125
Views
0
CrossRef citations to date
0
Altmetric
Review

Tumor-infiltrating lymphocytes as a prognostic and predictive factor for Melanoma

, , &
Pages 299-310 | Received 27 Jul 2023, Accepted 17 Jan 2024, Published online: 05 Feb 2024

References

  • Carr S, Smith C, Wernberg J. Epidemiology and risk factors of melanoma. Surg Clin North Am. 2020;100(1):1–12. doi:10.1016/j.suc.2019.09.005
  • Gershenwald JE, Guy GP Jr. Stemming the rising incidence of melanoma: calling prevention to action. J Natl Cancer Inst. 2016;108(1). doi: 10.1093/jnci/djv381
  • Schadendorf D, van Akkooi ACJ, Berking C, et al. Melanoma. Lancet. 2018;392(10151):971–984. doi: 10.1016/S0140-6736(18)31559-9
  • SEER explorer: an interactive website for SEER cancer statistics [internet]. Surveillance Research Program, National Cancer Institute; [cited 2023 May 1]. Available from: https://seer.cancer.gov/statistics-network/explorer/
  • NCCN clinical practice guidelines in oncology (NCCN guidelines®) for melanoma: cutaneous V 2.2023 [internet]. National Comprehensive Cancer Network, Inc; 2023 [cited 2023 Jul 1]. Available from: https://www.nccn.org/professionals/physician_gls/pdf/cutaneous_melanoma.pdf
  • Gershenwald JE, Scolyer RA, Hess KR, et al. Melanoma staging: evidence-based changes in the American joint committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(6):472–492. doi: 10.3322/caac.21409
  • Clark WH, Jr., From L, Bernardino EA, et al. The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res. 1969;29(3):705–727.
  • Yun SJ, Gimotty PA, Hwang WT, et al. High lymphatic vessel density and lymphatic invasion underlie the adverse prognostic effect of radial growth phase regression in melanoma. Am J Surg Pathol. 2011;35(2):235–242. doi: 10.1097/PAS.0b013e3182036ccd
  • Scolyer RA, Thompson JF. Desmoplastic melanoma: a heterogeneous entity in which subclassification as “pure” or “mixed” may have important prognostic significance. Ann Surg Oncol. 2005;12(3):197–199. doi:10.1245/ASO.2005.12.914
  • Zito Marino F, Ascierto PA, Rossi G, et al. Are tumor-infiltrating lymphocytes protagonists or background actors in patient selection for cancer immunotherapy? Expert Opin Biol Ther. 2017;17(6):735–746. doi: 10.1080/14712598.2017.1309387
  • Clark WH, Jr., Elder DE, Guerry Dt, et al. Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst. 1989;81(24):1893–1904. doi: 10.1093/jnci/81.24.1893
  • Urso C. Are growth phases exclusive to cutaneous melanoma? J Clin Pathol. 2004;57(5):560. doi:10.1136/jcp.2003.014852
  • Teixido C, Gonzalez-Cao M, Karachaliou N, et al. Predictive factors for immunotherapy in melanoma. Ann Transl Med. 2015;3(15):208. doi: 10.3978/j.issn.2305-5839.2015.05.07
  • Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–723. doi: 10.1056/NEJMoa1003466
  • Hamid O, Schmidt H, Nissan A, et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med. 2011;9(1):204. doi: 10.1186/1479-5876-9-204
  • Shon W, Frishberg D. P., Gershenwald, J, et al. Protocol for the examination of excision specimens from patients with melanoma of the skin. CAP. 2021;4.2.0.0;5.
  • Swetter SM, Tsao H, Bichakjian CK, et al. Guidelines of care for the management of primary cutaneous melanoma. J Am Acad Dermatol. 2019;80(1):208–250. doi: 10.1016/j.jaad.2018.08.055
  • Hendry S, Salgado R, Gevaert T, et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immuno-oncology biomarkers working group: part 2: TILs in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol. 2017;24(6):311–335. doi: 10.1097/PAP.0000000000000161
  • Fortes C, Mastroeni S, Mannooranparampil TJ, et al. Tumor-infiltrating lymphocytes predict cutaneous melanoma survival. Melanoma Res. 2015;25(4):306–311. doi: 10.1097/CMR.0000000000000164
  • Monshizadeh L, Hanikeri M, Beer TW, et al. A critical review of melanoma pathology reports for patients referred to the Western Australian melanoma advisory service. Pathology. 2012;44(5):441–447. doi: 10.1097/PAT.0b013e328355767e
  • Moore MR, Friesner ID, Rizk EM, et al. Automated digital TIL analysis (ADTA) adds prognostic value to standard assessment of depth and ulceration in primary melanoma. Sci Rep. 2021;11(1):2809. doi: 10.1038/s41598-021-82305-1
  • Chatziioannou E, Rossner J, Aung TN, et al. Deep learning-based scoring of tumour-infiltrating lymphocytes is prognostic in primary melanoma and predictive to PD-1 checkpoint inhibition in melanoma metastases. EBioMedicine. 2023;93:104644. doi: 10.1016/j.ebiom.2023.104644
  • Hussaini HM, Seo B, Rich AM. Immunohistochemistry and immunofluorescence. Methods Mol Biol. 2023;2588:439–450.
  • Maibach F, Sadozai H, Seyed Jafari SM, et al. Tumor-infiltrating lymphocytes and their prognostic value in cutaneous melanoma. Front Immunol. 2020;11:2105. doi: 10.3389/fimmu.2020.02105
  • Nirmal AJ, Maliga Z, Vallius T, et al. The spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov. 2022;12(6):1518–1541. doi: 10.1158/2159-8290.CD-21-1357
  • Halse H, Colebatch AJ, Petrone P, et al. Multiplex immunohistochemistry accurately defines the immune context of metastatic melanoma. Sci Rep. 2018;8(1):11158. doi: 10.1038/s41598-018-28944-3
  • Parra ER, Uraoka N, Jiang M, et al. Validation of multiplex immunofluorescence panels using multispectral microscopy for immune-profiling of formalin-fixed and paraffin-embedded human tumor tissues. Sci Rep. 2017;7(1):13380. doi: 10.1038/s41598-017-13942-8
  • Fisher KE, Cohen C, Siddiqui MT, et al. Accurate detection of BRAF p.V600E mutations in challenging melanoma specimens requires stringent immunohistochemistry scoring criteria or sensitive molecular assays. Hum Pathol. 2014;45(11):2281–2293. doi: 10.1016/j.humpath.2014.07.014
  • Tan WCC, Nerurkar SN, Cai HY, et al. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun (Lond). 2020;40(4):135–153. doi: 10.1002/cac2.12023
  • Lyons YA, Wu SY, Overwijk WW, et al. Immune cell profiling in cancer: molecular approaches to cell-specific identification. NPJ Precis Oncol. 2017;1(1):26. doi: 10.1038/s41698-017-0031-0
  • Gros A, Robbins PF, Yao X, et al. PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014;124(5):2246–2259. doi: 10.1172/JCI73639
  • Hyatt G, Melamed R, Park R, et al. Gene expression microarrays: glimpses of the immunological genome. Nat Immunol. 2006;7(7):686–691. doi: 10.1038/ni0706-686
  • Tirosh I, Izar B, Prakadan SM, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352(6282):189–196. doi: 10.1126/science.aad0501
  • Fattore L, Ruggiero CF, Liguoro D, et al. Single cell analysis to dissect molecular heterogeneity and disease evolution in metastatic melanoma. Cell Death Dis. 2019;10(11):827. doi: 10.1038/s41419-019-2048-5
  • Stahl PL, Salmen F, Vickovic S, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353(6294):78–82. doi: 10.1126/science.aaf2403
  • Bennett HM, Stephenson W, Rose CM, et al. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat Methods. 2023;20(3):363–374. doi: 10.1038/s41592-023-01791-5
  • Simiczyjew A, Dratkiewicz E, Mazurkiewicz J, et al. The influence of tumor microenvironment on immune escape of melanoma. Int J Mol Sci. 2020;21(21):8359. doi: 10.3390/ijms21218359
  • Marzagalli M, Ebelt ND, Manuel ER. Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment. Semin Cancer Biol. 2019;59:236–250. doi:10.1016/j.semcancer.2019.08.002
  • Pfefferle A, Jacobs B, Haroun-Izquierdo A, et al. Deciphering natural killer cell homeostasis. Front Immunol. 2020;11:812. doi: 10.3389/fimmu.2020.00812
  • Lee H, Da Silva IP, Palendira U, et al. Targeting NK cells to enhance melanoma response to immunotherapies. Cancers (Basel). 2021;13(6):1363. doi: 10.3390/cancers13061363
  • Pieniazek M, Matkowski R, Donizy P. Macrophages in skin melanoma-the key element in melanomagenesis (Review). Oncol Lett. 2018;15(4):5399–5404. doi:10.3892/ol.2018.8021
  • Gooden MJ, de Bock GH, Leffers N, et al. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105(1):93–103. doi: 10.1038/bjc.2011.189
  • Erdag G, Schaefer JT, Smolkin ME, et al. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res. 2012;72(5):1070–1080. doi: 10.1158/0008-5472.CAN-11-3218
  • Yamshchikov GV, Mullins DW, Chang CC, et al. Sequential immune escape and shifting of T cell responses in a long-term survivor of melanoma. J Immunol. 2005;174(11):6863–6871. doi: 10.4049/jimmunol.174.11.6863
  • Lee N, Zakka LR, Mihm MC Jr., et al. Tumour-infiltrating lymphocytes in melanoma prognosis and cancer immunotherapy. Pathology. 2016;48(2):177–187. doi: 10.1016/j.pathol.2015.12.006
  • Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6(6):e1792. doi:10.1038/cddis.2015.162
  • Yonick DV, Ballo RM, Kahn E, et al. Predictors of positive sentinel lymph node in thin melanoma. Am J Surg. 2011;201(3):324–327. discussion 327–328. doi: 10.1016/j.amjsurg.2010.09.011
  • Zaladonis A, Farma J, Hill M, et al. A retrospective, observational analysis of tumor infiltrating lymphocytes and tumor regression in melanoma. J Surg Res. 2021;267:203–208. doi: 10.1016/j.jss.2021.05.008
  • Thomas NE, Busam KJ, From L, et al. Tumor-infiltrating lymphocyte grade in primary melanomas is independently associated with melanoma-specific survival in the population-based genes, environment and melanoma study. J Clin Oncol. 2013;31(33):4252–4259. doi: 10.1200/JCO.2013.51.3002
  • Azimi F, Scolyer RA, Rumcheva P, et al. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol. 2012;30(21):2678–2683. doi: 10.1200/JCO.2011.37.8539
  • Taylor RC, Patel A, Panageas KS, et al. Tumor-infiltrating lymphocytes predict sentinel lymph node positivity in patients with cutaneous melanoma. J Clin Oncol. 2007;25(7):869–875. doi: 10.1200/JCO.2006.08.9755
  • Subramanian S, Han G, Olson N, et al. Regression is significantly associated with outcomes for patients with melanoma. Surgery. 2021;170(5):1487–1494. doi: 10.1016/j.surg.2021.05.010
  • Subramanian S, Han G, Olson N, et al. Regression in melanoma is significantly associated with a lower regional recurrence rate and better recurrence-free survival. J Surg Oncol. 2022;125(2):229–238. doi: 10.1002/jso.26678
  • Aung PP, Nagarajan P, Prieto VG. Regression in primary cutaneous melanoma: etiopathogenesis and clinical significance. Lab Invest. 2017;97(6):657–668. doi:10.1038/labinvest.2017.8
  • Straker RJ 3rd, Krupp K, Sharon CE, et al. Prognostic significance of primary tumor-infiltrating lymphocytes in a contemporary melanoma cohort. Ann Surg Oncol. 2022;29(8):5207–5216. doi: 10.1245/s10434-022-11478-4
  • Morrison SL, Han G, Elenwa F, et al. Is the presence of tumor-infiltrating lymphocytes predictive of outcomes in patients with melanoma? Cancer. 2022;128(7):1418–1428. doi: 10.1002/cncr.34013
  • Mackensen A, Ferradini L, Carcelain G, et al. Evidence for in situ amplification of cytotoxic T-lymphocytes with antitumor activity in a human regressive melanoma. Cancer Res. 1993;53(15):3569–3573. doi: 10.1097/00008390-199309002-00106
  • Osella-Abate S, Conti L, Annaratone L, et al. Phenotypic characterisation of immune cells associated with histological regression in cutaneous melanoma. Pathology. 2019;51(5):487–493. doi: 10.1016/j.pathol.2019.04.001
  • Cintolo JA, Gimotty P, Blair A, et al. Local immune response predicts survival in patients with thick (t4) melanomas. Ann Surg Oncol. 2013;20(11):3610–3617. doi: 10.1245/s10434-013-3086-3
  • Aivazian K, Ahmed T, El Sharouni MA, et al. Histological regression in melanoma: impact on sentinel lymph node status and survival. Mod Pathol. 2021;34(11):1999–2008. doi: 10.1038/s41379-021-00870-2
  • Tas F, Erturk K. Coexistence of regression and tumor infiltrating lymphocytes is associated with more favorable survival in melanoma. J Cancer Res Clin Oncol. 2021;147(9):2721–2729. doi:10.1007/s00432-021-03565-y
  • El Sharouni MA, Stodell MD, Ahmed T, et al. Sentinel node biopsy in patients with melanoma improves the accuracy of staging when added to clinicopathological features of the primary tumor. Ann Oncol. 2021;32(3):375–383. doi: 10.1016/j.annonc.2020.11.015
  • Guggenheim M, Dummer R, Jung FJ, et al. The influence of sentinel lymph node tumour burden on additional lymph node involvement and disease-free survival in cutaneous melanoma–a retrospective analysis of 392 cases. Br J Cancer. 2008;98(12):1922–1928. doi: 10.1038/sj.bjc.6604407
  • Mandala M, Imberti GL, Piazzalunga D, et al. Clinical and histopathological risk factors to predict sentinel lymph node positivity, disease-free and overall survival in clinical stages I-II AJCC skin melanoma: outcome analysis from a single-institution prospectively collected database. Eur J Cancer. 2009;45(14):2537–2545. doi: 10.1016/j.ejca.2009.05.034
  • Kruper LL, Spitz FR, Czerniecki BJ, et al. Predicting sentinel node status in AJCC stage I/II primary cutaneous melanoma. Cancer. 2006;107(10):2436–2445. doi: 10.1002/cncr.22295
  • Borkowska AM, Szumera-Cieckiewicz A, Chraszczewska M, et al. Clinical significance of tumor microenvironment in acral melanoma: a large single-institution study of caucasians. J Clin Med. 2021;10(7):1452. doi: 10.3390/jcm10071452
  • Angeramo CA, Laxague F, Armella ED, et al. Tumor-infiltrating lymphocytes in patients with Melanoma: which is its prognostic value? Indian J Surg Oncol. 2021;12(4):770–775. doi: 10.1007/s13193-021-01427-0
  • Donizy P, Kaczorowski M, Halon A, et al. Paucity of tumor-infiltrating lymphocytes is an unfavorable prognosticator and predicts lymph node metastases in cutaneous melanoma patients. Anticancer Res. 2015;35(1):351–358. doi: 10.1155/2015/975436
  • Duprat JP, Brechtbulh ER, Costa de Sa B, et al. Absence of tumor-infiltrating lymphocyte is a reproducible predictive factor for sentinel lymph node metastasis: a multicenter database study by the brazilian melanoma group. PLoS One. 2016;11(2):e0148160. doi: 10.1371/journal.pone.0148160
  • Allard-Coutu A, Dobson V, Schmitz E, et al. The evolution of the sentinel node biopsy in melanoma. Life (Basel). 2023;13(2):489. doi: 10.3390/life13020489
  • Wong SL, Kattan MW, McMasters KM, et al. A nomogram that predicts the presence of sentinel node metastasis in melanoma with better discrimination than the American joint committee on cancer staging system. Ann Surg Oncol. 2005;12(4):282–288. doi: 10.1245/ASO.2005.05.016
  • Lo SN, Ma J, Scolyer RA, et al. Improved risk prediction calculator for sentinel node positivity in patients with melanoma: the melanoma institute Australia nomogram. J Clin Oncol. 2020;38(24):2719–2727. doi: 10.1200/JCO.19.02362
  • Fortes C, Mastroeni S, Caggiati A, et al. High level of TILs is an independent predictor of negative sentinel lymph node in women but not in men. Arch Dermatol Res. 2021;313(1):57–61. doi: 10.1007/s00403-020-02067-0
  • Sinnamon AJ, Sharon CE, Song Y, et al. The prognostic significance of tumor-infiltrating lymphocytes for primary melanoma varies by sex. J Am Acad Dermatol. 2018;79(2):245–251. doi: 10.1016/j.jaad.2018.02.066
  • Clemente CG, Mihm MC Jr., Bufalino R, et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 1996;77(7):1303–1310. doi: 10.1002/(SICI)1097-0142(19960401)77:7<1303:AID-CNCR12>3.0.CO;2-5
  • Weiss SA, Hanniford D, Hernando E, et al. Revisiting determinants of prognosis in cutaneous melanoma. Cancer. 2015;121(23):4108–4123. doi: 10.1002/cncr.29634
  • Yang J, Lian JW, Chin YH, et al. Assessing the prognostic significance of tumor-infiltrating lymphocytes in patients with melanoma using pathologic features identified by natural language processing. JAMA Netw Open. 2021;4(9):e2126337. doi: 10.1001/jamanetworkopen.2021.26337
  • Burton AL, Roach BA, Mays MP, et al. Prognostic significance of tumor infiltrating lymphocytes in melanoma. Am Surg. 2011;77(2):188–192. doi: 10.1177/000313481107700219
  • van Houdt IS, Sluijter BJ, Moesbergen LM, et al. Favorable outcome in clinically stage II melanoma patients is associated with the presence of activated tumor infiltrating T-lymphocytes and preserved MHC class I antigen expression. Int J Cancer. 2008;123(3):609–615. doi: 10.1002/ijc.23543
  • Fu Q, Chen N, Ge C, et al. Prognostic value of tumor-infiltrating lymphocytes in melanoma: a systematic review and meta-analysis. Oncoimmunology. 2019;8(7):1593806. doi: 10.1080/2162402X.2019.1593806
  • Ladanyi A, Sebestyen T, Mohos A, et al. Ectopic lymphoid structures in primary cutaneous melanoma. Pathol Oncol Res. 2014;20(4):981–985. doi: 10.1007/s12253-014-9784-8
  • Weiss SA, Han SW, Lui K, et al. Immunologic heterogeneity of tumor-infiltrating lymphocyte composition in primary melanoma. Hum Pathol. 2016;57:116–125. doi: 10.1016/j.humpath.2016.07.008
  • Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–1356. doi: 10.1056/NEJMoa1709684
  • Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–2526. doi: 10.1056/NEJMoa1104621
  • Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next? Curr Opin Immunol. 2015;33:23–35. doi:10.1016/j.coi.2015.01.006
  • Wong PF, Wei W, Smithy JW, et al. Multiplex quantitative analysis of tumor-infiltrating lymphocytes and immunotherapy outcome in metastatic melanoma. Clin Cancer Res. 2019;25(8):2442–2449. doi: 10.1158/1078-0432.CCR-18-2652
  • Stephens MR, Aderbigbe O, Xu W, et al. Association between metastatic melanoma response to checkpoint inhibitor therapy and tumor-infiltrating lymphocyte classification on primary cutaneous melanoma biopsies. JAMA Dermatol. 2023;159(2):215–216. doi: 10.1001/jamadermatol.2022.4959
  • Klein S, Mauch C, Brinker K, et al. Tumor infiltrating lymphocyte clusters are associated with response to immune checkpoint inhibition in BRAF V600(E/K) mutated malignant melanomas. Sci Rep. 2021;11(1):1834. doi: 10.1038/s41598-021-81330-4
  • Ziemys A, Kim M, Menzies AM, et al. Integration of digital pathologic and transcriptomic analyses connects tumor-infiltrating lymphocyte spatial density with clinical response to BRAF inhibitors. Front Oncol. 2020;10:757. doi: 10.3389/fonc.2020.00757
  • Gide TN, Quek C, Menzies AM, et al. Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/Anti-CTLA-4 combined therapy. Cancer Cell. 2019;35(2):238–255 e236. doi: 10.1016/j.ccell.2019.01.003
  • Gide TN, Paver EC, Yaseen Z, et al. Lag-3 expression and clinical outcomes in metastatic melanoma patients treated with combination anti-lag-3 + anti-PD-1-based immunotherapies. Oncoimmunology. 2023;12(1):2261248. doi: 10.1080/2162402X.2023.2261248
  • Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–571. doi: 10.1038/nature13954
  • Wilmott JS, Long GV, Howle JR, et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res. 2012;18(5):1386–1394. doi: 10.1158/1078-0432.CCR-11-2479
  • Huang AC, Orlowski RJ, Xu X, et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat Med. 2019;25(3):454–461. doi: 10.1038/s41591-019-0357-y
  • Riaz N, Havel JJ, Makarov V, et al. Tumor and microenvironment evolution during immunotherapy with Nivolumab. Cell. 2017;171(4):934–949 e916. doi: 10.1016/j.cell.2017.09.028
  • Roh W, Chen PL, Reuben A, et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. 2017;9(379). doi: 10.1126/scitranslmed.aah3560
  • Daud AI, Loo K, Pauli ML, et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest. 2016;126(9):3447–3452. doi: 10.1172/JCI87324
  • Weber JS, Kahler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012;30(21):2691–2697. doi:10.1200/JCO.2012.41.6750
  • Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–1755. doi: 10.1056/NEJMoa1609214
  • Watson AS, Goutam S, Stukalin I, et al. Association of immune-related adverse events, hospitalization, and therapy resumption with survival among patients with metastatic melanoma receiving single-agent or combination immunotherapy. JAMA Netw Open. 2022;5(12):e2245596. doi: 10.1001/jamanetworkopen.2022.45596
  • Stephens MR, Asdourian MS, Jacoby TV, et al. Tumor-infiltrating lymphocytes as a predictive biomarker of cutaneous immune-related adverse events after immune checkpoint blockade in patients with advanced melanoma. J Am Acad Dermatol. 2023;89(1):140–142. doi: 10.1016/j.jaad.2023.01.040
  • Robert L, Harview C, Emerson R, et al. Distinct immunological mechanisms of CTLA-4 and PD-1 blockade revealed by analyzing TCR usage in blood lymphocytes. Oncoimmunology. 2014;3(6):e29244. doi: 10.4161/onci.29244
  • Oh DY, Cham J, Zhang L, et al. Immune toxicities elicted by CTLA-4 blockade in cancer patients are associated with early diversification of the T-cell repertoire. Cancer Res. 2017;77(6):1322–1330. doi: 10.1158/0008-5472.CAN-16-2324
  • Asher N, Ben-Betzalel G, Lev-Ari S, et al. Real world outcomes of ipilimumab and nivolumab in patients with metastatic melanoma. Cancers (Basel). 2020;12(8):2329. doi: 10.3390/cancers12082329
  • Sinnamon AJ, Neuwirth MG, Bartlett EK, et al. Predictors of false negative sentinel lymph node biopsy in trunk and extremity melanoma. J Surg Oncol. 2017;116(7):848–855. doi: 10.1002/jso.24743
  • Moody JA, Ali RF, Carbone AC, et al. Complications of sentinel lymph node biopsy for melanoma – a systematic review of the literature. Eur J Surg Oncol. 2017;43(2):270–277. doi: 10.1016/j.ejso.2016.06.407
  • Sinnamon AJ, Song Y, Sharon CE, et al. Prediction of residual nodal disease at completion dissection following positive sentinel lymph node biopsy for melanoma. Ann Surg Oncol. 2018;25(12):3469–3475. doi: 10.1245/s10434-018-6647-7
  • Das A, Ghose A, Naicker K, et al. Advances in adoptive T-cell therapy for metastatic melanoma. Curr Res Transl Med. 2023;71(3):103404. doi: 10.1016/j.retram.2023.103404
  • Mason R, Au L, Ingles Garces A, et al. Current and emerging systemic therapies for cutaneous metastatic melanoma. Expert Opin Pharmacother. 2019;20(9):1135–1152. doi: 10.1080/14656566.2019.1601700
  • Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol. 2009;21(2):233–240. doi:10.1016/j.coi.2009.03.002
  • Goff SL, Dudley ME, Citrin DE, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol. 2016;34(20):2389–2397. doi: 10.1200/JCO.2016.66.7220
  • van den Berg JH, Heemskerk B, van Rooij N, et al. Tumor infiltrating lymphocytes (TIL) therapy in metastatic melanoma: boosting of neoantigen-specific T cell reactivity and long-term follow-up. J Immunother Cancer. 2020;8(2). doi: 10.1136/jitc-2020-000848
  • Sarnaik AA, Hamid O, Khushalani NI, et al. Lifileucel, a tumor-infiltrating lymphocyte therapy, in metastatic melanoma. J Clin Oncol. 2021;39(24):2656–2666. doi: 10.1200/JCO.21.00612

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.