233
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A quantitative structure-activity relationship study for structurally diverse HIV-1 protease inhibitors: contribution of conformational flexibility to inhibitory activity

Pages 609-615 | Received 12 Feb 2006, Accepted 20 Apr 2006, Published online: 04 Oct 2008

References

  • Abdel-Rahman HM, Al-Karamany GS, El-Koussi NA, Youssef AF, Kiso Y. HIV protease inhibitors: Peptidomimetic drugs and future perspectives. Curr Med Chem 2002; 9: 1905–1922
  • Randolph JT, DeGoey DA. Peptidomimetic inhibitors of HIV protease. Curr Topics Med Chem 2004; 4: 1079–1095
  • Rodriguez-Barrios F, Gago F. HIV protease inhibition: Limited recent progress and advances in understanding current pitfalls. Curr Topics Med Chem 2004; 4: 991–1007
  • Clavel F, Hance AJ. HIV drug resistance. N Engl J Med 2004; 350: 1023–1035
  • Werber Y. HIV drug market. Nat Rev Drug Discovery 2003; 2: 513–514
  • Menendez-Arias L. Targeting HIV:Antiretroviral therapy and development of drug resistance. Trends Pharmacol Sci 2002; 23: 381–388
  • de Mendoza C, Soriano V. Resistance to HIV protease inhibitors: Mechanisms and clinical consequences. Curr Drug Metab 2004; 5: 321–328
  • Fassler A, Bold G, Capraro H-G, Cozens R, Mestan J, Poncioni B, Rosel J, Tintelnot-Blomley M, Lang M. Azapeptide analogs as potent human immunodeficiency virus type-1 protease inhibitors with oral bioavailability. J Med Chem 1996; 39: 3203–3216
  • Bold G, Fassler A, Capraro H-G, Cozens R, Klimkait T, Lazdins J, Mestan J, Poncioni B, Rosel J, Stover D, Tintelnot-Blomley M, Acemoglu F, Beck W, Boss E, Eschbach M, Hurlimann T, Masso E, Roussel S, Ucci-Stoll K, Wyss D, Lang M. New aza-dipeptide analogues as potent and orally absorbed HIV-1 protease inhibitors: Candidates for clinical development. J Med Chem 1998; 41: 3387–3401
  • Raja A, Lebbos J, Kirkpatrick P. Fresh from the pipeline: Atazanavir sulphate. Nat Rev Drug Discovery 2003; 2: 857–858
  • Ekegren JK, Unge T, Safa MZ, Wallberg H, Samuelsson B, Hallberg A. A new class of HIV-1 protease inhibitors containing a tertiary alcohol in the transition-state mimicking scaffold. J Med Chem 2005; 48: 8098–8102
  • Lam PY, Jadhav PK, Eyermann CJ, Hodge CN, Ru Y, Bacheler LT, Meek JL, Otto MJ, Rayner MM, Wong YN, Chang C-H, Weber P, Jackson D, Sharpe T, Erickson-Viitanen S. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 1994; 263: 380–384
  • Holloway MK, Wai JM, Halgren TA, Fitzgerald PMD, Vacca JP, Dorsey BD, Levin RB, Thompson WJ, Chen LJ, deSolms SJ, Gaffin N, Ghosh AK, Giuliani EA, Graham SL, Guare JP, Hungate RW, Lyle TA, Sanders WM, Tucker TJ, Wiggins M, Wiscount CM, Woltersdorf OW, Young SD, Darke PL, Zugay JA. A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site. J Med Chem 1995; 38: 305–317
  • Perez C, Pastor M, Ortiz AR, Gago F. Comparative binding energy analysis of hiv-1 protease inhibitors: Incorporation of solvent effects and validation as a powerful tool in receptor-based drug design. J Med Chem 1998; 41: 836–852
  • Zoete V, Michielin O, Karplus M. Protein-Ligand binding free energy estimation using molecular mechanics and continuum electrostatics. Application to HIV-1 protease inhibitors. J Comput.-Aided Mol Des 2003; 17: 861–880
  • Mohamadi F, Richards NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC. MacroModel - An integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 1990; 11: 440–467
  • Halgren TA. Merck molecular force field: i. basis, form, scope, parameterization and performance of MMFF94. J Comput Chem 1996; 17: 490–519
  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995; 117: 5179–5197
  • Wlodawer A, Erickson JW. Structure-Based inhibitors of HIV-1 protease. Annu Rev Biochem 1993; 62: 543–585
  • Piana S, Carloni P. Conformational flexibility of the catalytic asp dyad in HIV-1 protease: An ab initio study on the free enzyme. Proteins 2000; 39: 26–36
  • Pettersson I, Liljefors T. Structure-Activity relationships for apomorphine congeners. Conformational energies vs. biological activities. J Comput.-Aided Mol Des 1987; 1: 143–152
  • Lopez de Cornpadre RL, Pearlstein RA, Hopfinger AJ, Seydel JK. A quantitative structure-activity relationship analysis of some 4-aminodiphenyl sulfone antibacterial agents using linear free energy and molecular modeling methods. J Med Chem 1987; 30: 900–906
  • Bohm HJ. The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput.-Aided Mol Des 1994; 8: 243–256
  • Tokarski JS, Hopfinger AJ. Prediction of ligand-receptor binding thermodynamics by free energy force field (FEFF) 3D-QSAR analysis: Application to a set of peptidometic renin inhibitors. J Chem Inf Comput Sci 1997; 37: 792–811
  • Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP. Empirical scoring functions: I. the development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput.-Aided Mol Des 1997; 11: 425–445
  • Wang R, Liu L, Lai L, Tang Y. SCORE: A new empirical method for estimating the binding affinity of a protein-ligand complex. J Mol Model 1998; 4: 379–394
  • Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004; 47: 1739–1749
  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J Comp Chem 1998; 19: 1639–1662
  • Nicklaus MC, Wang S, Driscoll JS, Milne GW. Conformational changes of small molecules binding to proteins. Bioorg Med Chem 1995; 3: 411–428
  • Bostrom J, Norrby PO, Liljefors T. Conformational energy penalties of protein-bound ligands. J Comput.-Aided Mol Des 1998; 12: 383–396
  • Vieth M, Hirst JD, Brooks CL, 3rd. Do active site conformations of small ligands correspond to low free-energy solution structures?. J Comput.-Aided Mol Des 1998; 12: 563–572
  • Perola E, Charifson PS. Conformational analysis of drug-like molecules bound to proteins: An extensive study of ligand reorganization upon binding. J Med Chem 2004; 47: 2499–2510
  • Fairlie DP, Tyndall JDA, Reld RC, Wong AK, Abbenante G, Scanlon MJ, March DR, Bergman DA, Chai CLL, Burkett BA. Conformational selection of inhibitors and substrates by proteolytic enzymes: Implications for drug design and polypeptide processing. J Med Chem 2000; 43: 1271–1281
  • Hosur MV, Bhat TN, Kempf DJ, Baldwin ET, Liu B, Gulnik S, Wideburg NE, Norbeck DW, Appelt K, Erickson JW. Influence of stereochemistry on activity and binding modes for c2 symmetry-based diol inhibitors of HIV-1 protease. J Am Chem Soc 1994; 116: 847–855
  • Kaldor SW, Kalish VJ, Davies JF, 2nd, Shetty BV, Fritz JE, Appelt K, Burgess JA, Campanale KM, Chirgadze NY, Clawson DK, Dressman BA, Hatch SD, Khalil DA, Kosa MB, Lubbehusen PP, Muesing MA, Patick AK, Reich SH, Su KS, Tatlock JH. Viracept (nelfinavir mesylate, AG1343): A potent, orally bioavailable inhibitor of HIV-1 protease. J Med Chem 1997; 40: 3979–3985
  • Backbro K, Lowgren S, Osterlund K, Atepo J, Unge T. Unexpected binding mode of a cyclic sulfamide HIV-1 protease inhibitor. J Med Chem 1997; 40: 898–902
  • Jhoti H, Singh OMP, Weir MP, Cooke R, Murray-Rust P, Wonacott A. X-ray crystallographic studies of a series of penicillin-derived asymmetric inhibitors of HIV-1 protease. Biochemistry 1994; 33: 8417–8427
  • Baldwin ET, Bhat TN, Gulnik S, Liu B, Topol IA, Kiso Y, Mimoto T, Mitsuya H, Erickson JW. Structure of HIV-1 protease with KNI-272, a tight-binding transition-state Analog Containing Allophenylnorstatine. Structure 1995; 3: 581–590
  • Chen Z, Li Y, Chen E, Hall DL, Darke PL, Culberson C, Shafer JA, Kuo LC. Crystal structure at 1.9-Å resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases. J Biol Chem 1994; 269: 26344–26348
  • Munshi S, Chen Z, Li Y, Olsen DB, Fraley ME, Hungate RW, Kuo LC. Rapid X-ray diffraction analysis of HIV-1 protease-inhibitor complexes: Inhibitor exchange in single crystals of the bound enzyme. Acta Crystallogr D Biol Crystallogr 1998; 54: 1053–1060
  • Hoog SS, Zhao B, Winborne E, Fisher S, Green DW, DesJarlais RL, Newlander KA, Callahan JF, Moore ML, Huffman WF, Abdel-Meguid SS. A check on rational drug design: Crystal structure of a complex of human immunodeficiency virus type 1 protease with a novel gamma-turn mimetic inhibitor. J Med Chem 1995; 38: 3246–3252
  • Thompson SK, Murthy KHM, Zhao B, Winborne E, Green DW, Fisher SM, DesJarlais RL, Tomaszek TA, Jr, Meek TD, Gleason JG, Abdel-Meguid SS. Rational design, synthesis, and crystallographic analysis of a hydroxyethylene-based HIV-1 protease inhibitor containing a heterocyclic P1′-P2′ amide bond isostere. J Med Chem 1994; 37: 3100–3107
  • Hong L, Treharne A, Hartsuck JA, Foundling S, Tang J. Crystal structures of complexes of a peptidic inhibitor with wild-type and two mutant HIV-1 proteases. Biochemistry 1996; 35: 10627–10633
  • Reiling KK, Endres NF, Dauber DS, Craik CS, Stroud RM. Anisotropic dynamics of the JE-2147-HIV protease complex: Drug resistance and thermodynamic binding mode examined in a 1.09 Å structure. Biochemistry 2002; 41: 4582–4594

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.