1,010
Views
1
CrossRef citations to date
0
Altmetric
Review

Fast detection of bacterial gut pathogens on miniaturized devices: an overview

, , , &
Pages 201-218 | Received 17 Sep 2023, Accepted 06 Feb 2024, Published online: 13 Feb 2024

References

  • Troeger C, Blacker BF, Khalil IA, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the global burden of disease study 2016. Lancet Infect Dis. 2018;18(11):1211–1228. doi: 10.1016/S1473-3099(18)30362-1
  • Paolucci M, Landini MP, Sambri V. Conventional and molecular techniques for the early diagnosis of bacteraemia. Int J Antimicrob Agents. 2010;36:S6–S16. doi: 10.1016/j.ijantimicag.2010.11.010
  • Zhao Y, Chen F, Li Q, et al. Isothermal amplification of nucleic acids. Chem Rev. 2015;115(22):12491–12545. doi: 10.1021/acs.chemrev.5b00428
  • Mejia-Salazar JR, Rodrigues Cruz K, Materon Vasques EM, et al. Microfluidic point-of-care devices: New trends and future prospects for ehealth diagnostics. Sensors. 2020;20(7):1951. doi: 10.3390/s20071951
  • Land KJ, Boeras DI, Chen X-S, et al. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat Microbiol. 2019;4(1):46–54. doi: 10.1038/s41564-018-0295-3
  • Chin CD, Laksanasopin T, Cheung YK, et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nature Med. 2011;17(8):1015–1019. doi: 10.1038/nm.2408
  • Liu S, Zhao K, Huang M, et al. Research progress on detection techniques for point-of-care testing of foodborne pathogens. Front Bioeng Biotechnol. 2022;10:958134.
  • He Y, Li N, Yang S, et al. Near-infrared molecular photosensitizer decorated with quaternary ammonium for high-efficiency photothermal treatment of bacterial infections. Chemosensors. 2023;11(3):164. doi: 10.3390/chemosensors11030164
  • Mahari S, Prakashan D, Gandhi S. Immunochromatographic assay for the point-of-care diagnosis of food borne Salmonella strains using smartphone application. Colloids Surf B Biointerfaces. 2023;226:113319. doi: 10.1016/j.colsurfb.2023.113319
  • Zhao Y, Zeng D, Yan C, et al. Rapid and accurate detection of Escherichia coli O157: H7 in beef using microfluidic wax-printed paper-based ELISA. Analyst. 2020;145(8):3106–3115. doi: 10.1039/D0AN00224K
  • Bazsefidpar S, Serrano-Pertierra E, Gutiérrez G, et al. Rapid and sensitive detection of E. coli O157: H7 by lateral flow immunoassay and silver enhancement. Mikrochim Acta. 2023;190(7):264. doi: 10.1007/s00604-023-05834-8
  • Song B, Yu J, Sun Y, et al. Microfluidics for the rapid detection of Escherichia coli O157: H7 using antibody-coated microspheres. Bioengineered. 2021;12(1):392–401. doi: 10.1080/21655979.2020.1870805
  • Zhai Y, Meng X, Li L, et al. Rapid detection of Vibrio parahaemolyticus using magnetic nanobead-based immunoseparation and quantum dot-based immunofluorescence. RSC Adv. 2021;11(61):38638–38647. doi: 10.1039/D1RA07580B
  • Wu M, Wu Y, Liu C, et al. Development and comparison of immunochromatographic strips with four nanomaterial labels: colloidal gold, new colloidal gold, multi-branched gold nanoflowers and luminol-reduced Au nanoparticles for visual detection of Vibrio parahaemolyticus in seafood. Aquaculture. 2021;539:736563. doi: 10.1016/j.aquaculture.2021.736563
  • Sohrabi H, Majidi MR, Khaki P, et al. State of the art: lateral flow assays toward the point‐of‐care foodborne pathogenic bacteria detection in food samples. Compr Rev Food Sci Food Saf. 2022;21(2):1868–1912. doi: 10.1111/1541-4337.12913
  • Wen C-Y, Zhao L-J, Wang Y, et al. Colorimetric and photothermal dual-mode lateral flow immunoassay based on au-Fe3O4 multifunctional nanoparticles for detection of salmonella typhimurium. Mikrochim Acta. 2023;190(2):57. doi: 10.1007/s00604-023-05645-x
  • Boukharouba A, González A, García-Ferrús M, et al. Simultaneous detection of four main foodborne pathogens in ready-to-eat food by using a simple and rapid multiplex PCR (mPCR) assay. Int J Environ Res Public Health. 2022;19(3):1031. doi: 10.3390/ijerph19031031
  • Kim E, Kim D-S, Yang S-M, et al. The accurate identification and quantification of six Enterococcus species using quantitative polymerase chain reaction based novel DNA markers. LWT. 2022;166:113769. doi: 10.1016/j.lwt.2022.113769
  • Shen X.X., Qiu F.Z., Shen L-P, et al. A rapid and sensitive recombinase aided amplification assay to detect hepatitis B virus without DNA extraction. BMC Infect Dis. 2019;19(1):1–5. doi: 10.1186/s12879-019-3814-9
  • Zhang H, Xu Y, Fohlerova Z, et al. LAMP-on-a-chip: revising microfluidic platforms for loop-mediated DNA amplification. Trends Analyt Chem. 2019;113:44–53. doi: 10.1016/j.trac.2019.01.015
  • Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63–e63. doi: 10.1093/nar/28.12.e63
  • Okada K, Chantaroj S, Taniguchi T, et al. A rapid, simple, and sensitive loop-mediated isothermal amplification method to detect toxigenic Vibrio cholerae in rectal swab samples. Diagn Microbiol Infect Dis. 2010;66(2):135–139. doi: 10.1016/j.diagmicrobio.2009.09.004
  • Varona M, Eitzmann DR, Anderson JL. Sequence-specific detection of ORF1a, BRAF, and ompW DNA sequences with loop mediated isothermal amplification on lateral flow immunoassay strips enabled by molecular beacons. Anal Chem. 2021;93(9):4149–4153. doi: 10.1021/acs.analchem.0c05355
  • Jin J, Duan L, Fu J, et al. A real-time LAMP-based dual-sample microfluidic chip for rapid and simultaneous detection of multiple waterborne pathogenic bacteria from coastal waters. Anal Methods. 2021;13(24):2710–2721. doi: 10.1039/D1AY00492A
  • Vinayaka AC, Golabi M, Than TLQ, et al. Point-of-care diagnosis of invasive non-typhoidal Salmonella enterica in bloodstream infections using immunomagnetic capture and loop-mediated isothermal amplification. New Biotechnol. 2022;66:1–7. doi: 10.1016/j.nbt.2021.08.003
  • Piepenburg O, Williams CH, Stemple DL, et al. DNA detection using recombination proteins. PLoS Biol. 2006;4(7):e204. doi: 10.1371/journal.pbio.0040204
  • Ma B, Li J, Chen K, et al. Multiplex recombinase polymerase amplification assay for the simultaneous detection of three foodborne pathogens in seafood. Foods. 2020;9(3):278. doi: 10.3390/foods9030278
  • Yuan M, Ding R, Chen S, et al. Advances in field detection based on crispr/cas system. ACS Synth Biol. 2021;10(11):2824–2832. doi: 10.1021/acssynbio.1c00401
  • Mentis A, Lehours P, Mégraud F. Epidemiology and diagnosis of H elicobacter pylori infection. Helicobacter. 2015;20(S1):1–7. doi: 10.1111/hel.12250
  • Qiu E, Jin S, Xiao Z, et al. CRISPR‐based detection of Helicobacter pylori in stool samples. Helicobacter. 2021;26(4):e12828. doi: 10.1111/hel.12828
  • Li P, Feng X, Chen B, et al. The detection of foodborne pathogenic bacteria in seafood using a multiplex polymerase chain reaction system. Foods. 2022;11(23):3909. doi: 10.3390/foods11233909
  • Quyen TL, Nordentoft S, Vinayaka AC, et al. A sensitive, specific and simple loop mediated isothermal amplification method for rapid detection of campylobacter spp. In broiler production. Front Microbiol. 2019;10:2443. doi: 10.3389/fmicb.2019.02443
  • Fei Z, Zhou D, Dai W, et al. Rapid and highly sensitive detection of Escherichia coli O157: H7 in food with loop‐mediated isothermal amplification coupled to a new bioluminescent assay. Electrophoresis. 2020;41(20):1793–1803. doi: 10.1002/elps.202000046
  • Fiore A, Treglia I, Ciccaglioni G, et al. Application of a Loop-Mediated Isothermal Amplification (LAMP) assay for the detection of listeria monocytogenes in cooked ham. Foods. 2023;12(1):193. doi: 10.3390/foods12010193
  • Tran DH, Tran HT, Pham TNM, et al. Direct multiplex recombinase polymerase amplification for rapid detection of staphylococcus aureus and Pseudomonas aeruginosa in food. Mol Biol Res Commun. 2022;11(1):1.
  • Xiao Y, Ren H, Hu P, et al. Ultra-sensitive and rapid detection of pathogenic yersinia enterocolitica based on the CRISPR/Cas12a nucleic acid identification platform. Foods. 2022;11(14):2160. doi: 10.3390/foods11142160
  • Cha T, Kim HH, Keum J, et al. Gut microbiome profiling of neonates using Nanopore MinION and Illumina MiSeq sequencing. Front Microbiol. 2023;14:1148466. doi: 10.3389/fmicb.2023.1148466
  • Akaçin İ, Ersoy Ş, Doluca O, et al. Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics. Microbiol Res. 2022;264:127154. doi: 10.1016/j.micres.2022.127154
  • Ciuffreda L, Rodríguez-Pérez H, Flores C. Nanopore sequencing and its application to the study of microbial communities. Computat Struct Biotechnol J. 2021;19:1497–1511. doi: 10.1016/j.csbj.2021.02.020
  • Khan MAA, Ghosh P, Chowdhury R, et al. Feasibility of MinION nanopore rapid sequencing in the detection of common diarrhea pathogens in fecal specimen. Anal Chem. 2022;94(48):16658–16666. doi: 10.1021/acs.analchem.2c02771
  • Grumaz C, Hoffmann A, Vainshtein Y, et al. Rapid next-generation sequencing–based diagnostics of bacteremia in septic patients. J Mol Diagn. 2020;22(3):405–418. doi: 10.1016/j.jmoldx.2019.12.006
  • Lind AL, Pollard KS. Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing. Microbiome. 2021;9(1):1–18. doi: 10.1186/s40168-021-01015-y
  • Rowan-Nash AD, Korry BJ, Mylonakis E, et al. Cross-domain and viral interactions in the microbiome. Microbiol Mol Biol Rev. 2019;83(1):. doi: 10.1128/MMBR.00044-18
  • Premaratne G, Dharmaratne AC, Al Mubarak ZH, et al. Multiplexed surface plasmon imaging of serum biomolecules: Fe3O4@ Au Core/shell nanoparticles with plasmonic simulation insights. Sens Actuators B Chem. 2019;299:126956. doi: 10.1016/j.snb.2019.126956
  • Noll LW, Chall R, Shridhar PB, et al. Validation and application of a real-time PCR assay based on the CRISPR array for serotype-specific detection and quantification of enterohemorrhagic Escherichia coli O157: H7 in cattle feces. J Food Prot. 2018;81(7):1157–1164. doi: 10.4315/0362-028X.JFP-18-049
  • Chen J, Nugen SR. Detection of protease and engineered phage-infected bacteria using peptide-graphene oxide nanosensors. Anal Bioanaly Chem. 2019;411(12):2487–2492. doi: 10.1007/s00216-019-01766-6
  • Ma T, Huang H, Guo W, et al. Recent progress in black phosphorus sensors. J Biomed Nanotechnol. 2020;16(7):1045–1064. doi: 10.1166/jbn.2020.2963
  • Guo W, Zhang C, Ma T, et al. Advances in aptamer screening and aptasensors’ detection of heavy metal ions. J Nanobiotechnol. 2021;19(1):1–19. doi: 10.1186/s12951-021-00914-4
  • Das J, Mishra HN. Recent advances in sensors for detecting food pathogens, contaminants, and toxins: a review. Eur Food Res Tech. 2022;248(4):1125–1148. doi: 10.1007/s00217-021-03951-3
  • Huang F, Zhang Y, Lin J, et al. Biosensors coupled with signal amplification technology for the detection of pathogenic bacteria: a review. Biosensors (Basel). 2021;11(6):190. doi: 10.3390/bios11060190
  • Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21(4):1109. doi: 10.3390/s21041109
  • Magesa F, Wu Y, Dong S, et al. Electrochemical sensing fabricated with Ta2O5 nanoparticle-electrochemically reduced graphene oxide nanocomposite for the detection of oxytetracycline. Biomolecules. 2020;10(1):110. doi: 10.3390/biom10010110
  • Mei Y, He C, Zeng W, et al. Electrochemical biosensors for foodborne pathogens detection based on carbon nanomaterials: recent advances and challenges. Food Bioprocess Technol. 2022;15(3):498–513. doi: 10.1007/s11947-022-02759-7
  • Wei L, Wang Z, Feng C, et al. Direct transverse relaxation time biosensing strategy for detecting foodborne pathogens through enzyme-mediated sol–gel transition of hydrogels. Anal Chem. 2021;93(17):6613–6619. doi: 10.1021/acs.analchem.0c03968
  • Luan Y, Wang N, Li C, et al. Advances in the application of aptamer biosensors to the detection of aminoglycoside antibiotics. Antibiotics. 2020;9(11):787. doi: 10.3390/antibiotics9110787
  • Kumar SB, Shinde AH, Behere MJ, et al. Simple, rapid and on spot dye-based sensor for the detection of Vibrio load in shrimp culture farms. Arch Microbiol. 2021;203(6):3525–3532. doi: 10.1007/s00203-021-02333-3
  • Strachan A, Harrington Z, McIlwaine C, et al. Subgingival lipid a profile and endotoxin activity in periodontal health and disease. Clin Oral Invest. 2019;23(9):3527–3534. doi: 10.1007/s00784-018-2771-9
  • Allaband C, McDonald D, Vázquez-Baeza Y, et al. Microbiome 101: studying, analyzing, and interpreting gut microbiome data for clinicians. Clin Gastroenterol Hepatol. 2019;17(2):218–230. doi: 10.1016/j.cgh.2018.09.017
  • Singh S, Moudgil A, Mishra N, et al. Vancomycin functionalized WO3 thin film-based impedance sensor for efficient capture and highly selective detection of gram-positive bacteria. Biosens Bioelectron. 2019;136:23–30. doi: 10.1016/j.bios.2019.04.029
  • Kumar S, Guo Z, Singh R, et al. MoS 2 functionalized multicore fiber probes for selective detection of shigella bacteria based on localized plasmon. J Lightwave Technol. 2021;39(12):4069–4081. doi: 10.1109/JLT.2020.3036610
  • Xu L, Lu Z, Cao L, et al. In-field detection of multiple pathogenic bacteria in food products using a portable fluorescent biosensing system. Food Control. 2017;75:21–28. doi: 10.1016/j.foodcont.2016.12.018
  • Peng H, Chen IA. Rapid colorimetric detection of bacterial species through the capture of gold nanoparticles by chimeric phages. ACS Nano. 2018;13(2):1244–1252. doi: 10.1021/acsnano.8b06395
  • Ma L, Peng L, Yin L, et al. CRISPR-Cas12a-powered dual-mode biosensor for ultrasensitive and cross-validating detection of pathogenic bacteria. ACS Sens. 2021;6(8):2920–2927. doi: 10.1021/acssensors.1c00686
  • Li H-C, Leng Y-K, Liao Y-C, et al. Tapered microfiber MZI biosensor for highly sensitive detection of staphylococcus aureus. IEEE Sens J. 2022;22(6):5531–5539. doi: 10.1109/JSEN.2022.3149004
  • Hou K, Zhao P, Chen Y, et al. Rapid detection of bifidobacterium bifidum in feces sample by highly sensitive quartz crystal microbalance immunosensor. Front Chem. 2020;8:548. doi: 10.3389/fchem.2020.00548
  • Lakshmi G, Yadav AK, Mehlawat N, et al. Gut microbiota derived trimethylamine N-oxide (TMAO) detection through molecularly imprinted polymer based sensor. Sci Rep. 2021;11(1):1338. doi: 10.1038/s41598-020-80122-6
  • Huang J, Yang G, Meng W, et al. An electrochemical impedimetric immunosensor for label-free detection of Campylobacter jejuni in diarrhea patients’ stool based on O-carboxymethylchitosan surface modified Fe3O4 nanoparticles. Biosens Bioelectron. 2010;25(5):1204–1211. doi: 10.1016/j.bios.2009.10.036
  • Ly SY, Yoo H-S, Choa SH. Diagnosis of Helicobacter pylori bacterial infections using a voltammetric biosensor. J Microbiol Methods. 2011;87(1):44–48. doi: 10.1016/j.mimet.2011.07.002
  • Elbehiry A, Aldubaib M, Abalkhail A, et al. How MALDI-TOF mass spectrometry technology contributes to microbial infection control in healthcare settings. Vaccines. 2022;10(11):1881. doi: 10.3390/vaccines10111881
  • Elbehiry A, Marzouk E, Abdeen E, et al. Proteomic characterization and discrimination of Aeromonas species recovered from meat and water samples with a spotlight on the antimicrobial resistance of Aeromonas hydrophila. Microbiologyopen. 2019;8(11):e782. doi: 10.1002/mbo3.782
  • Feucherolles M, Nennig M, Becker SL, et al. Combination of MALDI-TOF mass spectrometry and machine learning for rapid antimicrobial resistance screening: the case of Campylobacter spp. Front Microbiol. 2022;12:804484. doi: 10.3389/fmicb.2021.804484
  • Liu J-M, Li Y, Jiang Y, et al. Gold nanoparticles amplified ultrasensitive quantification of human urinary protein by capillary electrophoresis with on-line inductively coupled plasma mass spectroscopic detection. J Proteome Res. 2010;9(7):3545–3550. doi: 10.1021/pr100056w
  • He Y, Chen D, Li M, et al. Rolling circle amplification combined with gold nanoparticles-tag for ultra sensitive and specific quantification of DNA by inductively coupled plasma mass spectrometry. Biosens Bioelectron. 2014;58:209–213. doi: 10.1016/j.bios.2014.02.072
  • Roda A, Mirasoli M, Roda B, et al. Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Mikrochim Acta. 2012;178(1–2):7–28. doi: 10.1007/s00604-012-0824-3
  • Kull S, Pauly D, Störmann B, et al. Multiplex detection of microbial and plant toxins by immunoaffinity enrichment and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2010;82(7):2916–2924. doi: 10.1021/ac902909r
  • Hosking E, Roman B, Alles S, et al. NeoSeekTM STEC: a multiplex molecular method for detection and identification of select shiga toxin–producing Escherichia coli in beef: AOAC performance tested method SM 081901. J AOAC Int. 2020;103(2):523–532. doi: 10.5740/jaoacint.19-0300
  • Li N, Zhang W, Lin J, et al. A specific mass-tag approach for detection of foodborne pathogens using MALDI-TOF mass spectrometry. Anal Chem. 2022;94(9):3963–3969. doi: 10.1021/acs.analchem.1c05069
  • Dias ALB, Fernandes CC, JHd S, et al. Antibacterial activity of essential oils from Brazilian plants and their major constituents against foodborne pathogens and spoilage bacteria. J Essent Oil Res. 2022;34(3):195–202. doi: 10.1080/10412905.2022.2032424
  • Mangmee S, Reamtong O, Kalambaheti T, et al. MALDI-TOF mass spectrometry typing for predominant serovars of non-typhoidal salmonella in a Thai broiler industry. Food Control. 2020;113:107188. doi: 10.1016/j.foodcont.2020.107188
  • Rychert J. Benefits and limitations of MALDI-TOF mass spectrometry for the identification of microorganisms. J Infectiology. 2019;2(4):1–5. doi: 10.29245/2689-9981/2019/4.1142
  • Body BA, Beard MA, Slechta ES, et al. Evaluation of the Vitek MS v3. 0 matrix-assisted laser desorption ionization–time of flight mass spectrometry system for identification of mycobacterium and nocardia species. J Clin Microbiol. 2018;56(6):. doi: 10.1128/JCM.00237-18
  • Buchan BW, Ledeboer NA. Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev. 2014;27(4):783–822. doi: 10.1128/CMR.00003-14
  • Zhang C, Xiao Y, Du J, et al. Application of multiplex PCR coupled with matrix-assisted laser desorption ionization–time of flight analysis for simultaneous detection of 21 common respiratory viruses. J Clin Microbiol. 2015;53(8):2549–2554. doi: 10.1128/JCM.00943-15
  • Li K, Guo J, Zhao R, et al. Prevalence of 10 human polyomaviruses in fecal samples from children with acute gastroenteritis: a case-control study. J Clin Microbiol. 2013;51(9):3107–3109. doi: 10.1128/JCM.01324-13
  • Zhang C, Xiu L, Xiao Y, et al. Simultaneous detection of key bacterial pathogens related to pneumonia and meningitis using multiplex PCR coupled with mass spectrometry. Front Cell Infect Microbiol. 2018;8:107. doi: 10.3389/fcimb.2018.00107
  • Liu W, Yue F, Lee LP. Integrated point-of-care molecular diagnostic devices for infectious diseases. Acc Chem Res. 2021;54(22):4107–4119. doi: 10.1021/acs.accounts.1c00385
  • Iliescu FS, Ionescu AM, Gogianu L, et al. Point-of-care testing—the key in the battle against SARS-CoV-2 pandemic. Micromach. 2021;12(12):1464. doi: 10.3390/mi12121464
  • Gradisteanu Pircalabioru G, Iliescu FS, Mihaescu G, et al. Advances in the rapid diagnostic of viral respiratory tract infections. Front Cell Infect Microbiol. 2022;12:11. doi: 10.3389/fcimb.2022.807253
  • Zhao Y, Li Y, Zhang P, et al. Cell-based fluorescent microsphere incorporated with carbon dots as a sensitive immunosensor for the rapid detection of Escherichia coli O157 in milk. Biosens Bioelectron. 2021;179:113057. doi: 10.1016/j.bios.2021.113057
  • Kim J-H, Oh S-W. Development of a filtration-based LAMP–LFA method as sensitive and rapid detection of E. coli O157: H7. J Food Sci Technol. 2019;56(5):2576–2583. doi: 10.1007/s13197-019-03740-7
  • Malec A, Kokkinis G, Haiden C, et al. Biosensing system for concentration quantification of magnetically labeled E. coli in water samples. Sensors. 2018;18(7):2250. doi: 10.3390/s18072250
  • Jasim I, Shen Z, Mlaji Z, et al. An impedance biosensor for simultaneous detection of low concentration of salmonella serogroups in poultry and fresh produce samples. Biosens Bioelectron. 2019;126:292–300. doi: 10.1016/j.bios.2018.10.065
  • Aghakhani A, Cetin H, Erkoc P, et al. Flexural wave-based soft attractor walls for trapping microparticles and cells. Lab Chip. 2021;21(3):582–596. doi: 10.1039/D0LC00865F
  • Yang L, Yi W, Sun F, et al. Application of lab-on-chip for detection of microbial nucleic acid in food and environment. Front Microbiol. 2021;12:765375. doi: 10.3389/fmicb.2021.765375
  • Sun Y, Quyen TL, Hung TQ, et al. A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. In food samples. Lab Chip. 2015;15(8):1898–1904. doi: 10.1039/C4LC01459F
  • Chen Y, Hu Y, Lu X. Polyethersulfone-based microfluidic device integrated with DNA extraction on paper and recombinase polymerase amplification for the detection of Salmonella enterica. ACS Sens. 2023;8(6):2331–2339. doi: 10.1021/acssensors.3c00387
  • Chen Y, Hu Y, Lu X, et al. An integrated paper microfluidic device based on isothermal amplification for simple sample-to-answer detection of Campylobacter jejuni. Appl Environ Microbiol. 2023;89(7):e00695–23. doi: 10.1128/aem.00695-23
  • [cited 2023 Sep 10]. Available from: https://www.biofiredx.com/products/filmarray/
  • Hedman J, Rådström P. Overcoming inhibition in real-time diagnostic PCR. PCR detection of microbial pathogens. Methods Mol Biol. 2013;943:17–48. doi: 10.1007/978-1-60327-353-4_2
  • Cui F, Yue Y, Zhang Y, et al. Advancing biosensors with machine learning. ACS Sens. 2020;5(11):3346–3364. doi: 10.1021/acssensors.0c01424
  • Ngashangva L, Chattopadhyay S. Biosensors for point-of-care testing and personalized monitoring of gastrointestinal microbiota. Front Microbiol. 2023;14:1114707.
  • Marcos-Zambrano LJ, Karaduzovic-Hadziabdic K, Loncar Turukalo T, et al. Applications of machine learning in human microbiome studies: a review on feature selection, biomarker identification, disease prediction and treatment. Front Microbiol. 2021;12:313. doi: 10.3389/fmicb.2021.634511
  • Li P, Luo H, Ji B, et al. Machine learning for data integration in human gut microbiome. Microb Cell Fact. 2022;21(1):1–16. doi: 10.1186/s12934-022-01973-4
  • Hernández Medina R, Kutuzova S, Nielsen KN, et al. Machine learning and deep learning applications in microbiome research. ISME Commun. 2022;2(1):98. doi: 10.1038/s43705-022-00182-9
  • Curry KD, Nute MG, Treangen TJ. It takes guts to learn: machine learning techniques for disease detection from the gut microbiome. Emerging Topics Life Sci. 2021;5(6):815–827. doi: 10.1042/ETLS20210213
  • Yang S, Wang S, Wang Y, et al. MB-SupCon: microbiome-based predictive models via supervised contrastive learning. J Mol Biol. 2022;434(15):167693. doi: 10.1016/j.jmb.2022.167693
  • Topçuoğlu BD, Lesniak NA, Ruffin IM, et al. A framework for effective application of machine learning to microbiome-based classification problems. MBio. 2020;11(3). doi: 10.1128/mBio.00434-20
  • MacLean D. R bioinformatics cookbook: use R and bioconductor to perform RNAseq, genomics, data visualization, and bioinformatic analysis. Birmingham, UK: Packt Publishing Ltd; 2019.
  • Banik S, Melanthota SK, Arbaaz, et al. Recent trends in smartphone-based detection for biomedical applications: a review. Anal Bioanal Chem. 2021;413(9):2389–2406. doi: 10.1007/s00216-021-03184-z
  • Hernández‐Neuta I, Neumann F, Brightmeyer J, et al. Smartphone‐based clinical diagnostics: towards democratization of evidence‐based health care. J Intern Med. 2019;285(1):19–39. doi: 10.1111/joim.12820
  • Nath P, Kabir A, Khoubafarin Doust S, et al. Detection of bacterial and viral pathogens using photonic point-of-care devices. Diagnostics. 2020;10(10):841. doi: 10.3390/diagnostics10100841
  • Zhang M, Cui X, Li N. Smartphone-based mobile biosensors for the point-of-care testing of human metabolites. Mater Today Bio. 2022;14:100254. doi: 10.1016/j.mtbio.2022.100254
  • Alawsi T, Al‐Bawi Z. A review of smartphone point‐of‐care adapter design. Eng Reports. 2019;1(2):e12039. doi: 10.1002/eng2.12039
  • Xiao M, Tian F, Liu X, et al. Virus detection: from state‐of‐the‐art laboratories to smartphone‐based point‐of‐care testing. Adv Sci. 2022;9(17):2105904. doi: 10.1002/advs.202105904
  • Shafiee H, Asghar W, Inci F, et al. Paper and flexible substrates as materials for biosensing platforms to detect multiple biotargets. Sci Rep. 2015;5(1):8719. doi: 10.1038/srep08719
  • Zhu H, Podesva P, Liu X, et al. IoT PCR for pandemic disease detection and its spread monitoring. Sensors And Actuat B Chem. 2020;303:127098. doi: 10.1016/j.snb.2019.127098
  • Roy S, Arshad F, Eissa S, et al. Recent developments towards portable point-of-care diagnostic devices for pathogen detection. Sens Diagn. 2022;1(1):87–105. doi: 10.1039/D1SD00017A
  • Müller V, Sousa JM, Koydemir HC, et al. Identification of pathogenic bacteria in complex samples using a smartphone based fluorescence microscope. RSC Adv. 2018;8(64):36493–36502. doi: 10.1039/C8RA06473C
  • Li L, Liu Z, Zhang H, et al. A point-of-need enzyme linked aptamer assay for Mycobacterium tuberculosis detection using a smartphone. Sensors Actuat B Chem. 2018;254:337–346. doi: 10.1016/j.snb.2017.07.074
  • Shrivastava S, Lee W-I, Lee N-E. Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone. Biosens Bioelectron. 2018;109:90–97. doi: 10.1016/j.bios.2018.03.006
  • Hui J, Gu Y, Zhu Y, et al. Multiplex sample-to-answer detection of bacteria using a pipette-actuated capillary array comb with integrated DNA extraction, isothermal amplification, and smartphone detection. Lab Chip. 2018;18(18):2854–2864. doi: 10.1039/C8LC00543E
  • Barnes L, Heithoff DM, Mahan SP, et al. Smartphone-based pathogen diagnosis in urinary sepsis patients. EBioMedicine. 2018;36:73–82. doi: 10.1016/j.ebiom.2018.09.001
  • Cheng N, Song Y, Zeinhom MM, et al. Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl Mater Inter. 2017;9(46):40671–40680. doi: 10.1021/acsami.7b12734
  • Rajendran VK, Bakthavathsalam P, Jaffar Ali BM. Smartphone based bacterial detection using biofunctionalized fluorescent nanoparticles. Mikrochim Acta. 2014;181(15–16):1815–1821. doi: 10.1007/s00604-014-1242-5
  • San Park T, Li W, McCracken KE, et al. Smartphone quantifies Salmonella from paper microfluidics. Lab Chip. 2013;13(24):4832–4840. doi: 10.1039/c3lc50976a
  • Xu H, Xia A, Wang D, et al. An ultraportable and versatile point-of-care DNA testing platform. Sci Adv. 2020;6(17):eaaz7445. doi: 10.1126/sciadv.aaz7445
  • Celik C, Can Sezgin G, Kocabas UG, et al. Novel anthocyanin-based colorimetric assay for the rapid, sensitive, and quantitative detection of helicobacter pylori. Anal Chem. 2021;93(15):6246–6253. doi: 10.1021/acs.analchem.1c00663
  • Soueidan H, Nikolski M Machine learning for metagenomics: methods and tools. arXiv preprint arXiv:151006621. 2015.
  • Zhou Y-H, Gallins P. A review and tutorial of machine learning methods for microbiome host trait prediction. Front Genet. 2019;10:579. doi: 10.3389/fgene.2019.00579
  • Moreno-Indias I, Lahti L, Nedyalkova M, et al. Statistical and machine learning techniques in human microbiome studies: contemporary challenges and solutions. Front Microbiol. 2021;12:277. doi: 10.3389/fmicb.2021.635781
  • Venu DN, ArunKumar DA, Vaigandla KK. Investigation on Internet of Things (IoT): technologies, challenges and applications in healthcare. Int J Res. 2022;11:143–153.
  • Smith D, Jheeta S. Measuring microbiome effectiveness: a role for ingestible sensors. Gastrointest Disord. 2020;2(1):3–11. doi: 10.3390/gidisord2010002
  • [cited 2023 Sep 10]. Available from: https://www.marketsandmarkets.com/Market-Reports/smart-pill-technology-market-840.html?gclid=Cj0KCQjwusunBhCYARIsAFBsUP-uiJlP67gXqkyGlJTM3hf_xvKP32Gb1b1Djxqz_5pUDLwC4Bj8sbsaAmQeEALw_wcB
  • Kalantar-Zadeh K, Ha N, Ou JZ, et al. Ingestible sensors. ACS Sens. 2017;2(4):468–483. doi: 10.1021/acssensors.7b00045
  • Litvinova O, Klager E, Tzvetkov NT, et al. Digital pills with ingestible sensors: patent landscape analysis. Pharmaceuticals. 2022;15(8):1025. doi: 10.3390/ph15081025
  • Jones ML, Singh S, Wahl CL, et al. inventorsTreatment of a disease of the gastrointestinal tract with an immunosuppressant. United States patent US 17978077. 2022.
  • Lawrence IM, Alain J, Mark L, et al. Electromechanical pill device with localization capabilities. Google Pat. Singapore SG11201702308TA. 2020.
  • Cummins G. Smart pills for gastrointestinal diagnostics and therapy. Adv Drug Delivery Rev. 2021;177:113931. doi: 10.1016/j.addr.2021.113931
  • Waimin JF, Nejati S, Jiang H, et al. Smart capsule for non-invasive sampling and studying of the gastrointestinal microbiome. RSC Adv. 2020;10(28):16313–16322. doi: 10.1039/C9RA10986B
  • Ridzuan F, WMNW Z. A review on data cleansing methods for big data. Procedia Comput Sci. 2019;161:731–738. doi: 10.1016/j.procs.2019.11.177
  • Purnama S, Sejati W. Internet of things, big data, and artificial intelligence in the food and agriculture sector. Int J Artif Intell. 2023;1(2):156–174. doi: 10.33050/italic.v1i2.274
  • Nguyen HQ, Bui HK, Phan VM, et al. An internet of things-based point-of-care device for direct reverse-transcription-loop mediated isothermal amplification to identify SARS-CoV-2. Biosens Bioelectron. 2022;195:113655. doi: 10.1016/j.bios.2021.113655
  • Donaghy JA, Danyluk MD, Ross T, et al. Big data impacting dynamic food safety risk management in the food chain. Front Microbiol. 2021;12:952. doi: 10.3389/fmicb.2021.668196
  • Hayati N, Ramli K, Suryanegara M, et al. An Internet of Things (IoT) reference model for an infectious disease active digital surveillance system. Int J Adv Comput Sci Appl. 2021;12(9). doi: 10.14569/IJACSA.2021.0120956
  • Nguyen T, Vinayaka AC, Linh QT, et al. PATHPOD–A Loop-Mediated Isothermal Amplification (LAMP)-based point-of-care system for rapid clinical detection of SARS-CoV-2 in hospitals in Denmark. Sensors Actuat B Chem. 2023;392:134085. doi: 10.1016/j.snb.2023.134085
  • Oh SJ, Park BH, Jung JH, et al. Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection. Biosens Bioelectron. 2016;75:293–300. doi: 10.1016/j.bios.2015.08.052
  • Sun F, Ganguli A, Nguyen J, et al. Smartphone-based multiplex 30-minute nucleic acid test of live virus from nasal swab extract. Lab Chip. 2020;20(9):1621–1627. doi: 10.1039/D0LC00304B
  • Quyen TL, Vinayaka AC, Golabi M, et al. Multiplexed detection of pathogens using solid-phase loop-mediated isothermal amplification on a supercritical angle fluorescence array for point-of-care applications. ACS Sens. 2022;7(11):3343–3351. doi: 10.1021/acssensors.2c01337
  • Yin K, Pandian V, Kadimisetty K, et al. Real-time colorimetric quantitative molecular detection of infectious diseases on smartphone-based diagnostic platform. Sci Rep. 2020;10(1):9009. doi: 10.1038/s41598-020-65899-w
  • Ahmed SM, Brintz BJ, Pavlinac PB, et al. Clinical Prediction Rule to Guide Diagnostic Testing for Shigellosis and Improve Antibiotic Stewardship for Pediatric Diarrhea. Open forum infectious diseases. 2023Mar;10(3):ofad119. doi: 10.1093/ofid/ofad119
  • Chakraborty S, Connor S, Velagic M, et al. Development of a simple, rapid, and sensitive diagnostic assay for enterotoxigenic E. coli and shigella spp applicable to endemic countries. PLoS Negl Trop Dis. 2022;16(1):e0010180. doi: 10.1371/journal.pntd.0010180
  • Xing G, Ai J, Wang N, et al. Recent progress of smartphone-assisted microfluidic sensors for point of care testing. Trends Analyt Chem. 2022;157:116792. doi: 10.1016/j.trac.2022.116792
  • Li Z, Bai Y, You M, et al. Fully integrated microfluidic devices for qualitative, quantitative and digital nucleic acids testing at point of care. Biosens Bioelectron. 2021;177:112952. doi: 10.1016/j.bios.2020.112952
  • Xu D, Huang X, Guo J, et al. Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens Bioelectron. 2018;110:78–88. doi: 10.1016/j.bios.2018.03.018
  • Wideman NE, Oliver JD, Crandall PG, et al. Detection and potential virulence of viable but non-culturable (VBNC) Listeria monocytogenes: a review. Microorganisms. 2021;9(1):194. doi: 10.3390/microorganisms9010194
  • Fogaça MBT, Bhunia AK, Lopes-Luz L, et al. Antibody-and nucleic acid–based lateral flow immunoassay for Listeria monocytogenes detection. Anal Bioanaly Chem. 2021;413(16):4161–4180. doi: 10.1007/s00216-021-03402-8
  • Asiello PJ, Baeumner AJ. Miniaturized isothermal nucleic acid amplification, a review. Lab Chip. 2011;11(8):1420–1430. doi: 10.1039/c0lc00666a
  • Tavakoli H, Zhou W, Ma L, et al. Paper and paper hybrid microfluidic devices for point‐of‐care detection of infectious diseases. In: Jiang X, Bai C, Liu M, editors. Microfluid Nanofluidics. Wiley online library; 2020. p. 177–209.
  • Kaminski MM, Abudayyeh OO, Gootenberg JS, et al. CRISPR-based diagnostics. Nat Biomed Eng. 2021;5(7):643–656. doi: 10.1038/s41551-021-00760-7
  • Brendish NJ, Beard KR, Malachira AK, et al. Clinical impact of syndromic molecular point-of-care testing for gastrointestinal pathogens in adults hospitalised with suspected gastroenteritis (GastroPOC): a pragmatic, open-label, randomised controlled trial. Lancet Infect Dis. 2023;23(8):945–955. doi: 10.1016/S1473-3099(23)00066-X
  • Gonzalez-Solino C, Lorenzo MD. Enzymatic fuel cells: towards self-powered implantable and wearable diagnostics. Biosensors (Basel). 2018;8(1):11. doi: 10.3390/bios8010011
  • Parashar N, Hait S. Plastics in the time of COVID-19 pandemic: protector or polluter? Sci Total Environ. 2021;759:144274. doi: 10.1016/j.scitotenv.2020.144274