in human ovarian serous adenocarcinomas. Int J Cancer. 2000 Dec 15;88(6):914–919. doi: 10.1002/1097-0215(20001215)88:6<914:AID-IJC12>3.0.CO;2-1
  • Allam H, Aoki K, Benigno BB, et al. Glycomic analysis of membrane glycoproteins with bisecting glycosylation from ovarian cancer tissues reveals novel structures and functions. J Proteome Res. 2015;14(1):434–446. doi: 10.1021/pr501174p
  • Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2006 Sep 8;126(5):855–867. doi: 10.1016/j.cell.2006.08.019
  • Rye CS, Withers SG. Glycosidase mechanisms. Curr Opin Chem Biol. 2000 Oct;4(5):573–580. doi: 10.1016/S1367-5931(00)00135-6
  • Varki A. Biological roles of glycans. Glycobiology. 2017 Jan;27(1):3–49. doi: 10.1093/glycob/cww086
  • Hasan MM, Mimi MA, Mamun MA, et al. Mass spectrometry imaging for glycome in the brain. Front Neuroanat. 2021;15:711955. doi: 10.3389/fnana.2021.711955
  • Mitra I, Alley WR Jr., Goetz JA, et al. Comparative profiling of N-glycans isolated from serum samples of ovarian cancer patients and analyzed by microchip electrophoresis. J Proteome Res. 2013 Oct 4;12(10):4490–4496. doi: 10.1021/pr400549e
  • Vreeker GC, Nicolardi S, Madunic K, et al. O-and N-glycosylation analysis of cell lines by ultrahigh resolution MALDI-FTICR-MS. Int J Mass Spectrom. 2020;448:116267. doi: 10.1016/j.ijms.2019.116267
  • Vreeker GC, Nicolardi S, Bladergroen MR, et al. Automated plasma glycomics with linkage-specific sialic acid esterification and ultrahigh resolution MS. Anal Chem. 2018;90(20):11955–11961. doi: 10.1021/acs.analchem.8b02391
  • Heijs B, Potthoff A, Soltwisch J, et al. MALDI-2 for the enhanced analysis of N-linked glycans by mass spectrometry imaging. Anal Chem. 2020;92(20):13904–13911. doi: 10.1021/acs.analchem.0c02732
  • Everest-Dass AV, Briggs MT, Kaur G, et al. N-glycan MALDI imaging mass spectrometry on formalin-fixed paraffin-embedded tissue enables the delineation of ovarian cancer tissues. Mol & Cell Proteomics. 2016;15(9):3003–3016. doi: 10.1074/mcp.M116.059816
  • An HJ, Miyamoto S, Lancaster KS, et al. Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer. J Proteome Res. 2006 Jul;5(7):1626–1635.
  • Dědová T, Braicu EI, Sehouli J, et al. Sialic acid linkage analysis refines the diagnosis of ovarian cancer. Front Oncol. 2019;9:261. doi: 10.3389/fonc.2019.00261
  • Hua S, Williams CC, Dimapasoc LM, et al. Isomer-specific chromatographic profiling yields highly sensitive and specific potential N-glycan biomarkers for epithelial ovarian cancer. J Chromatogr A. 2013;1279:58–67. doi: 10.1016/j.chroma.2012.12.079
  • Mechref Y, Hu Y, Garcia A, et al. Defining putative glycan cancer biomarkers by MS. Bioanalysis. 2012 Oct;4(20):2457–2469.
  • Anugraham M, Jacob F, Everest‐Dass AV, et al. Tissue glycomics distinguish tumour sites in women with advanced serous adenocarcinoma. Mol Oncol. 2017;11(11):1595–1615. doi: 10.1002/1878-0261.12134
  • Briggs MT, Condina MR, Klingler-Hoffmann M, et al. Translating N-Glycan analytical applications into clinical strategies for ovarian cancer. Proteomics Clin Appl. 2019 May;13(3):e1800099.
  • Wanyama FM, Blanchard V. Glycomic-based biomarkers for ovarian cancer: advances and challenges. Diagnostics. 2021 Apr 1;11(4):643. doi: 10.3390/diagnostics11040643
  • Machado E, Kandzia S, Carilho R, et al. N-Glycosylation of total cellular glycoproteins from the human ovarian carcinoma SKOV3 cell line and of recombinantly expressed human erythropoietin. Glycobiology. 2011;21(3):376–386. doi: 10.1093/glycob/cwq170
  • Saldova R, Royle L, Radcliffe CM, et al. Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. Glycobiology. 2007;17(12):1344–1356. doi: 10.1093/glycob/cwm100
  • Thomsson KA, Vitiazeva V, Mateoiu C, et al. Sulfation of O-glycans on mucin-type proteins from serous ovarian epithelial tumors. Mol Cell Proteomics. 2021;20:20. doi: 10.1016/j.mcpro.2021.100150
  • Karlsson NG, McGuckin MA. O-Linked glycome and proteome of high-molecular-mass proteins in human ovarian cancer ascites: identification of sulfation, disialic acid and O-linked fucose. Glycobiology. 2012;22(7):918–929. doi: 10.1093/glycob/cws060
  • Hua S, An HJ. Glycoscience aids in biomarker discovery. BMB Rep. 2012;45(6):323–330. doi: 10.5483/BMBRep.2012.45.6.132
  • Li K, Pei Y, Wu Y, et al. Performance of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in diagnosis of ovarian cancer: a systematic review and meta-analysis. J Ovarian Res. 2020;13(1):6. doi: 10.1186/s13048-019-0605-2
  • Zhao R, Lin G, Wang Y, et al. Use of the serum glycan state to predict ovarian cancer patients’ clinical response to chemotherapy treatment. J Proteomics. 2020;223:103752. doi: 10.1016/j.jprot.2020.103752
  • Zahradnikova M, Ihnatova I, Lattova E, et al. N-Glycome changes reflecting resistance to platinum-based chemotherapy in ovarian cancer. J Proteomics. 2021;230:103964. doi: 10.1016/j.jprot.2020.103964
  • Dall’olio F, Malagolini N, Trinchera M, et al. Mechanisms of cancer-associated glycosylation changes. Front Biosci. 2012;17(1):670. doi: 10.2741/3951
  • Young C, Condina MR, Briggs MT, et al. In-house packed porous graphitic carbon columns for liquid chromatography-mass spectrometry analysis of N-Glycans. Front Chem. 2021;9:653959. doi: 10.3389/fchem.2021.653959
  • Chen K, Gentry-Maharaj A, Burnell M, et al. Microarray Glycoprofiling of CA125 improves differential diagnosis of ovarian cancer. J Proteome Res. 2013 Mar 1;12(3):1408–1418. doi: 10.1021/pr3010474
  • Veillon L, Huang Y, Peng W, et al. Characterization of isomeric glycan structures by LC‐MS/MS. Electrophoresis. 2017;38(17):2100–2114. doi: 10.1002/elps.201700042
  • Hua S, Nwosu CC, Strum JS, et al. Site-specific protein glycosylation analysis with glycan isomer differentiation. Anal Bioanal Chem. 2012;403(5):1291–1302. doi: 10.1007/s00216-011-5109-x
  • Seo N, Lee H, Oh MJ, et al. Isomer-specific monitoring of sialylated N-Glycans reveals association of α2, 3-linked sialic acid epitope with Behcet’s disease. Front Mol Biosci. 2021;8:778851. doi: 10.3389/fmolb.2021.778851
  • Hua S, Jeong HN, Dimapasoc LM, et al. Isomer-specific LC/MS and LC/MS/MS profiling of the mouse serum N-glycome revealing a number of novel sialylated N-glycans. Anal Chem. 2013;85(9):4636–4643. doi: 10.1021/ac400195h
  • Lee J, Ha S, Kim M, et al. Spatial and temporal diversity of glycome expression in mammalian brain. Proc Natl Acad Sci U S A. 2020;117(46):28743–28753. doi: 10.1073/pnas.2014207117
  • Hua S, An HJ, Ozcan S, et al. Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers. Analyst. 2011;136(18):3663–3671. doi: 10.1039/c1an15093f
  • Harvey DJ, Crispin M, Scanlan C, et al. Differentiation between isomeric triantennary N‐linked glycans by negative ion tandem mass spectrometry and confirmation of glycans containing galactose attached to the bisecting (β1‐4‐GlcNAc) residue in N‐glycans from IgG. Rapid Commun Mass Spectrom. 2008;22(7):1047–1052. doi: 10.1002/rcm.3470
  • Saldova R, Piccard H, Pérez-Garay M, et al. Increase in sialylation and branching in the mouse serum N-glycome correlates with inflammation and ovarian tumour progression. PLoS One. 2013;8(8):e71159. doi: 10.1371/journal.pone.0071159
  • Hoadley KA, Yau C, Hinoue T, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. 2018 Apr 5;173(2):291–304 e6. doi: 10.1016/j.cell.2018.03.022
  • Iwahashi N, Inai Y, Minakata S, et al. C-Mannosyl tryptophan increases in the plasma of patients with ovarian cancer. Oncol Lett. 2020 Jan;19(1):908–916.
  • Minakata S, Manabe S, Inai Y, et al. Protein C-Mannosylation and C-Mannosyl Tryptophan in chemical biology and medicine. Molecules. 2021 Aug 30;26(17):5258. doi: 10.3390/molecules26175258
  • Morishita S, Suzuki T, Niwa Y, et al. Dpy-19 like 3-mediated C-mannosylation and expression levels of RPE-spondin in human tumor cell lines. Oncol Lett. 2017 Aug;14(2):2537–2544.
  • Sakurai S, Inai Y, Minakata S, et al. A novel assay for detection and quantification of C-mannosyl tryptophan in normal or diabetic mice. Sci Rep. 2019 Mar 18;9(1):4675. doi: 10.1038/s41598-019-41278-y
  • Minakata S, Inai Y, Manabe S, et al. Monomeric C-mannosyl tryptophan is a degradation product of autophagy in cultured cells. Glycoconj J. 2020 Oct;37(5):635–645.
  • Bereman MS, Williams TI, Muddiman DC. Carbohydrate analysis by desorption electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2007;79(22):8812–8815. doi: 10.1021/ac0713858
  • Škrášková K, Claude E, Jones EA, et al. Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation. Methods. 2016;104:69–78. doi: 10.1016/j.ymeth.2016.02.014
  • Pace CL, Muddiman DC. Direct analysis of native N-linked glycans by IR-MALDESI. J Am Soc. 2020;31(8):1759–1762. doi: 10.1021/jasms.0c00176
  • Angerer TB, Bour J, Biagi JL, et al. Evaluation of 6 MALDI-Matrices for 10 mum lipid imaging and on-tissue MSn with AP-MALDI-Orbitrap. J Am Soc Mass Spectrom. 2022 May 4;33(5):760–771. doi: 10.1021/jasms.1c00327
  • Sampson JS, Hawkridge AM, Muddiman DC, et al. Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom. 2006;17(12):1712–1716. doi: 10.1016/j.jasms.2006.08.003
  • Nazari M, Muddiman DC. MALDESI: Fundamentals, direct analysis, and MS imaging. Advances In MALDI And Laser-Induced Soft Ionization Mass Spectrometry. 2016;169–182.
  • Wilkinson H, Saldova R. Current methods for the characterization of O-glycans. J Proteome Res. 2020;19(10):3890–3905. doi: 10.1021/acs.jproteome.0c00435
  • Goso Y, Tsubokawa D, Ishihara K. Evaluation of conditions for release of mucin-type oligosaccharides from glycoproteins by hydrazine gas treatment. J Biochem. 2009;145(6):739–749. doi: 10.1093/jb/mvp031
  • Malaker SA, Pedram K, Ferracane MJ, et al. The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. Proc Natl Acad Sci U S A. 2019;116(15):7278–7287. doi: 10.1073/pnas.1813020116
  • Chirag Dhar PR, Gege X, Pickering C, et al. Diagnosing and staging epithelial ovarian cancer by serum glycoproteomic profiling. medRxiv. 2023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.