635
Views
13
CrossRef citations to date
0
Altmetric
Research Article

A kinetic, modeling and mechanistic re-analysis of thymidine phosphorylase and some related enzymes

REVIEW ARTICLE

Pages 483-518 | Received 08 Aug 2005, Accepted 24 Feb 2006, Published online: 20 Oct 2008

References

  • Nakayama C, Wataya Y, Meyer RB, Jr, Santi DV, Saneyoshi M, Ueda T. Thymidine phosphorylase. Substrate specificity for 5-substituted 2′-deoxyuridines. J Med Chem 1980; 23: 962–964
  • el Kouni MH, el Kouni MM, Naguib FN. Differences in activities and substrate specificity of human and murine pyrimidine nucleoside phosphorylases: Implications for chemotherapy with 5-fluoropyrimidines. Cancer Res 1993; 53: 3687–3693
  • Schwartz M. Thymidine phosphorylase from Escherichia coli. Properties and kinetics. Eur J Biochem 1971; 21: 191–198
  • Brown NS, Bicknell R. Thymidine phosphorylase, 2-deoxy-d-ribose and angiogenesis. Biochem J 1998; 334: 1–8
  • Cole C, Foster AJ, Freeman S, Jaffar M, Murray PE, Strafford IJ. The role of thymidine phosphorylase/PD-ECGF in cancer chemotherapy: A chemical perspective. Anticancer Drug Des 1999; 14: 383–392
  • Matsushita S, Nitanda T, Furukawa T, Sumizawa T, Tani A, Nishimoto K, Akiba S, Miyadera K, Fukushima M, Yamada Y, Yoshida H, Kanzaki T, Akiyama S. The effect of a thymidine phosphorylase inhibitor on angiogenesis and apoptosis in tumors. Cancer Res 1999; 59: 1911–1916
  • Reigan P, Edwards PN, Gbaj A, Cole C, Barry ST, Page KM, Douglas KT, Stratford IJ, Jaffar M, Bryce RA, Freeman S. Aminoimidazolylmethyluracil analogues as potent inhibitors of thymidine phosphorylase and their bioreductive nitroimidazolyl prodrugs. J Med Chem 2005; 48: 392–402
  • Pugmire MJ, Cook WJ, Jasanoff A, Walter MR, Ealick SE. Structural and theoretical studies suggest domain movement produces an active conformation of thymidine phosphorylase. J Mol Biol 1998; 281: 285–299
  • Pugmire MJ, Ealick SE. The crystal structure of pyrimidine nucleoside phosphorylase in a closed conformation. Structure 1998; 6: 1467–1479
  • Charton M. The Validity of the revised-F and revised-R electrical effect substituent parameters. J Org Chem 1984; 49: 1997–2001
  • Charton M. Electrical effect substituent constants for correlation analysis. Prog Phys Org Chem 1981; 13: 119–251
  • Perrin DD. Dissociation constants of organic bases in aqueous solution. Butterworths, London 1965
  • Perrin DD. Dissociation constants of organic bases in aqueous solution, supplement. Butterworths, London 1972
  • Serjeant EP, Dempsey B. Ionisation constants of organic acids in aqueous solution. Pergamon Press, Oxford 1979
  • Wataya Y, Santi DV. Continuous spectrophotometric assay of thymidine phosphorylase using 5-nitro-2′-deoxyuridine as substrate. Anal Biochem 1981; 112: 96–98
  • Niedzwicki JG, el Kouni MH, Chu SH, Cha S. Structure-activity relationship of ligands of the pyrimidine nucleoside phosphorylases. Biochem Pharmacol 1983; 32: 399–415
  • Konig PH, Ghosh N, Hoffmann M, Eistner M, Tajkhorshid E, Frauenheim Th, Cui Q. Towards theoretical analysis of long-range proton transfer kinetics in biomolecular pumps. J Phys Chem A 2006; 110: 548–563, and references cited therein
  • Mendieta J, Martin-Santamaria S, Priego EM, Balzarini J, Camarasa MJ, Perez-Perez MJ, Gago F. Role of histidine-85 in the catalytic mechanism of thymidine phosphorylase as assessed by targeted molecular dynamics simulations and quantum mechanical calculations. Biochemistry 2004; 43: 405–414
  • Desgranges C, Razaka G, Rabaud M, Bricaud H, Balzarini J, De Clercq E. Phosphorolysis of (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU) and other 5-substituted-2′-deoxyuridines by purified human thymidine phosphorylase and intact blood platelets. Biochem Pharmacol 1983; 32: 3583–3590
  • Gbaj AM. Inhibition studies of thymidine phosphorylase. MPhil thesis. University of Manchester, UK 2003
  • Wataya Y, Matsuda A, Santi DV. Interaction of thymidylate synthetase with 5-nitro-2′-deoxyuridylate. J Biol Chem 1980; 255: 5538–5544
  • Rick SW, Abashkin YG, Hilderbrandt RL, Burt SK. Computational studies of the domain movement and the catalytic mechanism of thymidine phosphorylase. Proteins: Struct, Funct, Genet 1999; 37: 242–252
  • Burton NA, Harrison MJ, Hart JC, Hillier IH, Sheppard DW. Prediction of the mechanisms of enzyme-catalysed reactions using hybrid quantum mechanical molecular mechanical methods. Faraday Discuss 1998; 463–475
  • Taft RW, Bordwell FG. Structural and solvent effects evaluated from acidities measured in dimethyl sulfoxide and in the gas phase. Acc Chem Res 1988; 21: 463–469
  • Nunez S, Antoniou D, Schramm VL, Schwartz SD. Promoting vibrations in human purine nucleoside phosphorylase. A molecular dynamics and hybrid quantum mechanical/molecular mechanical study. J Am Chem Soc 2004; 126: 15720–15729
  • Poulter CD, Frederick GD. Uracil and Its 4-Hydroxy-1(H) and 2-Hydroxy-3(H) Protomers-pKas and Equilibrium-Constants. Tetrahedron Lett 1975; 2171–2174
  • Tramer A. Tautomeric and protolytic properties of o-aminobenzoic acids. I. Ground electronic states. J Mol Struct 1969; 4: 313–325
  • Asaad N, Kirby AJ. Concurrent nucleophilic and general acid catalysis of the hydrolysis of a phosphate triester. J Chem Soc, Perkin Trans 2002; 2: 1708–1712
  • Norman RA, Barry ST, Bate M, Breed J, Colls JG, Ernill RJ, Luke RWA, Minshull CA, McAlister MSB, McCall EJ, McMiken HHJ, Paterson DS, Timms D, Tucker JA, Pauptit RA. Crystal structure of human thymidine phosphorylase in complex with a small molecule inhibitor. Structure 2004; 12: 75–84
  • Lewandowicz A, Schramm VL. Transition state analysis for human and Plasmodium falciparum purine nucleoside phosphorylases. Biochemistry 2004; 43: 1458–1468, and references cited therein
  • Mao C, Cook WJ, Zhou M, Federov AA, Almo SC, Ealick SE. Calf spleen purine nucleoside phosphorylase complexed with substrates and substrate analogues. Biochemistry 1998; 37: 7135–7146, and references cited therein.
  • Fedorov A, Shi W, Kicska G, Fedorov E, Tyler PC, Furneaux RH, Hanson JC, Gainsford GJ, Larese JZ, Schramm VL, Almo SC. Transition state structure of purine nucleoside phosphorylase and principles of atomic motion in enzymatic catalysis. Biochemistry 2001; 40: 853–860
  • Dawson RMC, Elliot DC, Elliot WH, Jones KM. Data for biochemical research3rd ed. Clarendon Press, Oxford UK 1986
  • Michelson AM, Pochon F. Polynucleotide analogues. Methylation of polynucleotides. Biochim Biophys Acta 1966; 114: 469–480
  • Nozaki Y, Tanford C. Intrinsic dissociation constants of aspartyl and glutamyl carboxyl groups. J Biol Chem; 1967; 242: 4731–4735
  • Abraham MH. Hydrogen-bond descriptors for solute molecules. Computational approaches in supramolecular chemistry, G Wipff. Kluwer Academic Publishers, Amsterdam 1994; 63–78
  • Deng H, Callender R. Structure of dihydrofolate when bound to dihydrofolate reductase. J Am Chem Soc 1998; 120: 7730–7737
  • Birck MR, Schramm VL. Nucleophilic participation in the transition state for human thymidine phosphorylase. J Am Chem Soc 2004; 126: 2447–2453
  • Birck MR, Schramm VL. Binding causes the remote [5 ′-H-3]thymidine kinetic isotope effect in human thymidine phosphorylase. J Am Chem Soc 2004; 126: 6882–6883
  • Northrop DB. The expression of isotope effects on enzyme-catalyzed reactions. Annu Rev Biochem 1981; 5: 103–131
  • Meot-Ner (Mautner) M, Ross MM, Campanat JE. Stable hydrogen-bonded isomers of covalent ions. Association of carbonium ions with n-donors. J Am Chem Soc 1985; 107: 4839–4845
  • Chen XY, Berti PJ, Schramm VL. Ricin A-chain: Kinetic isotope effects and transition state structure with stem-loop RNA. J Am Chem Soc 2000; 122: 1609–1617
  • Chen XY, Berti PJ, Schramm VL. Transition-state analysis for depurination of DNA by ricin A-chain. J Am Chem Soc 2000; 122: 6527–6534
  • Cole C, Marks DS, Jaffar M, Stratford IJ, Douglas KT, Freeman S. A similarity model for the human angiogenic factor, thymidine phosphorylase/platelet derived-endothelial cell growth factor. Anticancer Drug Des 1999; 14: 411–420
  • Sheppard DW, Burton NA, Hillier IH. Ab initio hybrid quantum mechanical/molecular mechanical studies of the mechanisms of the enzymes protein kinase and thymidine phosphorylase. THEOCHEM 2000; 506: 35–44
  • Walter MR, Cook WJ, Cole LB, Short SA, Koszalka GW, Krenitsky TA, Ealick SE. Three-dimensional structure of thymidine phosphorylase from Escherichia coli at 2.8.ANG. resolution. J Biol Chem 1990; 265: 14016–14022
  • Halgren TA, MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem 1999; 20: 720–729
  • Dewar MJS, Jie C. Mechanisms of pericyclic reactions: The role of quantitative theory in the study of reaction mechanisms. Acc Chem Res 1992; 22: 537–543
  • Alhambra C, Corchado J, Sanchez ML, Garcia-Viloca M, Gao J, Truhlar DG. Canonical Variational Theory for Enzyme Kinetics with the Protein Mean Force and Multidimensional Quantum Mechanical Tunneling Dynamics. Theory and Application to Liver Alcohol Dehydrogenase. J Phys Chem B 2001; 105: 11326–11340
  • Garcia-Viloca M, Truhlar DG, Gao J. Canonical Variational Theory for Enzyme Kinetics with the Protein Mean Force and Multidimensional Quantum Mechanical Tunneling Dynamics. Theory and Application to Liver Alcohol Dehydrogenase. Biochemistry; 2003; 42: 13558–13575
  • Marti S, Moliner V, Tunon I, Williams IH. QM/MM calculations of kinetic isotope effects in the chorismate mutase active site. Org Biomol Chem 2003; 1: 483–487
  • Burgi HB, Dunitz JD, Shefter E. Geometrical Reaction Coordinates.2. Nucleophilic Addition to A Carbonyl Group. J Am Chem Soc 1973; 95: 5065–5067
  • Schneider IC, Rahmy PJ, Fink-Winter RJ, Reilly PJ. High-performance anion-exchange chromatography of sugar and glycerol phosphates on quaternary ammonium resins. Carbohyd Res 1999; 322: 128–134

Appendices references

  • Plagemann PGW, Wohlheuter RM, Woffendin C. Nucleoside and nucleobase transport in animal cells. Biochim Biophys Acta 1988; 947: 405–443
  • Zimmerman TP, Domin BA, Mahony WB, Prus KL. Membrane transport of nucleoside analogues in mammalian cells. Nucleosides Nucleotides 1989; 8: 765–774
  • Jiang YL, Drohat AC, Ichikawa Y, Stivers JT. Probing the limits of electrostatic catalysis by uracil DNA glycosylase using transition state mimicry and mutagenesis. J Biol Chem 2002; 277(18)15385–15392
  • Zimmerman M, Seidenberg J. Deoxyribosyl Transfer.I. Thymidine Phosphorylase + Nucleoside Deoxyribosyltransferase in Normal + Malignant Tissues. J Biol Chem 1964; 239(8)2618–2621
  • Friedkin M, Roberts D. The enzymatic synthesis of nucleosides.1. Thymidine phosphorylase in mammalian tissue. J Biol Chem 1954; 207(1)245–256
  • Friedkin M, Roberts D. The enzymatic synthesis of nucleosides.2. Thymidine and related pyrimidine nucleosides. J Biol Chem 1954; 207(1)257–266
  • Charton M. Substituent effects in nonaromatic unsaturated systems. Prog Phys Org Chem 1973; 10: 81–204
  • Gallo RC, Breitman TR. Enzymatic mechanisms for deoxythymidine synthesis in human leukocytes.3. Inhibition of deoxythymidine phosphorylase by purines. J Biol Chem 1968; 243(19)4943–4951
  • Baker BR, Kawazu M. Irreversible Enzyme Inhibitors.79. Inhibitors of thymidine phosphorylase.V. mode of pyrimidine binding. J Med Chem 1967; 10(3)313–316
  • Ehrenson S, Brownlee RTC, Taft RW. Generalized treatment of substituent effects in the benzene series. Statistical analysis by the dual substituent parameter equation. I. Prog Phys Org Chem 1973; 10: 1–80
  • Long JW, Ray WJ. Kinetics and thermodynamics of formation of glucose arsenate – reaction of glucose arsenate with phosphoglucomutase. Biochemistry 1973; 12(20)3932–3937
  • Lagunas R. Sugar-arsenate esters – thermodynamics and biochemical behavior. Arch Biochem Biophys 1980; 205(1)67–75
  • Lagunas R, Pestana D, Diezmasa JC. Arsenic mononucleotides – separation by high-performance liquid-chromatography and identification with myokinase and adenylate deaminase. Biochemistry 1984; 23(5)955–960
  • Kouba RF, Varner JE. Properties of the Arsenate-Water O‐18 exchange reaction. Biochem Biophys Res Commun 1959; 1(3)129–132
  • Gallo RC, Perry S, Breitman TR. Enzymatic mechanisms for deoxythymidine synthesis in human leukocytes. I. Substrate inhibition by thymine and activation by phosphate or arsenate. J Biol Chem 1967; 242(21)5059–5068
  • Krenitsky TA. Purine nucleoside phosphorylase: Kinetics, mechanism, and specificity. Mol Pharmacol 1967; 3(6)526–536
  • Beckmann C, Kirby AJ, Kuusela S, Tickle DC. Mechanisms of catalysis by imidazole buffers of the hydrolysis and isomerization of RNA models. J Chem Soc, Perkin Trans 1998; 2(3)573–582
  • Davies JE, Doltsinis NL, Kirby AJ, Roussev CD, Sprik M. Estimating pKa values for pentaoxyphosphoranes. J Am Chem Soc 2002; 124(23)6594–6599
  • Ali BRS, Dixon HBF. Pyridoxal arsenate as a prosthetic group for aspartate-aminotransferase. Biochem J 1992; 284: 349–352
  • Gawlita E, Lantz M, Paneth P, Bell AF, Tonge PJ, Anderson VE. H-bonding in alcohols is reflected in the C alpha-H bond strength: Variation of C-D vibrational frequency and fractionation factor. J Am Chem Soc 2000; 122(47)11660–11669
  • Lewis BE, Schramm VL. Conformational equilibrium isotope effects in glucose by C-13 NMR spectroscopy and computational studies. J Amer Chem Soc 2001; 123(7)1327–1336
  • Lewis BE, Schramm VL. Binding equilibrium isotope effects for glucose at the catalytic domain of human brain hexokinase. J Amer Chem Soc 2003; 125(16)4785–4798
  • Singh V, Lee JE, Nunez S, Howell PL, Schramm VL. Transition state structure of 5′-methylthioadenosine / S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues. Biochemistry 2005; 44(35)11647–11659
  • Guthrie RD, Jencks WP. IUPAC Recommendations for the representation of reaction mechanisms. Acc Chem Res 1989; 22(10)343–349
  • Rezaei M, Kearny M, Kline PC. Kinetic isotope effects of thymidine phosphorylase, American Chemical Society Book of Abstracts, 219th ACS National Meeting, San Francisco, CA, March 26–30, 2000, Biol-041. 2000.
  • Venner H. Studies on nucleic acids. IX. Stability of the N-glycosidic linkage in nucleosides. Hoppe-Seyler's Z Physiol Chem 1964; 339(1)14–27
  • Huang XC, Surry C, Hiebert T, Bennet AJ. Hydrolysis of (2-Deoxy-β-D-Glucopyranosyl)Pyridinium Salts. J Am Chem Soc 1995; 117(43)10614–10621

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.