98
Views
0
CrossRef citations to date
0
Altmetric
Review

Body fluid markers for multiple sclerosis and differential diagnosis from atypical demyelinating disorders

, & ORCID Icon
Pages 283-297 | Received 28 Nov 2023, Accepted 21 Mar 2024, Published online: 27 Mar 2024

References

  • Compston A, Coles A. Multiple sclerosis. Lancet. 2002;359(9313):1221–1231. doi: 10.1016/S0140-6736(02)08220-X
  • Giovannoni G. Disease-modifying treatments for early and advanced multiple sclerosis: a new treatment paradigm. Curr Opin Neurol. 2018;31(3):233–243. doi: 10.1097/WCO.0000000000000561
  • Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–173. doi: 10.1016/S1474-4422(17)30470-2
  • Kaisey M, Solomon AJ, Luu M, et al. Incidence of multiple sclerosis misdiagnosis in referrals to two academic centers. Multi Sclerosis Relat Disord. 2019;30:51–56. doi: 10.1016/j.msard.2019.01.048
  • Ziemssen T, Akgün K, Brück W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation. 2019;16(1):272. doi: 10.1186/s12974-019-1674-2
  • Efendi H. Clinically isolated syndromes: clinical characteristics, differential diagnosis, and management. Arch Neuropsychiatr. 2015;52(Suppl 1):S1–S11. doi: 10.5152/npa.2015.12608
  • Kolčava J, Kočica J, Hulová M, et al. Conversion of clinically isolated syndrome to multiple sclerosis: a prospective study. Multi Sclerosis Relat Disord. 2020;44:102262. doi: 10.1016/j.msard.2020.102262
  • Bankoti J, Apeltsin L, Hauser SL, et al. In multiple sclerosis, oligoclonal bands connect to peripheral B-cell responses. Ann Neurol. 2014;75(2):266–276. doi: 10.1002/ana.24088
  • Petzold A. Intrathecal oligoclonal IgG synthesis in multiple sclerosis. J Neuroimmunol. 2013;262(1–2):1–10. doi: 10.1016/j.jneuroim.2013.06.014
  • Reiber H. Flow rate of cerebrospinal fluid (CSF) — a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J Neurol Sci. 1994;122(2):189–203. doi: 10.1016/0022-510X(94)90298-4
  • Auer M, Hegen H, Zeileis A, et al. Quantitation of intrathecal immunoglobulin synthesis - a new empirical formula. Eur J Neurol. 2016;23(4):713–721. doi: 10.1111/ene.12924
  • Simonsen CS, Flemmen HØ, Lauritzen T, et al. The diagnostic value of IgG index versus oligoclonal bands in cerebrospinal fluid of patients with multiple sclerosis. Mult Scler J Exp Transl Clin. 2020;6(1):2055217319901291. doi: 10.1177/2055217319901291
  • Kuhle J, Disanto G, Dobson R, et al. Conversion from clinically isolated syndrome to multiple sclerosis: a large multicentre study. Mult Scler. 2015;21(8):1013–1024. doi: 10.1177/1352458514568827
  • Tintore M, Rovira À, Río J, et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain. 2015;138(Pt 7):1863–1874. doi: 10.1093/brain/awv105
  • Xu J, Zhao N, Guan H, et al. Anti-N-methyl-D-aspartate receptor encephalitis: characteristics and rapid diagnostic approach in the emergency department. BMC neurol. 2022;22(1):224. doi: 10.1186/s12883-022-02752-9
  • Lana-Peixoto MA, Talim N. Neuromyelitis Optica Spectrum Disorder and anti-MOG syndromes. Biomedicines. 2019;7(2):42. doi: 10.3390/biomedicines7020042
  • Bernitsas E, Khan O, Razmjou S, et al. Cerebrospinal fluid humoral immunity in the differential diagnosis of multiple sclerosis. PLoS One. 2017;12(7):e0181431. doi: 10.1371/journal.pone.0181431
  • Chu AB, Sever JL, Madden DL, et al. Oligoclonal IgG bands in cerebrospinal fluid in various neurological diseases. Ann Neurol. 1983;13(4):434–439. doi: 10.1002/ana.410130410
  • Jarius S, Ruprecht K, Kleiter I, et al. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation. 2016;13(1):280. doi: 10.1186/s12974-016-0718-0
  • Jarius S, Paul F, Franciotta D, et al. Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J Neurol Sci. 2011;306(1–2):82–90. doi: 10.1016/j.jns.2011.03.038
  • Bernhardt AM, Tiedt S, Teupser D, et al. A unified classification approach rating clinical utility of protein biomarkers across neurologic diseases. EBioMedicine. 2023;89:104456. doi: 10.1016/j.ebiom.2023.104456
  • Fonderico M, Portaccio E, Razzolini L, et al. Cerebrospinal fluid IgM and oligoclonal IgG bands in multiple sclerosis: a meta-analysis of prevalence and prognosis. Brain Sci. 2021;11(11):1444. doi: 10.3390/brainsci11111444
  • Brennan KM, Galban-Horcajo F, Rinaldi S, et al. Lipid arrays identify myelin-derived lipids and lipid complexes as prominent targets for oligoclonal band antibodies in multiple sclerosis. J Neuroimmunol. 2011;238(1–2):87–95. doi: 10.1016/j.jneuroim.2011.08.002
  • Monreal E, La Sainz de Maza S, Costa-Frossard L, et al. Predicting aggressive multiple sclerosis with intrathecal IgM synthesis among patients with a clinically isolated syndrome. Neurol(r) Neuroimmunol Neuroinflammation. 2021;8(5):e1047. doi: 10.1212/NXI.0000000000001047
  • Villar LM, Masjuan J, González-Porqué P, et al. Intrathecal IgM synthesis predicts the onset of new relapses and a worse disease course in MS. Neurology. 2002;59(4):555–559. doi: 10.1212/WNL.59.4.555
  • Ferraro D, Simone AM, Bedin R, et al. Cerebrospinal fluid oligoclonal IgM bands predict early conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome. J Neuroimmunol. 2013;257(1–2):76–81. doi: 10.1016/j.jneuroim.2013.01.011
  • Reiber H. Cerebrospinal fluid-physiology, analysis and interpretation of protein patterns for diagnosis of neurological diseases. Mult Scler. 1998;4(3):99–107. doi: 10.1177/135245859800400302
  • Sádaba MC, Rothhammer V, Muñoz Ú, et al. Serum antibodies to phosphatidylcholine in MS. Neurol(r) Neuroimmunol Neuroinflam-mation. 2020;7(4):e765. doi: 10.1212/NXI.0000000000000765
  • Sánchez-Vera I, Escudero E, Muñoz Ú, et al. IgM to phosphatidylcholine in multiple sclerosis patients: from the diagnosis to the treatment. Ther Adv Neurol Disord. 2023;16:17562864231189919. doi: 10.1177/17562864231189919
  • Pedreño M, Sepúlveda M, Armangué T, et al. Frequency and relevance of IgM, and IgA antibodies against MOG in MOG-IgG-associated disease. Multi Sclerosis Relat Disord. 2019;28:230–234. doi: 10.1016/j.msard.2019.01.007
  • Jarius S, Franciotta D, Bergamaschi R, et al. Immunoglobulin M antibodies to aquaporin-4 in neuromyelitis optica and related disorders. Clin Chem Lab Med. 2010;48(5):659–663. doi: 10.1515/CCLM.2010.127
  • Velthuis HT, Knop I, Stam P, et al. N latex FLC - new monoclonal high-performance assays for the determination of free light chain kappa and lambda. Clin Chem Lab Med. 2011;49(8):1323–1332. doi: 10.1515/CCLM.2011.624
  • Nakano T, Matsui M, Inoue I, et al. Free immunoglobulin light chain: its biology and implications in diseases. Clin Chim Acta. 2011;412(11–12):843–849. doi: 10.1016/j.cca.2011.03.007
  • Hegen H, Milosavljevic D, Schnabl C, et al. Cerebrospinal fluid free light chains as diagnostic biomarker in neuroborreliosis. Clin Chem Lab Med. 2018;56(8):1383–1391. doi: 10.1515/cclm-2018-0028
  • Tjernberg I, Johansson M, Henningsson AJ. Diagnostic performance of cerebrospinal fluid free light chains in lyme neuroborreliosis - a pilot study. Clin Chem Lab Med. 2019;57(12):2008–2018. doi: 10.1515/cclm-2019-0315
  • Deschamps R, Shor N, Papeix C, et al. Relevance of kappa free light chains index in patients with aquaporin-4 or myelin-oligodendrocyte-glycoprotein antibodies. Eur J Neurol. 2023;30(9):2865–2869. doi: 10.1111/ene.15897
  • Hegen H, Walde J, Berek K, et al. Cerebrospinal fluid kappa free light chains for the diagnosis of multiple sclerosis: a systematic review and meta-analysis. Mult Scler. 2023;29(2):169–181. doi: 10.1177/13524585221134213
  • Hegen H, Arrambide G, Gnanapavan S, et al. Cerebrospinal fluid kappa free light chains for the diagnosis of multiple sclerosis: a consensus statement. Mult Scler. 2023;29(2):182–195. doi: 10.1177/13524585221134217
  • Presslauer S, Milosavljevic D, Huebl W, et al. Validation of kappa free light chains as a diagnostic biomarker in multiple sclerosis and clinically isolated syndrome: a multicenter study. Mult Scler. 2016;22(4):502–510. doi: 10.1177/1352458515594044
  • Leurs CE, Twaalfhoven H, Lissenberg-Witte BI, et al. Kappa free light chains is a valid tool in the diagnostics of MS: a large multicenter study. Mult Scler. 2020;26(8):912–923. doi: 10.1177/1352458519845844
  • Berek K, Bsteh G, Auer M, et al. Kappa-free light chains in CSF predict early multiple sclerosis disease activity. Neurol(r) Neuroimmunol Neuroinflammation. 2021;8(4):e1005. doi: 10.1212/NXI.0000000000001005
  • Hegen H, Berek K, Bsteh G, et al. Kappa free light chain and neurofilament light independently predict early multiple sclerosis disease activity-a cohort study. EBioMedicine. 2023;91:104573.
  • Rosenstein I, Axelsson M, Novakova L, et al. Intrathecal kappa free light chain synthesis is associated with worse prognosis in relapsing-remitting multiple sclerosis. J Neurol. 2023;270(10):4800–4811. doi: 10.1007/s00415-023-11817-9
  • Süße M, Feistner F, Grothe M, et al. Free light chains kappa can differentiate between myelitis and noninflammatory myelopathy. Neurol(r) Neuroimmunol Neuroinflammation. 2020;7(6):e892. doi: 10.1212/NXI.0000000000000892
  • Holm Hansen R, Talbot J, Højsgaard Chow H, et al. Increased Intrathecal Activity of Follicular Helper T Cells in patients with relapsing-remitting multiple sclerosis. Neurol(r) Neuroimmunol Neuroinflammation. 2022;9(5):e200009. doi: 10.1212/NXI.0000000000200009
  • Rao DA. T cells that help B cells in chronically inflamed tissues. Front Immunol. 2018;9:1924. doi: 10.3389/fimmu.2018.01924
  • Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol. 2018;19(7):696–707. doi: 10.1038/s41590-018-0135-x
  • Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–220. doi: 10.1056/NEJMoa1606468
  • Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2017;376(3):221–234. doi: 10.1056/NEJMoa1601277
  • Pachner A. The brave new world of early treatment of multiple sclerosis: using the molecular biomarkers CXCL13 and neurofilament light to optimize immunotherapy. Biomedicines. 2022;10(9):2099. doi: 10.3390/biomedicines10092099
  • Bai Z, Chen D, Wang L, et al. Cerebrospinal fluid and blood cytokines as biomarkers for multiple sclerosis: a systematic review and meta-analysis of 226 studies with 13,526 multiple sclerosis patients. Front Neurosci. 2019;13:1026. doi: 10.3389/fnins.2019.01026
  • Khademi M, Kockum I, Andersson ML, et al. Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive prognostic marker for the disease course. Mult Scler. 2011;17(3):335–343. doi: 10.1177/1352458510389102
  • Pike SC, Gilli F, Pachner AR. The CXCL13 Index as a predictive biomarker for activity in clinically isolated syndrome. Int J Mol Sci. 2023;24(13):11050. doi: 10.3390/ijms241311050
  • DiSano KD, Gilli F, Pachner AR. Intrathecally produced CXCL13: a predictive biomarker in multiple sclerosis. Mult Scler J Exp Transl Clin. 2020;6(4):2055217320981396. doi: 10.1177/2055217320981396
  • Erhart DK, Klose V, Schäper T, et al. CXCL13 in cerebrospinal fluid: clinical value in a Large Cross-Sectional Study. Int J Mol Sci. 2023;25(1):425. doi: 10.3390/ijms25010425
  • Hofer LS, Mariotto S, Wurth S, et al. Distinct serum and cerebrospinal fluid cytokine and chemokine profiles in autoantibody-associated demyelinating diseases. Mult Scler J Exp Transl Clin. 2019;5(2):2055217319848463. doi: 10.1177/2055217319848463
  • Bauer A, Rudzki D, Berek K, et al. Increased peripheral inflammatory responses in myelin oligodendrocyte glycoprotein associated disease and aquaporin-4 antibody positive neuromyelitis optica spectrum disorder. Front Immunol. 2022;13:1037812. doi: 10.3389/fimmu.2022.1037812
  • Masouris I, Klein M, Ködel U. The potential for CXCL13 in CSF as a differential diagnostic tool in central nervous system infection. Expert Rev Anti Infect Ther. 2020;18(9):875–885. doi: 10.1080/14787210.2020.1770596
  • Bonneh-Barkay D, Bissel SJ, Kofler J, et al. Astrocyte and macrophage regulation of YKL-40 expression and cellular response in neuroinflammation. Brain Pathol. 2012;22(4):530–546. doi: 10.1111/j.1750-3639.2011.00550.x
  • Lee CG, Da Silva CA, Dela Cruz CS, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011;73(1):479–501. doi: 10.1146/annurev-physiol-012110-142250
  • Burman J, Raininko R, Blennow K, et al. YKL-40 is a CSF biomarker of intrathecal inflammation in secondary progressive multiple sclerosis. J Neuroimmunol. 2016;292:52–57. doi: 10.1016/j.jneuroim.2016.01.013
  • Modvig S, Degn M, Roed H, et al. Cerebrospinal fluid levels of chitinase 3-like 1 and neurofilament light chain predict multiple sclerosis development and disability after optic neuritis. Mult Scler. 2015;21(14):1761–1770. doi: 10.1177/1352458515574148
  • Baldacci F, Lista S, Palermo G, et al. The neuroinflammatory biomarker YKL-40 for neurodegenerative diseases: advances in development. Expert Rev Proteomics. 2019;16(7):593–600. doi: 10.1080/14789450.2019.1628643
  • Cubas-Núñez L, Gil-Perotín S, Castillo-Villalba J, et al. Potential role of CHI3L1+ astrocytes in progression in MS. Neurol Neuroimmunol Neuroinflamm. 2021;8(3):e972. doi: 10.1212/NXI.0000000000000972
  • Qi Y, Chou L-S, Zhang L-J, et al. Increased cerebrospinal fluid YKL-40 levels are associated with disease severity of neuromyelitis optica spectrum disorders. Multi Sclerosis Relat Disord. 2020;45:102395. doi: 10.1016/j.msard.2020.102395
  • Li J, He Y, Wang H, et al. Microglial/Macrophage activation in the cerebrospinal fluid of neuromyelitis optica spectrum disorders. Brain Behav. 2022;12(12):e2798. doi: 10.1002/brb3.2798
  • Wang Y-L, Zhu M-Y, Yuan Z-F, et al. Proteomic profiling of cerebrospinal fluid in pediatric myelin oligodendrocyte glycoprotein antibody-associated disease. World J Pediatr. 2022;20(3):259–271. doi: 10.1007/s12519-022-00661-y
  • Kušnierová P, Zeman D, Hradílek P, et al. Determination of chitinase 3-like 1 in cerebrospinal fluid in multiple sclerosis and other neurological diseases. PLoS One. 2020;15(5):e0233519. doi: 10.1371/journal.pone.0233519
  • Comabella M, Fernández M, Martin R, et al. Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain. 2010;133(Pt 4):1082–1093. doi: 10.1093/brain/awq035
  • de FC, Lucchini M, Lucchetti D, et al. The predictive value of CSF multiple assay in multiple sclerosis: a single center experience. Multi Sclerosis Relat Disord. 2019;35:176–181. doi: 10.1016/j.msard.2019.07.030
  • Cantó E, Tintoré M, Villar LM, et al. Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes. Brain. 2015;138(Pt 4):918–931. doi: 10.1093/brain/awv017
  • Hinsinger G, Galéotti N, Nabholz N, et al. Chitinase 3-like proteins as diagnostic and prognostic biomarkers of multiple sclerosis. Mult Scler. 2015;21(10):1251–1261. doi: 10.1177/1352458514561906
  • Tarlinton RE, Martynova E, Rizvanov AA, et al. Role of viruses in the pathogenesis of multiple sclerosis. Viruses. 2020;12(6):643. doi: 10.3390/v12060643
  • Sharma K, Chaudhary D, Beard K, et al. A comprehensive review of varicella-zoster virus, herpes simplex virus and cryptococcal infections associated with sphingosine-1-phosphate receptor modulators in multiple sclerosis patients. Multi Sclerosis Relat Disord. 2022;59:103675. doi: 10.1016/j.msard.2022.103675
  • Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296–301. doi: 10.1126/science.abj8222
  • Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol. 2001;1(1):75–82. doi: 10.1038/35095584
  • Kuchroo VK, Weiner HL. How does Epstein-Barr virus trigger MS? Immunity. 2022;55(3):390–392. doi: 10.1016/j.immuni.2022.02.008
  • Bjornevik K, Münz C, Cohen JI, et al. Epstein-Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat Rev Neurol. 2023;19(3):160–171. doi: 10.1038/s41582-023-00775-5
  • Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis. Nat Rev Microbiol. 2023;21(1):51–64. doi: 10.1038/s41579-022-00770-5
  • Rojas M, Restrepo-Jiménez P, Monsalve DM, et al. Molecular mimicry and autoimmunity. J Autoimmun. 2018;95:100–123. doi: 10.1016/j.jaut.2018.10.012
  • Vietzen H, Berger SM, Kühner LM, et al. Ineffective control of epstein-barr-virus-induced autoimmunity increases the risk for multiple sclerosis. Cell. 2023;186(26):5705–5718.e13. doi: 10.1016/j.cell.2023.11.015
  • Lanz TV, Brewer RC, Ho PP, et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature. 2022;603(7900):321–327. doi: 10.1038/s41586-022-04432-7
  • Lünemann JD, Jelcić I, Roberts S, et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J Exp Med. 2008;205(8):1763–1773. doi: 10.1084/jem.20072397
  • Tengvall K, Huang J, Hellström C, et al. Molecular mimicry between anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk. Proc Natl Acad Sci U S A. 2019;116(34):16955–16960. doi: 10.1073/pnas.1902623116
  • van Noort JM, Bajramovic JJ, Plomp AC, et al. Mistaken self, a novel model that links microbial infections with myelin-directed autoimmunity in multiple sclerosis. J Neuroimmunol. 2000;105(1):46–57. doi: 10.1016/S0165-5728(00)00181-8
  • Hedström AK. Risk factors for multiple sclerosis in the context of Epstein-Barr virus infection. Front Immunol. 2023;14:1212676. doi: 10.3389/fimmu.2023.1212676
  • Hayward A, Grabherr M, Jern P. Broad-scale phylogenomics provides insights into retrovirus-host evolution. Proc Natl Acad Sci U S A. 2013;110(50):20146–20151. doi: 10.1073/pnas.1315419110
  • Nali LH, Olival GS, Montenegro H, et al. Human endogenous retrovirus and multiple sclerosis: a review and transcriptome findings. Multi Sclerosis Relat Disord. 2022;57:103383. doi: 10.1016/j.msard.2021.103383
  • Sedighi S, Gholizadeh O, Yasamineh S, et al. Comprehensive investigations relationship between viral infections and multiple sclerosis pathogenesis. Curr Microbiol. 2022;80(1):15. doi: 10.1007/s00284-022-03112-z
  • Morris G, Maes M, Murdjeva M, et al. Do human endogenous retroviruses contribute to multiple sclerosis, and if so, how? Mol Neurobiol. 2019;56(4):2590–2605. doi: 10.1007/s12035-018-1255-x
  • Latifi T, Zebardast A, Marashi SM. The role of human endogenous retroviruses (HERVs) in Multiple Sclerosis and the plausible interplay between HERVs, Epstein-Barr virus infection, and vitamin D. Multi Sclerosis Relat Disord. 2022;57:103318. doi: 10.1016/j.msard.2021.103318
  • Gholami Barzoki M, Shatizadeh Malekshahi S, Heydarifard Z, et al. The important biological roles of syncytin-1 of human endogenous retrovirus W (HERV-W) and syncytin-2 of HERV-FRD in the human placenta development. Mol Biol Rep. 2023;50(9):7901–7907. doi: 10.1007/s11033-023-08658-0
  • Wieland L, Schwarz T, Engel K, et al. Epstein-barr virus-induced genes and endogenous retroviruses in immortalized B cells from patients with multiple sclerosis. Cells. 2022;11(22):3619. doi: 10.3390/cells11223619
  • Sutkowski N, Conrad B, Thorley-Lawson DA, et al. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity. 2001;15(4):579–589. doi: 10.1016/S1074-7613(01)00210-2
  • Bergallo M, Pinon M, Galliano I, et al. Epstein Barr virus induces HERV-K and HERV-W expression in pediatrics liver transplant recipients? Minerva Pediatr. 2020;72(3):145–148. doi: 10.23736/S0026-4946.16.04472-8
  • Meier U-C, Cipian RC, Karimi A, et al. Cumulative roles for Epstein-Barr Virus, Human Endogenous Retroviruses, and Human herpes Virus-6 in driving an inflammatory cascade underlying MS pathogenesis. Front Immunol. 2021;12:757302. doi: 10.3389/fimmu.2021.757302
  • Luca VD, Martins Higa A, Malta Romano C, et al. Cross-reactivity between myelin oligodendrocyte glycoprotein and human endogenous retrovirus W protein: nanotechnological evidence for the potential trigger of multiple sclerosis. Micron. 2019;120:66–73. doi: 10.1016/j.micron.2019.02.005
  • Engdahl E, Gustafsson R, Huang J, et al. Increased serological response against human herpesvirus 6A is associated with risk for multiple sclerosis. Front Immunol. 2019;10:2715. doi: 10.3389/fimmu.2019.02715
  • Zerr DM, Meier AS, Selke SS, et al. A population-based study of primary human herpesvirus 6 infection. N Engl J Med. 2005;352(8):768–776. doi: 10.1056/NEJMoa042207
  • Lucas RM, Lay M-L, Grant J, et al. Risk of a first clinical diagnosis of central nervous system demyelination in relation to human herpesviruses in the context of Epstein-Barr virus. Eur J Neurol. 2023;30(9):2752–2760. doi: 10.1111/ene.15919
  • Lundström W, Gustafsson R. Human herpesvirus 6A is a risk factor for multiple sclerosis. Front Immunol. 2022;13:840753. doi: 10.3389/fimmu.2022.840753
  • Xu L, Zhang L-J, Yang L, et al. Positive association of herpes simplex virus-IgG with multiple sclerosis: a systematic review and meta-analysis. Multi Sclerosis Relat Disord. 2021;47:102633. doi: 10.1016/j.msard.2020.102633
  • Khalesi Z, Tamrchi V, Razizadeh MH, et al. Association between human herpesviruses and multiple sclerosis: a systematic review and meta-analysis. Microb Pathog. 2023;177:106031. doi: 10.1016/j.micpath.2023.106031
  • Pi K-S, Bortolotti D, Sang Y, et al. Studying the interactions of U24 from HHV-6 in order to further elucidate its potential role in MS. Viruses. 2022;14(11):2384. doi: 10.3390/v14112384
  • Tao C, Simpson-Yap S, Taylor B, et al. Markers of Epstein-Barr virus and human herpesvirus-6 infection and multiple sclerosis clinical progression. Multi Sclerosis Relat Disord. 2022;59:103561. doi: 10.1016/j.msard.2022.103561
  • Brettschneider J, Tumani H, Kiechle U, et al. IgG antibodies against measles, rubella, and varicella zoster virus predict conversion to multiple sclerosis in clinically isolated syndrome. PloS One. 2009;4(11):e7638. doi: 10.1371/journal.pone.0007638
  • Felgenhauer K, Reiber H. The diagnostic significance of antibody specificity indices in multiple sclerosis and herpes virus induced diseases of the nervous system. Clin Investig. 1992;70(1):28–37. doi: 10.1007/BF00422934
  • Persson L, Longhi S, Enarsson J, et al. Elevated antibody reactivity to measles virus NCORE protein among patients with multiple sclerosis and their healthy siblings with intrathecal oligoclonal immunoglobulin G production. J Clin Virol. 2014;61(1):107–112. doi: 10.1016/j.jcv.2014.06.011
  • Rosche B, Laurent S, Conradi S, et al. Measles IgG antibody index correlates with T2 lesion load on MRI in patients with early multiple sclerosis. PloS One. 2012;7(1):e28094. doi: 10.1371/journal.pone.0028094
  • Kofahi RM, Kofahi HM, Sabaheen S, et al. Prevalence of seropositivity of selected herpesviruses in patients with multiple sclerosis in the north of Jordan. BMC neurol. 2020;20(1):397. doi: 10.1186/s12883-020-01977-w
  • Jarius S, Eichhorn P, Jacobi C, et al. The intrathecal, polyspecific antiviral immune response: specific for MS or a general marker of CNS autoimmunity? J Neurol Sci. 2009;280(1–2):98–100. doi: 10.1016/j.jns.2008.08.002
  • Jarius S, Franciotta D, Bergamaschi R, et al. Polyspecific, antiviral immune response distinguishes multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry. 2008;79(10):1134–1136. doi: 10.1136/jnnp.2007.133330
  • Levine KS, Leonard HL, Blauwendraat C, et al. Virus exposure and neurodegenerative disease risk across national biobanks. Neuron. 2023;111(7):1086–1093.e2. doi: 10.1016/j.neuron.2022.12.029
  • Perlejewski K, Bukowska-Ośko I, Nakamura S, et al. Metagenomic Analysis of Cerebrospinal Fluid from patients with multiple sclerosis. Adv Exp Med Biol. 2016;935:89–98.
  • Chavarria V, Espinosa-Ramírez G, Sotelo J, et al. Conversion predictors of clinically isolated syndrome to multiple sclerosis in Mexican patients: a prospective study. Arch Med Res. 2023;54(5):102843. doi: 10.1016/j.arcmed.2023.102843
  • Ortega-Hernandez O-D, Martínez-Cáceres EM, Presas-Rodríguez S, et al. Epstein-barr virus and multiple sclerosis: a convoluted interaction and the opportunity to unravel predictive biomarkers. Int J Mol Sci. 2023;24(8):7407. doi: 10.3390/ijms24087407
  • Disanto G, Barro C, Benkert P, et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol. 2017;81(6):857–870. doi: 10.1002/ana.24954
  • Kuhle J, Barro C, Andreasson U, et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem Laboratory Med (Cclm). 2016;54(10):1655–1661. doi: 10.1515/cclm-2015-1195
  • Dalla Costa G, Martinelli V, Sangalli F, et al. Prognostic value of serum neurofilaments in patients with clinically isolated syndromes. Neurology. 2019;92(7):e733–e741. doi: 10.1212/WNL.0000000000006902
  • Benkert P, Meier S, Schaedelin S, et al. Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study. Lancet Neurol. 2022;21(3):246–257. doi: 10.1016/S1474-4422(22)00009-6
  • Siller N, Kuhle J, Muthuraman M, et al. Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. Mult Scler. 2019;25(5):678–686. doi: 10.1177/1352458518765666
  • Varhaug KN, Torkildsen Ø, Myhr K-M, et al. Neurofilament light chain as a biomarker in multiple sclerosis. Front Neurol. 2019;10:338. doi: 10.3389/fneur.2019.00338
  • Martin S-J, McGlasson S, Hunt D, et al. Cerebrospinal fluid neurofilament light chain in multiple sclerosis and its subtypes: a meta-analysis of case-control studies. J Neurol Neurosurg Psychiatry. 2019;90(9):1059–1067. doi: 10.1136/jnnp-2018-319190
  • Bjornevik K, Munger KL, Cortese M, et al. Serum neurofilament light chain levels in patients with presymptomatic multiple sclerosis. JAMA Neurol. 2020;77(1):58–64. doi: 10.1001/jamaneurol.2019.3238
  • Abdelhak A, Benkert P, Schaedelin S, et al. Neurofilament light chain elevation and disability progression in multiple sclerosis. JAMA Neurol. 2023;80(12):1317. doi: 10.1001/jamaneurol.2023.3997
  • Åkesson J, Hojjati S, Hellberg S, et al. Proteomics reveal biomarkers for diagnosis, disease activity and long-term disability outcomes in multiple sclerosis. Nat Commun. 2023;14(1):6903. doi: 10.1038/s41467-023-42682-9
  • Bridel C, van Wieringen WN, Zetterberg H, et al. Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology: a systematic review and meta-analysis. JAMA Neurol. 2019;76(9):1035–1048. doi: 10.1001/jamaneurol.2019.1534
  • Peng P, Deng H, Li Z, et al. Distinct immune responses in the early phase to natural SARS‐CoV‐2 infection or vaccination. J med virol. 2022;94(12):5691–5701. doi: 10.1002/jmv.28034
  • Kim H, Lee E-J, Kim S, et al. Serum biomarkers in myelin oligodendrocyte glycoprotein antibody-associated disease. Neurol(r) Neuroimmunol Neuroinflammation. 2020;7(3):e708. doi: 10.1212/NXI.0000000000000708
  • Fitzgerald KC, Sotirchos ES, Smith MD, et al. Contributors to serum NfL levels in people without neurologic disease. Ann Neurol. 2022;92(4):688–698. doi: 10.1002/ana.26446
  • Manouchehrinia A, Piehl F, Hillert J, et al. Confounding effect of blood volume and body mass index on blood neurofilament light chain levels. Ann Clin Transl Neurol. 2020;7(1):139–143. doi: 10.1002/acn3.50972
  • Michetti F, Massaro A, Murazio M. The nervous system-specific S-100 antigen in cerebrospinal fluid of multiple sclerosis patients. Neurosci Lett. 1979;11(2):171–175. doi: 10.1016/0304-3940(79)90122-8
  • Michetti F, Clementi ME, Di Liddo R, et al. The S100B protein: a multifaceted pathogenic factor more than a biomarker. Int J Mol Sci. 2023;24(11):9605. doi: 10.3390/ijms24119605
  • Michetti F, D’Ambrosi N, Toesca A, et al. The S100B story: from biomarker to active factor in neural injury. J Neurochem. 2019;148(2):168–187. doi: 10.1111/jnc.14574
  • Camponeschi C, de CM, Amadio S, et al. S100B protein as a therapeutic target in multiple sclerosis: the S100B inhibitor arundic acid protects from chronic experimental autoimmune encephalomyelitis. Int J Mol Sci. 2021;22(24):13558. doi: 10.3390/ijms222413558
  • Barros C, Barateiro A, Neto A, et al. S100B inhibition protects from chronic experimental autoimmune encephalomyelitis. Brain Commun. 2022;4(3):fcac076. doi: 10.1093/braincomms/fcac076
  • Petzold A, Eikelenboom MJ, Gveric D, et al. Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain. 2002;125(7):1462–1473. doi: 10.1093/brain/awf165
  • Rejdak K, Petzold A, Stelmasiak Z, et al. Cerebrospinal fluid brain specific proteins in relation to nitric oxide metabolites during relapse of multiple sclerosis. Mult Scler. 2008;14(1):59–66. doi: 10.1177/1352458507082061
  • Schaefer JH, Schaller-Paule MA, Wenger K, et al. Relevance of dedicated multiple sclerosis serum biomarkers in predicting contrast enhancement with gadolinium: results from the REDUCE-GAD trial. Eur J Neurol. 2023;30(8):2393–2400. doi: 10.1111/ene.15865
  • Hein Née Maier K, Köhler A, Diem R, et al. Biological markers for axonal degeneration in CSF and blood of patients with the first event indicative for multiple sclerosis. Neurosci Lett. 2008;436(1):72–76. doi: 10.1016/j.neulet.2008.02.064
  • Wei Y, Chang H, Li X, et al. CSF-S100B is a potential Candidate biomarker for neuromyelitis optica spectrum disorders. Biomed Res Int. 2018;1–11. 2018 10.1155/2018/5381239
  • Jasiak-Zatońska M, Pietrzak A, Wyciszkiewicz A, et al. Different blood-brain-barrier disruption profiles in multiple sclerosis, neuromyelitis optica spectrum disorders, and neuropsychiatric systemic lupus erythematosus. Neurol Neurochir Pol. 2022;56(3):246–255. doi: 10.5603/PJNNS.a2022.0013
  • Leppert D, Watanabe M, Schaedelin S, et al. Granulocyte activation markers in cerebrospinal fluid differentiate acute neuromyelitis spectrum disorder from multiple sclerosis. J Neurol Neurosurg Psychiatry. 2023;94(9):726–737. doi: 10.1136/jnnp-2022-330796
  • Dinoto A, Sechi E, Flanagan EP, et al. Serum and cerebrospinal fluid biomarkers in Neuromyelitis Optica Spectrum Disorder and myelin oligodendrocyte glycoprotein associated disease. Front Neurol. 2022;13:866824. doi: 10.3389/fneur.2022.866824
  • Kaneko K, Sato DK, Nakashima I, et al. CSF cytokine profile in MOG-IgG+ neurological disease is similar to AQP4-IgG+ NMOSD but distinct from MS: a cross-sectional study and potential therapeutic implications. J Neurol Neurosurg Psychiatry. 2018;89(9):927–936. doi: 10.1136/jnnp-2018-317969
  • Cohen SR, Brune MJ, Herndon RM, et al. Cerebrospinal fluid myelin basic protein and multiple sclerosis. Adv Exp Med Biol. 1978;100:513–519.
  • Koshihara H, Oguchi K, Takei Y, et al. Meningeal inflammation and demyelination in a patient clinically diagnosed with acute disseminated encephalomyelitis. J Neurol Sci. 2014;346(1–2):323–327. doi: 10.1016/j.jns.2014.08.037
  • Xu S, Lu J, Shao A, et al. Glial cells: role of the immune response in ischemic stroke. Front Immunol. 2020;11:294. doi: 10.3389/fimmu.2020.00294
  • Agliardi C, Guerini FR, Zanzottera M, et al. Myelin basic protein in Oligodendrocyte-Derived Extracellular Vesicles as a diagnostic and prognostic biomarker in multiple sclerosis: a Pilot study. Int J Mol Sci. 2023;24(1):894. doi: 10.3390/ijms24010894
  • Petzold A. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease. Brain Res. 2015;1600:17–31. doi: 10.1016/j.brainres.2014.12.027
  • Cullen DK, Simon CM, LaPlaca MC. Strain rate-dependent induction of reactive astrogliosis and cell death in three-dimensional neuronal-astrocytic co-cultures. Brain Res. 2007;1158:103–115. doi: 10.1016/j.brainres.2007.04.070
  • Abdelhak A, Junker A, Brettschneider J, et al. Brain-specific cytoskeletal damage markers in cerebrospinal fluid: is there a Common Pattern between amyotrophic lateral sclerosis and primary progressive multiple sclerosis? Int J Mol Sci. 2015;16(8):17565–17588. doi: 10.3390/ijms160817565
  • Camara-Lemarroy C, Metz L, Kuhle J, et al. Minocycline treatment in clinically isolated syndrome and serum NfL, GFAP, and metalloproteinase levels. Mult Scler J. 2022;28(13):2081–2089. doi: 10.1177/13524585221109761
  • Kassubek R, Gorges M, Schocke M, et al. GFAP in early multiple sclerosis: a biomarker for inflammation. Neurosci Lett. 2017;657:166–170. doi: 10.1016/j.neulet.2017.07.050
  • Martínez MAM, Olsson B, Bau L, et al. Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis. Mult Scler. 2015;21(5):550–561. doi: 10.1177/1352458514549397
  • Sun M, Liu N, Xie Q, et al. A candidate biomarker of glial fibrillary acidic protein in CSF and blood in differentiating multiple sclerosis and its subtypes: a systematic review and meta-analysis. Multi Sclerosis Relat Disord. 2021;51:102870. doi: 10.1016/j.msard.2021.102870
  • Högel H, Rissanen E, Barro C, et al. Serum glial fibrillary acidic protein correlates with multiple sclerosis disease severity. Mult Scler. 2020;26(2):210–219. doi: 10.1177/1352458518819380
  • Abdelhak A, Hottenrott T, Morenas-Rodríguez E, et al. Glial activation markers in CSF and serum from patients with primary progressive multiple sclerosis: potential of serum GFAP as disease severity Marker? Front Neurol. 2019;10:280. doi: 10.3389/fneur.2019.00280
  • Abdelhak A, Huss A, Kassubek J, et al. Serum GFAP as a biomarker for disease severity in multiple sclerosis. Sci Rep. 2018;8(1):14798. doi: 10.1038/s41598-018-33158-8
  • Aktas O, Smith MA, Rees WA, et al. Serum glial fibrillary acidic protein: a neuromyelitis optica spectrum disorder biomarker. Ann Neurol. 2021;89(5):895–910. doi: 10.1002/ana.26067
  • Schindler P, Aktas O, Ringelstein M, et al. Glial fibrillary acidic protein as a biomarker in neuromyelitis optica spectrum disorder: a current review. Expert Rev Clin Immunol. 2023;19(1):71–91. doi: 10.1080/1744666X.2023.2148657
  • Kaneko K, Sato DK, Nakashima I, et al. Myelin injury without astrocytopathy in neuroinflammatory disorders with MOG antibodies. J Neurol Neurosurg Psychiatry. 2016;87(11):1257–1259. doi: 10.1136/jnnp-2015-312676
  • Meier S, Willemse EAJ, Schaedelin S, et al. Serum glial fibrillary acidic protein compared with neurofilament light chain as a biomarker for disease progression in multiple sclerosis. JAMA Neurol. 2023;80(3):287–297. doi: 10.1001/jamaneurol.2022.5250
  • Banwell B, Bennett JL, Marignier R, et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: international MOGAD panel proposed criteria. Lancet Neurol. 2023;22(3):268–282. doi: 10.1016/S1474-4422(22)00431-8
  • Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177–189. doi: 10.1212/WNL.0000000000001729
  • Reindl M, Waters P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat Rev Neurol. 2019;15(2):89–102.
  • Jarius S, Aktas O, Ayzenberg I, et al. Update on the diagnosis and treatment of neuromyelits optica spectrum disorders (NMOSD) – revised recommendations of the Neuromyelitis optica Study Group (NEMOS). Part I: diagnosis and differential diagnosis. J Neurol. 2023;270(7):3341–3368.
  • Seil FJ. Myelin Antigens and Antimyelin Antibodies. Antibodies (Basel). 2018;7(1):2. doi: 10.3390/antib7010002
  • Reindl M, Schanda K, Woodhall M, et al. International multicenter examination of MOG antibody assays. Neurol Neuroimmunol Neuroinflammation. 2020;7(2):e674. doi: 10.1212/NXI.0000000000000674
  • Corbali O, Chitnis T. Pathophysiology of myelin oligodendrocyte glycoprotein antibody disease. Front Neurol. 2023;14:1137998. doi: 10.3389/fneur.2023.1137998
  • Marignier R, Hacohen Y, Cobo-Calvo A, et al. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol. 2021;20(9):762–772. doi: 10.1016/S1474-4422(21)00218-0
  • Lerch M, Bauer A, Reindl M. The potential pathogenicity of Myelin Oligodendrocyte Glycoprotein Antibodies in the optic pathway. J Neuroophthalmol. 2023;43(1):5–16. doi: 10.1097/WNO.0000000000001772
  • Höftberger R, Lassmann H, Berger T, et al. Pathogenic autoantibodies in multiple sclerosis - from a simple idea to a complex concept. Nat Rev Neurol. 2022;18(11):681–688.
  • Wang H, Munger KL, Reindl M, et al. Myelin oligodendrocyte glycoprotein antibodies and multiple sclerosis in healthy young adults. Neurology. 2008;71(15):1142–1146. doi: 10.1212/01.wnl.0000316195.52001.e1
  • Kuhle J, Pohl C, Mehling M, et al. Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med. 2007;356(4):371–378. doi: 10.1056/NEJMoa063602
  • Pelayo R, Tintoré M, Montalban X, et al. Antimyelin antibodies with no progression to multiple sclerosis. N Engl J Med. 2007;356(4):426–428. doi: 10.1056/NEJMc062467
  • Berger T, Rubner P, Schautzer F, et al. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med. 2003;349(2):139–145. doi: 10.1056/NEJMoa022328
  • Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004;364(9451):2106–2112. doi: 10.1016/S0140-6736(04)17551-X
  • Weinshenker BG. Neuromyelitis optica is distinct from multiple sclerosis. Arch Neurol. 2007;64(6):899–901. doi: 10.1001/archneur.64.6.899
  • Prüss H. Autoantibodies in neurological disease. Nat Rev Immunol. 2021;21(12):798–813.
  • Jarius S, Paul F, Weinshenker BG, et al. Neuromyelitis optica. Nat Rev Dis Primers. 2020;6(1):85. doi: 10.1038/s41572-020-0214-9
  • Poopalasundaram S, Knott C, Shamotienko OG, et al. Glial heterogeneity in expression of the inwardly rectifying K+ channel, Kir4.1, in adult rat CNS. Glia. 2000;30(4):362–372. doi: 10.1002/(SICI)1098-1136(200006)30:4<362:AID-GLIA50>3.0.CO;2-4
  • Kalsi AS, Greenwood K, Wilkin G, et al. Kir4.1 expression by astrocytes and oligodendrocytes in CNS white matter: a developmental study in the rat optic nerve. J Anat. 2004;204(6):475–485. doi: 10.1111/j.0021-8782.2004.00288.x
  • Tang X, Taniguchi K, Kofuji P. Heterogeneity of Kir4.1 channel expression in glia revealed by mouse transgenesis. Glia. 2009;57(16):1706–1715. doi: 10.1002/glia.20882
  • Larson VA, Mironova Y, Vanderpool KG, et al. Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility. Elife. 2018;7:e34829. doi: 10.7554/eLife.34829
  • Masaki H, Wakayama Y, Hara H, et al. Immunocytochemical studies of aquaporin 4, Kir4.1, and α1-syntrophin in the astrocyte endfeet of mouse brain capillaries. Acta Histochem Cytochem. 2010;43(4):99–105. doi: 10.1267/ahc.10016
  • Butt AM, Kalsi A. Inwardly rectifying potassium channels (kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med. 2006;10(1):33–44. doi: 10.1111/j.1582-4934.2006.tb00289.x
  • Nwaobi SE, Cuddapah VA, Patterson KC, et al. The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol. 2016;132(1):1–21. doi: 10.1007/s00401-016-1553-1
  • Hibino H, Inanobe A, Furutani K, et al. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90(1):291–366. doi: 10.1152/physrev.00021.2009
  • Srivastava R, Aslam M, Kalluri SR, et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med. 2012;367(2):115–123. doi: 10.1056/NEJMoa1110740
  • Nicot AB, Harb J, Garcia A, et al. Aglycosylated extracellular loop of inwardly rectifying potassium channel 4.1 (KCNJ10) provides a target for autoimmune neuroinflammation. Brain Commun. 2023;5(2):fcad044. doi: 10.1093/braincomms/fcad044
  • Chastre A, Hafler DA, O’Connor KC. Evaluation of KIR4.1 as an immune target in multiple sclerosis. N Engl J Med. 2016;374(15):1495–1496. doi: 10.1056/NEJMc1513302
  • Brill L, Goldberg L, Karni A, et al. Increased anti-KIR4.1 antibodies in multiple sclerosis: could it be a marker of disease relapse? Mult Scler. 2015;21(5):572–579. doi: 10.1177/1352458514551779
  • Hemmer B. Antibodies to the inward rectifying potassium channel 4.1 in multiple sclerosis: different methodologies–conflicting results? Mult Scler. 2015;21(5):537–539. doi: 10.1177/1352458514564493
  • Kraus V, Srivastava R, Kalluri SR, et al. Potassium channel KIR4.1-specific antibodies in children with acquired demyelinating CNS disease. Neurology. 2014;82(6):470–473. doi: 10.1212/WNL.0000000000000097
  • Higuchi O, Nakane S, Sakai W, et al. Lack of KIR4.1 autoantibodies in Japanese patients with MS and NMO. Neurol(r) Neuroimmunol Neuroinflammation. 2016;3(5):e263. doi: 10.1212/NXI.0000000000000263
  • Yaldizli Ö, Janiaud P, Benkert P, et al. Personalized treatment decision algorithms for the clinical implementation of serum neurofilament light chain in multiple sclerosis: a modified Delphi study [poster presented at the 9th joint ECTRIMS-ACTRIMS meeting Milan]. 2023 Oct 11–13. Available from: https://apps.congrex.com/ectrims2023/en-GB/pag/presentation/355278.
  • Altmann P, Leutmezer F, Zach H, et al. Serum neurofilament light chain withstands delayed freezing and repeated thawing. Sci Rep. 2020;10(1):19982. doi: 10.1038/s41598-020-77098-8
  • Keshavan A, Heslegrave A, Zetterberg H, et al. Stability of blood-based biomarkers of Alzheimer’s disease over multiple freeze-thaw cycles. Alzheimers Dement (Amst). 2018;10:448–451. doi: 10.1016/j.dadm.2018.06.001
  • Hörber S, Klein R, Peter A. Effects of long-term storage on serum free light chain stability. Clin Lab. 2019;65(5). doi: 10.7754/Clin.Lab.2018.181107
  • Bar-Or A, Thanei G-A, Harp C, et al. Blood neurofilament light levels predict non-relapsing progression following anti-CD20 therapy in relapsing and primary progressive multiple sclerosis: findings from the ocrelizumab randomised, double-blind phase 3 clinical trials. EBioMedicine. 2023;93:104662. doi: 10.1016/j.ebiom.2023.104662
  • Bittner S, Steffen F, Uphaus T, et al. Clinical implications of serum neurofilament in newly diagnosed MS patients: a longitudinal multicentre cohort study. EBioMedicine. 2020;56:102807. doi: 10.1016/j.ebiom.2020.102807
  • Cantó E, Barro C, Zhao C, et al. Association Between Serum Neurofilament Light Chain Levels and long-term disease course among patients with multiple sclerosis followed up for 12 years. JAMA Neurol. 2019;76(11):1359–1366. doi: 10.1001/jamaneurol.2019.2137
  • Noseworthy JH, Lucchinetti C, Rodriguez M, et al. Multiple sclerosis. N Engl J Med. 2000;343(13):938–952. doi: 10.1056/NEJM200009283431307

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.