107
Views
0
CrossRef citations to date
0
Altmetric
Review

The emerging role of liquid biopsy in oral squamous cell carcinoma detection: advantages and challenges

, , , &
Pages 311-331 | Received 11 Dec 2023, Accepted 05 Apr 2024, Published online: 12 Apr 2024

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. 2021;71(3):209–249. doi: 10.3322/caac.21660
  • Sarode G, Maniyar N, Sarode SC, et al. Epidemiologic aspects of oral cancer. 2020;66(12):100988. doi: 10.1016/j.disamonth.2020.100988
  • Chow L, Longo DL. Head and neck cancer. N Engl J Med. 2020;382(1):60–72. doi: 10.1056/NEJMra1715715
  • Chi AC, Day TA, Neville B. Oral cavity and oropharyngeal squamous cell carcinoma—an update. 2015;65(5):401–421.
  • Chattopadhyay I, Verma M, Panda M. treatment. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer. 2019;18: 1533033819867354. doi: 10.1177/1533033819867354
  • Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA: Cancer J. 2011;61(2):69–90.
  • Petersen P. Oral cancer prevention and control–the approach of the. World Health Org. 2009;45(4–5):454–460. doi: 10.1016/j.oraloncology.2008.05.023
  • Gupta B, Johnson N, Li Y. Systematic review and meta-analysis of association of smokeless tobacco and of betel quid without tobacco with incidence of oral cancer in South Asia and the Pacific. PLOS ONE. 2014;9(11):e113385. doi: 10.1371/journal.pone.0113385
  • Shaikh MH, McMillan NA, Johnson N. HPV-associated head and neck cancers in the Asia Pacific: a critical literature review & meta-analysis. 2015;39(6):923–938.
  • García-Martín JM, Varela-Centelles P, González M, et al. Epidemiology of oral cancer. Detect Oral Cancer. 2019:81–93.
  • Wyss A, Hashibe M, Chuang S-C, et al. Cigarette, cigar, and pipe smoking and the risk of head and neck cancers: pooled analysis in the international head and neck cancer epidemiology consortium. Am J Epidemiol. 2013;178(5):679–690. doi: 10.1093/aje/kwt029
  • Sarode SC, Sarode GS, Tupkari J. Oral potentially malignant disorders: precising the definition. Oral Oncol. 2012;48(9):759–760.
  • Naito Y, Honda K. Liquid biopsy for oral cancer diagnosis: recent advances and challenges. 2023;13(2):303. doi: 10.3390/jpm13020303
  • D’Souza G, Kreimer AR, Viscidi R, et al. Case–control study of human papillomavirus and oropharyngeal cancer. N Engl J Med. 2007;356(19):1944–1956. doi: 10.1056/NEJMoa065497
  • Walsh T, Liu JL, Brocklehurst P, et al. Clinical assessment to screen for the detection of oral cavity cancer and potentially malignant disorders in apparently healthy adults. Cochrane Database Syst Rev. 2013;11. doi: 10.1002/14651858.CD010173.pub2
  • Omar EJH. medicine f. Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma-a systematic review. 2015;11(1): 1–27. doi: 10.1186/s13005-015-0063-z
  • Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–791. doi: 10.1056/NEJMoa040766
  • Chae YK, Davis AA, Carneiro BA, et al. Concordance between genomic alterations assessed by next-generation sequencing in tumor tissue or circulating cell-free DNA. Oncotarget. 2016;7(40):65364. doi: 10.18632/oncotarget.11692
  • Siravegna G, Marsoni S, Siena S, et al. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–548.
  • Crowley E, Di Nicolantonio F, Loupakis F, et al. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–484.
  • Zhang X, BJOD L. Updates of liquid biopsy in oral cancer and multiomics analysis. Oral Dis. 2023;29(1):51–61. doi: 10.1111/odi.14064
  • Patel A, Patel S, Patel P, et al. Saliva based liquid biopsies in head and neck cancer: how far are we from the clinic? 2022;12:828434. doi: 10.3389/fonc.2022.828434
  • Schwarzenbach H, Hoon DS, Pantel KJNRC. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–437.
  • Ashworth TJAMJ. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J. 1869;14:146.
  • Potdar PD, Lotey NKJJCMT. Role of circulating tumor cells in future diagnosis and therapy of cancer. 2015;1(2):44. doi: 10.4103/2394-4722.158803
  • Castro-Giner F, Aceto NJGM. Tracking cancer progression: from circulating tumor cells to metastasis. Genome Med. 2020;12(1):1–12. doi: 10.1186/s13073-020-00728-3
  • Economopoulou P, Kotsantis I, Kyrodimos E, et al. Liquid biopsy: an emerging prognostic and predictive tool in head and neck squamous cell carcinoma (HNSCC). Focus on circulating tumor cells (CTCs). 2017;74:83–89. doi: 10.1016/j.oraloncology.2017.09.012
  • Kaldjian EP, Ramirez AB, Sun Y, et al. The RareCyte® platform for next‐generation analysis of circulating tumor cells. Cytometry Part A. 2018;93(12):1220–1225. doi: 10.1002/cyto.a.23619
  • Langley RR, Fidler I. The seed and soil hypothesis revisited—The role of tumor‐stroma interactions in metastasis to different organs. 2011;128(11):2527–2535.
  • Méhes G, Witt A, Kubista E, et al. Circulating breast cancer cells are frequently apoptotic. Am J Pathol. 2001;159(1):17–20.
  • Hanna NJCR. Inhibition of experimental tumor metastasis by selective activation of natural killer cells. Cancer Res. 1982;42(4):1337–1342.
  • Kulasinghe A, Perry C, Jovanovic L, et al. Circulating tumour cells in metastatic head and neck cancers. Int J Cancer Res. 2015;136(11):2515–2523.
  • Watanabe SJC. The metastasizability of tumor cells. Cancer. 1954;7(2):215–223. doi: 10.1002/1097-0142(195403)7:2<215:AID-CNCR2820070203>3.0.CO;2-6
  • Cho EH, Wendel M, Luttgen M, et al. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol. 2012;9(1):016001. doi: 10.1088/1478-3975/9/1/016001
  • Sharma D, Brummel‐Ziedins KE, Bouchard BA, et al. Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol. 2014;229(8):1005–1015.
  • Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–6904. doi: 10.1158/1078-0432.CCR-04-0378
  • Au SH, Storey BD, Moore JC, et al. Clusters of circulating tumor cells traverse capillary-sized vessels. Proc Nat Acad Sci. 2016;113(18):4947–4952. doi: 10.1073/pnas.1524448113
  • Yousefi M, Ghaffari P, Nosrati R, et al. Prognostic and therapeutic significance of circulating tumor cells in patients with lung cancer. Cell Oncol. 2020;43(1):31–49. doi: 10.1007/s13402-019-00470-y
  • Chen Q, Zou J, He Y, et al. A narrative review of circulating tumor cells clusters: a key morphology of cancer cells in circulation promote hematogenous metastasis. Front Oncol. 2022;12:944487. doi: 10.3389/fonc.2022.944487
  • Partridge M, Brakenhoff R, Phillips E, et al. Detection of rare disseminated tumor cells identifies head and neck cancer patients at risk of treatment failure. Clin Cancer Res. 2003;9(14):5287–5294.
  • Wang X, Wang L, Lin H, et al. Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy. Front Oncol. 2024;14:14. doi: 10.3389/fonc.2024.1303335
  • Pantel K, Brakenhoff RH, Brandt BJNRC. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008;8(5):329–340. doi: 10.1038/nrc2375
  • Satelli A, Brownlee Z, Mitra A, et al. Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule– and cell-surface vimentin–based methods for monitoring breast cancer therapeutic response. Clin Chem. 2015;61(1):259–266. doi: 10.1373/clinchem.2014.228122
  • Wu Y, Deighan CJ, Miller BL, et al. Isolation and analysis of rare cells in the blood of cancer patients using a negative depletion methodology. Methods. 2013;64(2):169–182. doi: 10.1016/j.ymeth.2013.09.006
  • Zscheppang K, Kurth I, Wachtel N, et al. Efficacy of beta1 integrin and EGFR targeting in sphere-forming human head and neck cancer cells. J Cancer. 2016;7(6):736.
  • Gabriel MT, Calleja LR, Chalopin A, et al. Circulating tumor cells: a review of non–EpCAM-based approaches for cell enrichment and isolation. Clin Chem. 2016;62(4):571–581.
  • Jacob K, Sollier C, Jabado N. Circulating tumor cells: detection, molecular profiling and future prospects. Expert Rev Proteomics. 2007;4(6):741–756.
  • Danova M, Torchio M, Mazzini G. Isolation of rare circulating tumor cells in cancer patients: technical aspects and clinical implications. Expert Rev Mol Diagn. 2011;11(5):473–485.
  • Kong L, Birkeland ACJC. Liquid biopsies in head and neck cancer: current state and future challenges. Cancers. 2021;13(8):1874.
  • Deng G, Herrler M, Burgess D, et al. Enrichment with anti-cytokeratin alone or combined with anti-EpCAM antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients. Breast Cancer Res. 2008;10(4):1–11. doi: 10.1186/bcr2131
  • Pamme N. On-chip bioanalysis with magnetic particles. Curr Opin Chem Biol. 2012;16(3–4):436–443.
  • Alix-Panabières C, Pantel KJNRC. Challenges in circulating tumour cell research. Nat Rev Cancer. 2014;14(9):623–631.
  • Bates M, Mohamed BM, Ward MP, et al. Circulating tumour cells: the good, the bad and the ugly. Biochimica Et Biophysica Acta (BBA) - Reviews On Cancer. 2023;1878(2):188863. doi: 10.1016/j.bbcan.2023.188863
  • Mandel P, Metais P. [Nuclear Acids in Human Blood Plasma], Comptes rendus des seances de la societe de biologie et de ses filiales. 1948;142(3–4):241–243.
  • Leon S, Shapiro B, Sklaroff D, et al. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37(3):646–650.
  • Stroun M, Anker P, Maurice P, et al. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology. 1989;46(5):318–322. doi: 10.1159/000226740
  • Lauritano D, Oberti L, Gabrione F, et al. Liquid biopsy in head and neck squamous cell carcinoma: prognostic significance of circulating tumor cells and circulating tumor DNA. A systematic review. Oral Oncol. 2019;97:7–17. doi: 10.1016/j.oraloncology.2019.07.003
  • Jung A, Kirchner TJDÄI. Liquid biopsy in tumor genetic diagnosis. Deutsches Ärzteblatt International. 2018;115(10):169.
  • Cheng F, Su L, Qian CJO. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget. 2016;7(30):48832. doi: 10.18632/oncotarget.9453
  • Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–1665.
  • Yang W-Y, Feng L-F, Meng X, et al. Liquid biopsy in head and neck squamous cell carcinoma: circulating tumor cells, circulating tumor DNA, and exosomes. 2020;20(12):1213–1227. doi: 10.1080/14737159.2020.1855977
  • Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early-and late-stage human malignancies. Sci Transl Med. 2014;6(224):ra224224–ra224224.
  • Haber DA, Velculescu V. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discovery. 2014;4(6):650–661. doi: 10.1158/2159-8290.CD-13-1014
  • Schröck A, Leisse A, de Vos L, et al. Free-circulating methylated DNA in blood for diagnosis, staging, prognosis, and monitoring of head and neck squamous cell carcinoma patients: an observational prospective cohort study. 2017;63(7):1288–1296. doi: 10.1373/clinchem.2016.270207
  • Warton K, Samimi G. Methylation of cell-free circulating DNA in the diagnosis of cancer. 2015;2:13. doi: 10.3389/fmolb.2015.00013
  • Dietrich D, Jung M, Puetzer S, et al. Diagnostic and prognostic value of SHOX2 and SEPT9 DNA methylation and cytology in benign, paramalignant and malignant pleural effusions. PLOS ONE. 2013;8(12):e84225. doi: 10.1371/journal.pone.0084225
  • Jung M, Pützer S, Gevensleben H, et al. Diagnostic and prognostic value of SHOX2 and SEPT9 DNA methylation and cytology in benign, paramalignant, and malignant ascites. Clin epigenetics. 2016;8(1):1–13. doi: 10.1186/s13148-016-0192-7
  • Mydlarz WK, Hennessey PT, Wang H, et al. neck. Serum biomarkers for detection of head and neck squamous cell carcinoma. 2016;38(1):9–14. doi: 10.1002/hed.23842
  • Sabharwal A, Middleton M. Exploiting the role of O6-methylguanine-DNA-methyltransferase (MGMT) in cancer therapy. Curr Opin Pharmacol. 2006;6(4):355–363.
  • Misawa K, Yamada S, Mima M, et al. Long interspersed nuclear element 1 hypomethylation has novel prognostic value and potential utility in liquid biopsy for oral cavity cancer. Biomark Res. 2020;8(1):1–10. doi: 10.1186/s40364-020-00235-y
  • Basnet S, Zhang Z-Y, Liao W-Q, et al. The prognostic value of circulating cell-free DNA in colorectal cancer: a meta-analysis. J Cancer. 2016;7(9):1105.
  • Ocana A, Díez-González L, García-Olmo DC, et al. Circulating DNA and survival in solid tumors. Cancer Epidemiol Biomarkers Prev. 2016;25(2):399–406. doi: 10.1158/1055-9965.EPI-15-0893
  • Liu W, Ji T, Zhang C, et al. Cell-free DNA hypermethylated genes may have a limited role in cancer screening but a potential role in risk assessment of head and neck cancer. Oral Oncol. 2022;134:106129.
  • Griffiths-Jones S, Grocock RJ, Van Dongen S, et al. Enright AJJNar. miRbase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34(suppl_1):D140–D144. doi: 10.1093/nar/gkj112
  • Friedman RC, Farh K-H, Burge CB, et al. Most mammalian mRnas are conserved targets of microRnas. Genome Res. 2009;19(1):92–105. doi: 10.1101/gr.082701.108
  • Javidi MA, Ahmadi AH, Bakhshinejad B, et al. Cell-free microRnas as cancer biomarkers: the odyssey of miRnas through body fluids. Med Oncol. 2014;31(12):1–11. doi: 10.1007/s12032-014-0295-y
  • Wang K, Zhang S, Weber J, et al. Export of microRnas and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38(20):7248–7259.
  • He Y, Lin J, Kong D, et al. Current state of circulating microRnas as cancer biomarkers. Clin Chem. 2015;61(9):1138–1155. doi: 10.1373/clinchem.2015.241190
  • Hyun K-A, Kim J, Gwak H, et al. Isolation and enrichment of circulating biomarkers for cancer screening, detection, and diagnostics. Analyst. 2016;141(2):382–392.
  • Chakraborty C, Das SJTB. Profiling cell-free and circulating miRNA: a clinical diagnostic tool for different cancers. Tumor Biolog. 2016;37(5):5705–5714.
  • Jacobsen N, Andreasen D, Mouritzen P. Protocols. Profiling microRnas by real-time PCR. MicroRNAs in Development: Methods and Protocols. 2011;732:39–54.
  • D’Alessandra Y, Valerio V, Moschetta D, et al. Extraction-free absolute quantification of circulating miRnas by chip-based digital PCR. Biomedicines. 2022;10(6):1354. doi: 10.3390/biomedicines10061354
  • Aggarwal S, Sharma SC, Das SNJCCA. Galectin-1 and galectin-3: plausible tumour markers for oral squamous cell carcinoma and suitable targets for screening high-risk population. 2015;442:13–21. doi: 10.1016/j.cca.2014.12.038
  • Bu J, Bu X, Liu B, et al. Increased expression of tissue/salivary transgelin mrna predicts poor prognosis in patients with oral squamous cell carcinoma (OSCC) surgery. Med Sci Monit. 2015;21:2275. doi: 10.12659/MSM.893925
  • Eissa S, Matboli M, Essawy NO, et al. Rapid detection of urinary long non-coding RNA urothelial carcinoma associated one using a PCR-free nanoparticle-based assay. Biomarkers. 2015;20(3):212–217. doi: 10.3109/1354750X.2015.1062918
  • Zhang H, Zhao L, Wang Y-X, et al. Long non-coding RNA HOTTIP is correlated with progression and prognosis in tongue squamous cell carcinoma. Tumor Biol. 2015;36(11):8805–8809. doi: 10.1007/s13277-015-3645-2
  • Gezer U, Özgür E, Cetinkaya M, et al. Long non‐coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int. 2014;38(9):1076–1079.
  • Tang H, Wu Z, Zhang J, et al. Salivary lncRNA as a potential marker for oral squamous cell carcinoma diagnosis. Mol Med Rep. 2013;7(3):761–766. doi: 10.3892/mmr.2012.1254
  • Zhou X, Yin C, Dang Y, et al. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep. 2015;5(1):11516.
  • Feng Y, Hu X, Zhang Y, et al. Methods for the study of long noncoding RNA in cancer cell signaling. Methods Mol Biol. 2014;1165:115–143.
  • Wojdacz TK, Dobrovic A, Algar E. Rapid detection of methylation change at H19 in human imprinting disorders using methylation‐sensitive high‐resolution melting. Hum Mutat. 2008;29(10):1255–1260.
  • Dodd DW, Gagnon KT, Corey D. Digital quantitation of potential therapeutic target RNAs. Nucleic Acid Ther. 2013;23(3):188–194.
  • Wong T-S, Liu X-B, Wong B-H, et al. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 2008;14(9):2588–2592. doi: 10.1158/1078-0432.CCR-07-0666
  • Lin S-C, Liu C-J, Lin J-A, et al. Chang K-WJOo. miR-24 up-regulation in oral carcinoma: positive association from clinical and in vitro analysis. Oral Oncol. 2010;46(3):204–208. doi: 10.1016/j.oraloncology.2009.12.005
  • Hung P-S, Liu C-J, Chou C-S, et al. miR-146a enhances the oncogenicity of oral carcinoma by concomitant targeting of the IRAK1, TRAF6 and NUMB genes. PLOS ONE. 2013;8(11):e79926. doi: 10.1371/journal.pone.0079926
  • Ren W, Qiang C, Gao L, et al. Circulating microRNA-21 (MIR-21) and phosphatase and tensin homolog (PTEN) are promising novel biomarkers for detection of oral squamous cell carcinoma. Biomarkers. 2014;19(7):590–596. doi: 10.3109/1354750X.2014.955059
  • Wang L-L, Li H-X, Yang Y-Y, et al. MiR-31 is a potential biomarker for diagnosis of head and neck squamous cell carcinoma. Intern J Clin Exp Path. 2018;11(9):4339.
  • Sun L, Liu L, Fu H, et al. Shi YJMsmimjoe, research c. Association of decreased expression of serum miR-9 with poor prognosis of oral squamous cell carcinoma patients. Med Sci Monit. 2016;22:289. doi: 10.12659/MSM.895683
  • Lu Y-C, Chang J-C, Huang Y-C, et al. Combined determination of circulating miR-196a and miR-196b levels produces high sensitivity and specificity for early detection of oral cancer. Clin Biochem. 2015;48(3):115–121. doi: 10.1016/j.clinbiochem.2014.11.020
  • Chang Y-A, Weng S-L, Yang S-F, et al. A three–microRNA signature as a potential biomarker for the early detection of oral cancer. Int j mole sci. 2018;19(3):758.
  • Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17(6):816–826. doi: 10.1038/ncb3169
  • Peinado H, Zhang H, Matei IR, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017;17(5):302–317. doi: 10.1038/nrc.2017.6
  • Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Med. 2012;18(6):883–891. doi: 10.1038/nm.2753
  • Tkach M, Théry CJC. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–1232. doi: 10.1016/j.cell.2016.01.043
  • Xu R, Rai A, Chen M, et al. Extracellular vesicles in cancer—implications for future improvements in cancer care. 2018;15(10):617–638.
  • Colombo M, Moita C, Van Niel G, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(24):5553–5565. doi: 10.1242/jcs.128868
  • Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244–1247. doi: 10.1126/science.1153124
  • Jiang N, Pan J, Fang S, et al. Liquid biopsy: circulating exosomal long noncoding RNAs in cancer. Clin Chim Acta. 2019;495:331–337. doi: 10.1016/j.cca.2019.04.082
  • Ludwig S, Floros T, Theodoraki M-N, et al. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer. Clin Cancer Res. 2017;23(16):4843–4854. doi: 10.1158/1078-0432.CCR-16-2819
  • Languino LR, Singh A, Prisco M, et al. Exosome-mediated transfer from the tumor microenvironment increases TGFβ signaling in squamous cell carcinoma. Am J Transl Res. 2016;8(5):2432.
  • Park JE, Tan HS, Datta A, et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics. 2010;9(6):1085–1099. doi: 10.1074/mcp.M900381-MCP200
  • Li L, Li C, Wang S, et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 2016;76(7):1770–1780. doi: 10.1158/0008-5472.CAN-15-1625
  • Turchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellular circulating microRNA. 2011;39(16):7223–7233.
  • Li Y-Y, Tao Y-W, Gao S, et al. Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p. EBioMed. 2018;36:209–220. doi: 10.1016/j.ebiom.2018.09.006
  • Rodríguez Zorrilla S, Pérez-Sayans M, Fais S, et al. A pilot clinical study on the prognostic relevance of plasmatic exosomes levels in oral squamous cell carcinoma patients. Cancers (Basel). 2019;11(3):429. doi: 10.3390/cancers11030429
  • Li C, Zhou Y, Liu J, et al. Potential markers from serum-purified exosomes for detecting oral squamous cell carcinoma metastasis. Cancer Epidemiol Biomarkers Prev. 2019;28(10):1668–1681. doi: 10.1158/1055-9965.EPI-18-1122
  • Luo Y, Liu F, Guo J, et al. Upregulation of circ_0000199 in circulating exosomes is associated with survival outcome in OSCC. 2020;10(1):13739. doi: 10.1038/s41598-020-70747-y
  • He T, Guo X, Li X, et al. Plasma-derived exosomal microRNA-130a serves as a noninvasive biomarker for diagnosis and prognosis of oral squamous cell carcinoma. J Oncol. 2021;2021:1–9.
  • Fujiwara T, Eguchi T, Sogawa C, et al. Carcinogenic epithelial-mesenchymal transition initiated by oral cancer exosomes is inhibited by anti-EGFR antibody cetuximab. Oral Oncol. 2018;86:251–257. doi: 10.1016/j.oraloncology.2018.09.030
  • Theodoraki M-N, Yerneni SS, Hoffmann TK, et al. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients. 2018;24(4):896–905. doi: 10.1158/1078-0432.CCR-17-2664
  • Huang Z, Yang X, Huang Y, et al. Saliva–a new opportunity for fluid biopsy. Clin Chem Lab Med. 2023;61(1):4–32. doi: 10.1515/cclm-2022-0793
  • Rodríguez-Molinero J, Del Carmen Migueláñez-Medrán B, Delgado-Somolinos E, et al. Advances in the diagnosis, monitoring, and progression of oral cancer through saliva: an update. Bio Med Res Int. 2022;2022:1–21. doi: 10.1155/2022/2739869
  • Liao L, Wang J, Ouyang S, et al. Expression and clinical significance of microRNA-1246 in human oral squamous cell carcinoma. Med Sci Monit. 2015;21(776):776–781. doi: 10.12659/MSM.892508
  • Brinkmann O, Kastratovic DA, Dimitrijevic MV, et al. Oral squamous cell carcinoma detection by salivary biomarkers in a Serbian population. Oral Oncol. 2011;47(1):51–55. doi: 10.1016/j.oraloncology.2010.10.009
  • Bag S, Dutta D, Chaudhary A, et al. NanoLC MALDI MS/MS based quantitative metabolomics reveals the alteration of membrane biogenesis in oral cancer. RSC Adv. 2016;6(67):62420–62433. doi: 10.1039/C6RA07001A
  • Rai V, Mukherjee R, Ghosh AK, et al. “Omics” in oral cancer: new approaches for biomarker discovery. Arch Oral Biol. 2018;87:15–34. doi: 10.1016/j.archoralbio.2017.12.003
  • Cristaldi M, Mauceri R, Di Fede O, et al. Salivary biomarkers for oral squamous cell carcinoma diagnosis and follow-up: current status and perspectives. Front physiol. 2019;10:1476. doi: 10.3389/fphys.2019.01476
  • Lee YC, Kim SI, Kwon H, et al. Circulating tumor DNA in the saliva of patients with head and neck cancer: a pilot report. Oral Dis. 2021;27(6):1421–1425.
  • Hyun K-A, Gwak H, Lee J, et al. Salivary exosome and cell-free DNA for cancer detection. Micromachine. 2018;9(7):340.
  • Rosas SLB, Koch W, Carvalho M, et al. Promoter hypermethylation patterns of p16, O 6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer res. 2001;61(3):939–942.
  • Righini CA, de Fraipont F, Timsit J-F, et al. Tumor-specific methylation in saliva: a promising biomarker for early detection of head and neck cancer recurrence. Clin Cancer Res. 2007;13(4):1179–1185. doi: 10.1158/1078-0432.CCR-06-2027
  • Birknerova N, Mancikova V, Paul ED, et al. Circulating cell-free DNA-based methylation pattern in saliva for early diagnosis of head and neck cancer. Cancers (Basel). 2022;14(19):4882. doi: 10.3390/cancers14194882
  • Rapado-González Ó, López-Cedrún JL, López-López R, et al. Saliva gene promoter hypermethylation as a biomarker in oral cancer. J Clin Med. 2021;10(9):1931. doi: 10.3390/jcm10091931
  • Rettori MM, de Carvalho AC, Bomfim Longo AL, et al. Prognostic significance of TIMP3 hypermethylation in post-treatment salivary rinse from head and neck squamous cell carcinoma patients. Carcinogenesis. 2013;34(1):20–27. doi: 10.1093/carcin/bgs311
  • Langevin SM, Butler RA, Eliot M, et al. Novel DNA methylation targets in oral rinse samples predict survival of patients with oral squamous cell carcinoma. Oral Oncol. 2014;50(11):1072–1080. doi: 10.1016/j.oraloncology.2014.08.015
  • Li Y, Zhou X, St. John M, et al. RNA profiling of cell-free saliva using microarray technology. J dental res. 2004;83(3):199–203.
  • Park NJ, Zhou H, Elashoff D, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009;15(17):5473–5477. doi: 10.1158/1078-0432.CCR-09-0736
  • Wiklund ED, Gao S, Hulf T, et al. MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma. PLOS ONE. 2011;6(11):e27840. doi: 10.1371/journal.pone.0027840
  • Momen-Heravi F, Trachtenberg A, Kuo W, et al. Genomewide study of salivary microRnas for detection of oral cancer. J dental res. 2014;93(7_suppl):86S–93S.
  • Duz MB, Karatas OF, Guzel E, et al. Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: a pilot study. Cell Oncol. 2016;39(2):187–193. doi: 10.1007/s13402-015-0259-z
  • Yap T, Koo K, Cheng L, et al. Predicting the presence of oral squamous cell carcinoma using commonly dysregulated MicroRNA in oral swirls. Cancer Prev Res. 2018;11(8):491–502. doi: 10.1158/1940-6207.CAPR-17-0409
  • Mehdipour M, Shahidi M, Manifar S, et al. Diagnostic and prognostic relevance of salivary microRNA-21,-125a,-31 and-200a levels in patients with oral lichen planus-a short report. Cell Oncol. 2018;41(3):329–334. doi: 10.1007/s13402-018-0372-x
  • Tan J, Xiang L, GJIl X. LncRNA MEG3 suppresses migration and promotes apoptosis by sponging miR‐548d‐3p to modulate JAK–STAT pathway in oral squamous cell carcinoma. IUBMB Life. 2019;71(7):882–890.
  • He L, Ping F, Fan Z, et al. Salivary exosomal miR-24-3p serves as a potential detective biomarker for oral squamous cell carcinoma screening. Biomed Pharmacother. 2020;121:109553. doi: 10.1016/j.biopha.2019.109553
  • Yang YT, Wang YF, Lai JY, et al. Long non-coding RNA UCA 1 contributes to the progression of oral squamous cell carcinoma by regulating the WNT /β-catenin signaling pathway. Cancer Sci. 2016;107(11):1581–1589. doi: 10.1111/cas.13058
  • Fan C, Wang J, Tang Y, et al. Upregulation of long non-coding RNA LOC284454 may serve as a new serum diagnostic biomarker for head and neck cancers. BMC Cancer. 2020;20(1):1–9. doi: 10.1186/s12885-020-07408-w
  • Li S, Zhang S, Chen J. C-Myc induced upregulation of long non-coding RNA SNHG16 enhances progression and carcinogenesis in oral squamous cell carcinoma. Cancer gene ther. 2019;26(11–12):400–410.
  • Balakittnen J, Weeramange CE, Wallace DF, et al. Noncoding RNAs in oral cancer. WIREs RNA. 2023;14(3):e1754. doi: 10.1002/wrna.1754
  • Li G, Wang X, Li C, et al. Piwi-interacting RNA1037 enhances chemoresistance and motility in human oral squamous cell carcinoma cells. 2019;12:10615. doi: 10.2147/OTT.S233322
  • Fadhil RS, Wei MQ, Nikolarakos D, et al. Salivary microRNA miR-let-7a-5p and miR-3928 could be used as potential diagnostic bio-markers for head and neck squamous cell carcinoma. PLOS ONE. 2020;15(3):e0221779. doi: 10.1371/journal.pone.0221779
  • Han S, Locke AK, Oaks LA, et al. Nanoparticle-based assay for detection of S100P mRNA using surface-enhanced raman spectroscopy. J Biomed Optic. 2019;24(5):055001–055001.
  • Liu C-J, Chen J-H, Hsia S-M, et al. Salivary LDOC1 is a gender-difference biomarker of oral squamous cell carcinoma. PeerJ. 2019;7:e6732. doi: 10.7717/peerj.6732
  • Liyanage C, Wathupola A, Muraleetharan S, et al. Promoter hypermethylation of tumor-suppressor genes p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 in salivary DNA as a quadruple biomarker panel for early detection of oral and oropharyngeal cancers. 2019;9(4):148. doi: 10.3390/biom9040148
  • Oh SY, Kang S-M, Kang SH, et al. Potential salivary mRNA biomarkers for early detection of oral cancer. J clin med. 2020;9(1):243.
  • Ueda S, Hashimoto K, Miyabe S, et al. Salivary NUS1 and RCN1 levels as biomarkers for oral squamous cell carcinoma diagnosis. 2020;34(5):2353–2361. doi: 10.21873/invivo.12048
  • Ueda S, Goto M, Hashimoto K, et al. Salivary CPLANE1 levels as a biomarker of oral squamous cell carcinoma. Anticancer Res. 2021;41(2):765–772.
  • Cao Y, Green K, Quattlebaum S, et al. Methylated genomic loci encoding microRNA as a biomarker panel in tissue and saliva for head and neck squamous cell carcinoma. 2018;10(1):1–13. doi: 10.1186/s13148-018-0470-7
  • Chen L, Zhang S, Wu J, et al. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. 2017;36(32):4551–4561. doi: 10.1038/onc.2017.89
  • Momen-Heravi F, Bala S. Emerging role of non-coding RNA in oral cancer. 2018;42:134–143. doi: 10.1016/j.cellsig.2017.10.009
  • Nair S, Tang KD, Kenny L, et al. Salivary exosomes as potential biomarkers in cancer. 2018;84:31–40. doi: 10.1016/j.oraloncology.2018.07.001
  • Cheshmi B, Cheshomi H. Salivary exosomes: properties, medical applications, and isolation methods. Mol biol repo. 2020;47(8):6295–6307.
  • Zhan C, Yang X, Yin X, et al. Exosomes and other extracellular vesicles in oral and salivary gland cancers. 2020;26(5):865–875. doi: 10.1111/odi.13172
  • Lai RC, Yeo RWY, Tan KH, et al. Exosomes for drug delivery—a novel application for the mesenchymal stem cell. 2013;31(5):543–551.
  • Aro K, Kaczor-Urbanowicz K, Carreras-Presas CM. Carreras-presas CMJCoio, head, surgery n. Salivaomics In Oral Cancer. 2019;27(2):91–97. doi:10.1097/MOO.0000000000000502
  • Ohshiro K, Rosenthal DI, Koomen JM, et al. Pre-analytic saliva processing affect proteomic results and biomarker screening of head and neck squamous carcinoma. Int J Oncol. 2007;30(3):743–749. doi: 10.3892/ijo.30.3.743
  • Hu S, Arellano M, Boontheung P, et al. Salivary proteomics for oral cancer biomarker discovery. Clin Cancer Res. 2008;14(19):6246–6252. doi: 10.1158/1078-0432.CCR-07-5037
  • Dowling P, Wormald R, Meleady P, et al. Analysis of the saliva proteome from patients with head and neck squamous cell carcinoma reveals differences in abundance levels of proteins associated with tumour progression and metastasis. J Proteomics. 2008;71(2):168–175.
  • Rai B, Kaur J, Jacobs R, et al. Adenosine deaminase in saliva as a diagnostic marker of squamous cell carcinoma of tongue. Clin Oral Investig. 2011;15(3):347–349. doi: 10.1007/s00784-010-0404-z
  • Elashoff D, Zhou H, Reiss J, et al. Prevalidation of salivary biomarkers for oral cancer detection. Cancer Epidemiol Biomarkers Prev. 2012;21(4):664–672. doi: 10.1158/1055-9965.EPI-11-1093
  • Chen J-H, Wu AT, Bamodu OA, et al. Ovatodiolide suppresses oral cancer malignancy by down-regulating exosomal Mir-21/STAT3/β-catenin cargo and preventing oncogenic transformation of normal gingival fibroblasts. Cancer. 2019;12(1):56.
  • Winck FV, Prado Ribeiro AC, Ramos Domingues R, et al. Insights into immune responses in oral cancer through proteomic analysis of saliva and salivary extracellular vesicles. Sci Rep. 2015;5(1):16305. doi: 10.1038/srep16305
  • Sakha S, Muramatsu T, Ueda K, et al. Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Scientific Rep. 2016;6(1):38750.
  • Zlotogorski-Hurvitz A, Dayan D, Chaushu G, et al. Vered MJJocr, oncology c. Morphological and molecular features of oral fluid-derived exosomes: oral cancer patients versus healthy individuals. J Cancer Res Clin Oncol. 2016;142(1):101–110.
  • Ludwig S, Sharma P, Theodoraki M-N, et al. Molecular and functional profiles of exosomes from HPV (+) and HPV (−) head and neck cancer cell lines. Front oncol. 2018;8:445.
  • Li Y, St. John MA, Zhou X, et al. Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res. 2004;10(24):8442–8450. doi: 10.1158/1078-0432.CCR-04-1167
  • Shbeer AM, Robadi I-R. Practice. liquid biopsy holds a promising approach for the early detection of cancer; current information and future perspectives. Pathol Res Pract. 2024;254:155082. doi: 10.1016/j.prp.2023.155082
  • Kim H, Park KUJCR. Association TOJoKC. Clinical circulating tumor dna testing for precision oncology. 2023;55(2):351–366.
  • Lousada-Fernandez F, Rapado-Gonzalez O, Lopez-Cedrun J-L, et al. Liquid biopsy in oral cancer. Int j mol sci. 2018;19(6):1704.
  • Bidard F-C, Weigelt B, Reis-Filho J. Going with the flow: from circulating tumor cells to DNA. Sci Transl Med. 2013;5(207):ps207214–ps207214.
  • Pérez-Ruiz E, Gutiérrez V, Muñoz M, et al. Liquid biopsy as a tool for the characterisation and early detection of the field cancerization effect in patients with oral cavity carcinoma. Biomedicines. 2021;9(10):1478. doi: 10.3390/biomedicines9101478
  • Catelain C, Pailler E, Oulhen M, et al. Detection of gene rearrangements in circulating tumor cells: examples of ALK-, ROS1-, RET-rearrangements in non-small-cell lung cancer and ERG-rearrangements in prostate cancer. Advances in experimental medicine and biology. 2017;994:169–179.
  • Liu K, Chen N, Wei J, et al. Clinical significance of circulating tumor cells in patients with locally advanced head and neck squamous cell carcinoma. Oncol Rep. 2020;43(5):1525–1535.
  • Onidani K, Shoji H, Kakizaki T, et al. Monitoring of cancer patients via next‐generation sequencing of patient‐derived circulating tumor cells and tumor DNA. Cancer Sci. 2019;110(8):2590–2599. doi: 10.1111/cas.14092
  • Afridi WA, Strachan S, Kasetsirikul S, et al. Potential avenues for exosomal isolation and detection methods to enhance small-cell lung cancer analysis. ACS measur sci au. 2023;3(3):143–161. doi: 10.1021/acsmeasuresciau.2c00068
  • Patel G, Agnihotri TG, Gitte M, et al. Exosomes: a potential diagnostic and treatment modality in the quest for counteracting cancer. Cell Oncol. 2023:1–21.
  • Yu D, Li Y, Wang M, et al. Exosomes as a new frontier of cancer liquid biopsy. Mol cancer. 2022;21(1):56. doi: 10.1186/s12943-022-01509-9
  • Yu W, Hurley J, Roberts D, et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. Ann Oncol. 2021;32(4):466–477. doi: 10.1016/j.annonc.2021.01.074
  • Wang Y, Springer S, Mulvey CL, et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci, trans med. 2015;7(293):ra293104–ra293104. doi: 10.1126/scitranslmed.aaa8507
  • Pekin D, Skhiri Y, Baret J-C, et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip. 2011;11(13):2156–2166. doi: 10.1039/c1lc20128j
  • Reedy CR, Price CW, Sniegowski J, et al. Solid phase extraction of DNA from biological samples in a post-based, high surface area poly (methyl methacrylate)(PMMA) microdevice. Lab Chip. 2011;11(9):1603–1611. doi: 10.1039/c0lc00597e
  • Kim S, De Jonghe J, Kulesa AB, et al. High-throughput automated microfluidic sample preparation for accurate microbial genomics. Nat Commun. 2017;8(1):13919. doi: 10.1038/ncomms13919
  • Carnell-Morris P, Tannetta D, Siupa A, et al. Dragovic RJEvm, protocols. Analysis of extracellular vesicles using fluorescence nanoparticle tracking analysis. Extracell Ves Meth Protoc. 2017;153–173.
  • Qiu J, Xu J, Zhang K, et al. Refining cancer management using integrated liquid biopsy. Theranostics. 2020;10(5):2374. doi: 10.7150/thno.40677
  • Gu X, He J, GJM J. Combined use of circulating tumor cells and salivary mRNA to detect non–small-cell lung cancer. Medicine. 2020;99(8):e19097.
  • Krug A, Enderle D, Karlovich C, et al. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann Oncol. 2018;29(3):700–706. doi: 10.1093/annonc/mdx765
  • Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926–930. doi: 10.1126/science.aar3247
  • Lone SN, Nisar S, Masoodi T, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol cancer. 2022;21(1):79. doi: 10.1186/s12943-022-01543-7
  • Marrugo-Ramírez J, Mir M, Samitier J. Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy. Int J Mol Sci. 2018;19(10):2877.
  • Kumar P, Gupta S, Das BCJTO. Saliva as a potential non-invasive liquid biopsy for early and easy diagnosis/prognosis of head and neck cancer. Transl Oncol. 2024;40:101827. doi: 10.1016/j.tranon.2023.101827
  • Chauhan A, Pal A, Sachdeva M, et al. A FACS based novel isolation technique identifies heterogeneous CTCs in Oral Squamous Cell Carcinoma. Front Oncol. 2024;14:1269211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.