821
Views
14
CrossRef citations to date
0
Altmetric
Research Article

The inhibitory effect of benzenethiol on the cresolase and catecholase activities of mushroom tyrosinase

, , &
Pages 711-717 | Received 20 Feb 2006, Accepted 12 Apr 2006, Published online: 04 Oct 2008

References

  • Seo Sy, Sharma VK, Sharma N. Mushroom tyrosinase: Recent prospects. J Agric Food Chem 2003; 51: 2837–2853
  • Van Gelder CWG, Flurkey WH, Wichers HJ. Sequence and structural features of plant and fungal tyrosinases. Phytochem 1997; 45: 1309–1323
  • Winder AJ, Harris H. New assays for tyrosine hydroxylase and dopa oxidase activities of tyrosinase. Eur J Biochem 1991; 198: 317–326
  • Robb DA. Copper proteins and copper enzymes. CRC Press, Boca Raton 1984
  • Riley PA. Tyrosinase kinetics: a semi-quantitative model of the mechanism of oxidation of monohydric and dihydric phenolic substrates. J Theor Biol 2000; 203: 1–12
  • Fenoll LG, Rodriguez-Lopez JN, Garcia-Sevilla F, Tudela J, Garcia-Ruiz PA, Varon R, et al. Oxidation by mushroom tyrosinase of monophenols generating slightly unstable o-quinones. Eur J Biochem 2000; 267: 5865–5878
  • Land EJ, Ramsden CA, Riley PA. Tyrosinase autoactivation and the chemistry of ortho-quinone amines. Acc Chem Res 2003; 36: 300–308
  • Whitaker JR. In: Wong DWS, ed. Food enzymes, structure and mechanisms. Chapman and Hall, New York 1995; 271–307
  • Jaenicke E, Decker H. Tyrosinases from crustaceans form hexamers. Biochem J 2003; 371: 515–523
  • Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, Garcia-Carmona F. Tyrosinase: A comprehensive review of its mechanism. Biochim Biophys Acta 1995; 1247: 1–11
  • Xie LP, Chen QX, Huang H, Wang HZ, Zhang RQ. Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase. Biochemistry (Mosc) 2003; 68: 487–491
  • Martinez MV, Whitaker JR. The biochemistry and control of enzymatic browning. Trends Food Sci Technol 1995; 6: 195–200
  • Strothkemp KJ, Jolley RL, Mason Hs. Quaternary structure of mushroom tyrosinase. Biochem Biophys Res Commun 1976; 70: 519–524
  • Yong G, Leone C, Strothkemp KJ. Agricus bisporus metapotyrosinase: preparation, characterization, and conversion to mixed-metal derivatives of the binuclear site. Biochemistry 1990; 29: 9684–9690
  • Orlow SJ, Bao-Kang Z, Chakraborty AK, Dricker M, Pifko-Hirst S, Pawelek JM, et al. High-molecular weight forms of tyrosinase and the tyrosinase-related proteins: evidence for a melanogenic complex. J Investig Dermatol 1994; 103: 196–201
  • Eicken C, Krebs B, Sacchettini JC. Catechol oxidase-structure and activity. Curr Opin Struct Biol 1999; 9: 677–683
  • Cooksey CJ, Garratt PJ, Land EJ, Ramsden CA, Riley PA. Tyrosinase kinetics: failure of the auto-activation mechanism of monohydric phenol oxidation by rapid formation of a quinomethane intermediate. Biochem J 1998; 333: 685–691
  • Rescigno A, Sollai F, Pisu B, Rinaldi A, Sanjust E. Tyrosinase inhibition: general and applied aspects. J Enz Inhib Med Chem 2002; 17: 207–218
  • Nihei kI, Yamagiwa Y, Kamikawa T, Kubo I. 2-Hydroxy-4-isopropylebenzaldehyde, a potent partial tyrosinase inhibitor. Bioorgan Med Chem Lett 2004; 14: 681–683
  • Khan SB, Haq AU, Afza N, Malik A, Khan MTH, Shah MR, Choudhary MI. Tyrosinase-inhibitory long chain Esters from Amber boa ramose. Chem Pharm Bull 2005; 53: 86–89
  • Shimizu K, Kondo R, Sakai K. Inhibition of tyrosinase by flavonoids, stilbenes and related 4-substituted resorcinol: Structure-activity investigations. Planta Medica 2000; 66: 11–15
  • Hashimoto A, Ichihashi M, Mishima Y. The mechanism of depigmentation by hydroquinone; a study on suppression and recovery processes of tyrosinase activity in the pigment cells in vivo and in vitro. Jpn J Dermatol 1984; 94: 794–804
  • Khan V. Effect of kojic acid on the oxidation of d, l-dopa, norepinephrine, and dopamine by mushroom tyrosinase. Pigment Cell Res 1995; 8: 234–240
  • Tasaka K, Kamei C, Nakano S, Takeuchi Y, Yamato M. Effects of certain resorcinol derivatives on the tyrosinase activity and the growth of melanoma cells. Meth Find Exp Clin Pharmacol 1998; 20: 99–109
  • Katagiri T, Yokoyama K, koiso I, Matukami M, nakano H. Inhibitory effect of esculin on melanogenesis. Jpn J Dermatol 1994; 104: 1367–1372
  • Kumano Y, Sakamoto T, Egawa M, Iwai I, Tanaka M, Yamamato I. In vitro and in vivo prolonged biological activities of novel vitamin c derivative. J Nutr Sci Vitaminol (Tokyo) 1998; 44: 345–359
  • Akiu S, Suzuki Y, Asahara T, Fujinuma Y, Fukuda M. Inhibitory effect of arubutin on melanoma cells. Jpn J Dermatol 1991; 101: 609–613
  • Ichihashi M, Funasaka Y, Oashi A, Chacruborty A, Ahmad NU, Ueda M, Osawa T. The inhibitory effect of d, l-alpha-tocopheryl ferulate in lecithin on melanogenesis. Anticancer Res 1999; 19: 3769–3774
  • Taylor SL, Bush RK. Sulfites as food ingredients. Food Technol 1986; 40: 47–52
  • Palumbo A, Ischia M, Misuraca G, Parota G. Mechanism of inhibition of melanogenesis by hydroquinone. Biochim Biophys Acta 1991; 1073: 85–90
  • Maeda K, Fukuda M. In vitro effectiveness of several whitening cosmetic components in human melanocytes. J Soc Cosmet Chem 1991; 42: 361–368
  • Friedman M. Food browning and its prevention: An overview. J Agric Food Chem 1996; 44: 631–653
  • Shi Y, Chen OX, Wang Q, Song KK, Qiu L. Inhibitory effects of cinnamic acid and its derivatives on the catecholase activity of mushroom tyrosinase. Food Chemistry 2005; 92: 707–712
  • Huang XH, Chen QX, Wang Q, Song KK, Wang J, sha L, Guan X. Inhibition of the activity of mushroom tyrosinase by alkyl benzoic acids. Food Chem 2006; 4: 1–6
  • Khatib S, Nerya O, Musa R, Shmuel M, Tamir S, Vaya J. Chalcones as potent tyrosinase inhibitors: the importance of a 2, 4-substituted resorcinol moiety. Bioorgan Med Chem 2005; 13: 434–441
  • Gasowsaka B, Kafarski P, Wojtasek H. Interaction of mushroom tyrosinase with aromatic amines, o-diamines and o-aminophenoles. Biochim Biophys Acta 2004; 1673: 170–177
  • Espin JC, Wichers HG. Effect of captopril on mushroom tyrosinase activity in vitro. Biochim Biophys Acta 2001; 1554: 289–300
  • Andrawis A, Khan V. Effect of methimazole on the activity of mushroom tyrosinase. Biochim J 1996; 235: 91–96
  • Kubo I, Kinst-Hori I. Flovonols from saffron flower: Tyrosinase inhibitory activity and inhibition mechanism. J Agric Food Chem 1999; 47: 4121–4125
  • Kubo I, Kinst-Hori I, Ishiguro K, Chaudhuri SK, Sanchez Y, Ogura T. Tyrosinase inhibitory flvonoids from heterotheca inuloides and their structural functions. Bioorg Med Chem Lett 1994; 4: 1443–1446
  • Chen QX, Kubo I. Kinetics of mushroom tyrosinase inhibition by quercetin. J Agric Food Chem 2002; 50: 4108–4112
  • Kubo I, Kinst-Hori I, Chaudhuri Sk, Kubo Y, Sanchez Y, Ogura T. Flovonols from Heterotheca inuloides: Tyrosinase inhibitory activity and structural criteria. Bioorg Med Chem 2000; 8: 1749–1755
  • Kubo I, Kinst-Hori I. Tyrosinase inhibitors from cumin. J Agric Food Chem 1988; 46: 5335–5341
  • Pierpoint WS. Thenzymic oxidation of cholorogenic acid and some reactions of the quinine prodused. Biochem J 1966; 98: 567–580
  • Seiji M, Yashida T, Itakura H, Irimajiri T. Inhibition of melanin formation bye sulfhydryl compounds. J Investig Dermatol 1969; 52: 280–286
  • Hanlon DP, Shuman S. Copper ion binding and enzyme inhibitory properties of the antithyroid drug methimazole. Experientia 1975; 31: 1005–1006
  • Anderson JW. Extraction of enzyme and sub cellular organelles from plant tissues. Phytochem 1968; 7: 1973–1988
  • Palmer JK, Robbert JB. Inhibition of banana polyphenol oxidase by 2-mercaptobenzothiazole. Science 1967; 157: 200–201
  • Haghbeen K, Saboury AA, Karbassi F. Substrate share in the suicide inactivation of mushroom tyrosinase. Biochim Biophys Acta 2004; 1675: 139–146
  • Karbassi F, Haghbeen K, Saboury AA, Ranjbar B, Moosavi-Movahedi AA. Activity, structural and stability changes of mushroom tyrosinase by sodium dodecyl sulfate. Colloids and Surface B: Biointerfaces 2003; 32: 137–143
  • Shareefi Borojerdi S, Haghbeen K, Karkhane AA, Fazli M, Saboury AA. Successful resonance raman study of cresolase activity of mushroom tyrosinase. Biochem Biophys Res Commun 2004; 314: 925–930
  • Gheibi N, Saboury AA, Haghbeen K, Moosavi-Movahedi AA. Activity and structural changes of mushroom tyrosinase induced by n-alkyl sulfates. Colloids and Surface B: Biointerfaces 2005; 45: 104–107
  • Karbassi F, Haghbeen K, Saboury AA, Ranjbar B, Moosavi-Movahedi AA, Farzami B. Stability, structural and suicide inactivation changes of mushroom tyrosinase after acetylation by N-acetylimidazole. Int J Biol Macromol 2004; 34: 257–262
  • Karbassi F, Saboury AA, Hassan Khan MT, Iqbal Choudhary M, Saifi ZS. Mushroom tyrosinase inhibition by two potent uncompetitive inhibitors. J Enz Inhib Med Chem 2004; 19: 349–353
  • Gheibi N, Saboury AA, Mansury-Torshizy H, Haghbeen K, Moosavi-movahedi AA. The inhibition effect of some n-alkyl dithiocarbamates on mushroom tyrosinase. J Enz Inhib Med Chem 2004; 20: 393–399
  • EI-Bayoumi MA, Frieden EA. Spectrophotometric method for the determination of the catecholase activity of tyrosinase and some of its applications. J Amer Chem Soc 1957; 79: 4854–4858
  • Serjeant EP, Dempsey B. Ionization Constants of Organic Acids in Aqueous Solution. Oxford, Pergamon 1979
  • Atkins P, DePaula J. Physical Chemistry7th Ed. WH Freeman & Company, New York 2002, Chap 9
  • Hegde SS, Kumar AR, Ganesh KN, Swaminathan CP, Khan MI. Thermodynamics of ligand (substrate/end product) binding to endoxylanas from chainia sp.isothermal calorimetry and fluorescence titration studies. Biochim Biophys Acta 1998; 1388: 93–100
  • Tellez-Sanz R, Bernier-Villamor V, Garcia-Fuentes L, Gonzalez-Pacanowska D, Baron C. Thermodynamic characterization of the binding of dCMP to the Asn229Asp mutant of thymidylate synthase. FEBS Lett 1997; 409: 385–390
  • Coassolo P, Sarrazin M, Sari JC, Briand C. Microcalorimetric studies on the binding of some benzodiazepine derivatives to human serum albumin. Biochem Pharmacol 1978; 27: 2787–2792
  • Giessner-Prettre C, Maddaluno M, Stussi D, Webber J, Eisenstein O. Theoretical study of oxyhemocyanine. A plausible insight on the first step of phenol oxidation by tyrosinase. Arch Biochem Biophys 1992; 296: 247–253
  • Solomon EI, Winkler ME, Lerch K, Hwang YT, Porras AG, Wilcox DG. Substrate analogue binding to the coupled binuclear copper active site. J Am Chem Soc 1985; 107: 4015–4027
  • Klabunde T, Eicken C, Sacchettini JC, Krebs B. Crystal structure of a plant catechol oxidase containing a dicopper center. Nature Struct Biol 1998; 5: 1084–1090
  • Decker H, Tuczek F. Tyrosinase/catechol oxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci 2000; 392: 39

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.